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What does it take to stick around?
Molecular insights into biofilm formation

by uropathogenic Escherichia coli
Maria Hadjifrangiskou and Scott J. Hultgren*

Department of Molecular Microbiology and Center for Women’s Infectious Disease Research; Washington University in St. Louis; St. Louis, MO USA
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Existence in the biofilm state lends bacteria the opportunity to enjoy, at least for a finite amount of time, the benefits of
a multicellular entity. The order of events leading to biofilm formation and disassembly has been the topic of interest
for numerous studies, aiming to identify factors and mechanisms that underlie this dynamic developmental process.
Of particular import is research leveraged at delineating biofilm formation by medically relevant microorganisms, as
prevention or eradication of biofilm from medical devices and from within the host pose a serious challenge in the
healthcare setting. Recent research describes how a transcriptional regulator modulates biofilm formation in
uropathogenic Escherichia coli (UPEC) by affecting the expression of the type 1 adhesive organelles in response to
extracellular signals.

The transition from a solitary to a multi-
cellular lifestyle is a complex develop-
mental process that is multi-faceted and
dynamic in nature. It involves the orche-
strated interplay of regulatory networks
that translate extracellular signals to con-
certed gene expression patterns, thereby
tailoring bacterial behavior in response to
environmental changes. Initiation of bio-
film formation requires the introduction
of bacteria to a surface, a partly stochastic
process that is driven by Brownian
motion, gravitational forces and, where
applicable, flagellar motility.1,2 Upon
intercepting the surface, adherence,
mediated by extracellular adhesive appen-
dages and adhesin proteins, becomes a
property that is critical for successful
biofilm development.

Uropathogenic Escherichia coli (UPEC)
and other E. coli pathotypes rely heavily
on type 1 pili,2-7 which are multi-subunit
adhesive organelles assembled by the
chaperone usher pathway (CUP).8 UPEC
harbor numerous CUP pili systems, the
differential expression of which is thought
to facilitate colonization of different
niches.9-13 Type 1 pili mediate adherence
largely via the FimH tip adhesin, which

recognizes and binds mannosylated
moieties on biotic and abiotic sur-
faces.4,6,14-20 Within the host, FimH
mediates UPEC binding to the bladder
epithelium and is also required for proper
formation of biofilm-like intracellular
bacterial communities (IBCs) within
bladder epithelial cells.21

Regulation of type 1 pili is complex,
involving a number of cis- and trans-
regulatory factors. The fim operon is under
the control of a phase-variable promoter,
fimS,22 the orientation of which is prima-
rily determined by the activity of FimB,
FimE and other recombinases.23,24 The
expression and activity of each recom-
binase is in turn controlled by several
transcriptional regulators.24,25 Moreover,
other regulatory proteins have been shown
to influence fim transcription, including
the nutrient-responsive Lrp, cAMP-CRP
and the global regulator H-NS.26-28 More
recent studies have identified the QseC
sensor kinase as another regulator that
indirectly impacts expression of type 1 pili
and interferes with UPEC biofilm forma-
tion.12,29 It is thus apparent that an
intricate network of regulatory compo-
nents is in place to direct and fine-tune

expression of type 1 pili in response
to varying environmental conditions.
Augmenting this complexity is a study by
Vila et al.30 published in this issue of
Virulence, which describes an additional
effector of type 1 pili expression and
biofilm formation in UPEC.

Vila and colleagues initiated their
studies by investigating the effects of
increasing concentrations of salicylate on
UPEC biofilm formation.30 Salicylate is
the active ingredient in aspirin and is
widely used for its anti-inflammatory
effects. It is also a critical intermediate
in the biosynthetic pathway that leads to
the synthesis of yersiniabactin, a bacterial
siderophore that is prevalent among
UPEC strains.31-33 Previous investigations
identified a bacterial transcriptional res-
ponse to salicylate treatment, which leads
to the upregulation of multiple drug
resistance systems and induces appreci-
able phenotypic changes.34 In the current
study, Vila et al. observed an inverse
relationship between biofilm formation
and salicylate, such that sessility is no
longer favored at high salicylate concentra-
tions.30 In an attempt to identify differen-
tially expressed factors in the presence of
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high salicylate levels that may contribute
to the observed reduction in biofilm, the
authors performed proteome profiling
using 2D-gel electrophoresis.30 This
approach revealed that a spot correspond-
ing to FimA, the major pilin subunit of
type 1 pili, was significantly reduced in
the lysates of UPEC subjected to 1 mM
of salicylate. Subsequent RT-PCR analysis
verified a reduction in fimA transcript,
indicating that the effect of high salicylate
on type 1 pili occurs at the transcriptional
level. Consistent with the observed fim
downregulation, RT-PCR analysis also
indicated a reduction in the transcript of
fimB, the gene that encodes the recombi-
nase responsible for switching the fim
promoter, fimS, in the ON orientation.23

Thus, combined, these data indicate that
high salicylate concentrations lead to fim
downregulation by altering the expression
of FimB and resulting in switching fimS
in the OFF orientation. Paradoxically, Vila
et al. also report that at the time of their
proteome analysis, assessment of fimS
orientation in the corresponding cultures
had not revealed significant phase-switch
differences.30 This apparent paradox is
intriguing and could be pointing toward
a transcriptional effect on fim expression
that extends beyond the phase-switch.
It is possible that upon downregulation
of fimB in response to high salicylate,
other recombinases present in this UPEC
strain invert fimS ON, but fim operon
transcription is impeded by the activity
of a yet undefined transcriptional repressor
or the inactivation of a transcriptional
activator.

Interestingly, the authors also observed
an increase in the expression of the MarA
transcriptional regulator.30 MarA has been
previously shown to be upregulated in
response to high levels of salicylate and is
responsible for inducing the expression of

multiple antibiotic resistance systems.34,35

This implicates MarA induction with
regulation of type 1 pili and biofilm
formation. To further investigate this
connection, Vila and colleagues generated
a functional mutation in MarR, the
transcriptional repressor of the marRAB
operon, and investigated the effects of
this mutation on the expression of marA
and fim.30 Indeed, in the isogenic marR
mutant, marA was upregulated while fimA
and fimB were downregulated, supporting
a connection between MarA expression
and reduced fim transcription.30 Based on
these results, the authors concluded that
high levels of salicylate negatively impact
UPEC biofilm formation by upregulating
marA, which in turn downregulates type
1 pili expression, albeit via a mechanism
that bears further scrutiny.

Collectively, this work points toward
another pathway that is used by UPEC
to monitor changes in the concentration
of small molecules such as salicylate while
in the biofilm state and mediate the
appropriate cellular response. Notably,
although high salicylate concentrations
exert a detrimental effect on UPEC
biofilm formation, as shown by this study,
previous studies established that endo-
genously produced salicylate is a critical
precursor for the biosynthesis of the
yersiniabactin siderophore.32,33 In UPEC,
a metabolomic study by Henderson et al.
demonstrated a prevalence of yersiniabac-
tin in UPEC vs. coincident rectal isolates,
indicating a role for this siderophore
during pathogenesis.31 Consistent with
this hypothesis, yersiniabactin biosynthesis
genes have been shown to be highly
expressed in IBCs in a murine model
of infection36 (Hadjifrangiskou et al.,
unpublished). More recent studies have
demonstrated that disruption of salicy-
late production by the yersiniabactin

biosynthesis pathway in UPEC results in
dramatic loss of UPEC pellicle biofilm,
which is restored upon exogenous addi-
tion of micromolar concentrations of
salicylate (Henderson and Hung et al.,
unpublished data). These findings under-
score the significance of physiological
concentrations of salicylate as a bacterial
signaling molecule, the concentration of
which plays a pivotal role on the fate of
a UPEC biofilm. This emphasizes the
delicate balance that needs to be struck
between all participating components of
the networks in place, which act as
surveillance mechanisms, sampling the
extracellular environment and modulating
bacterial responses.

The study by Vila et al.30 is the first to
identify MarA as an effector of type 1 pili
expression and places MarA in the arsenal
of factors involved in resolving the bac-
terial dichotomy between motility and
sessility. Upon induction of stress, down-
regulation of type 1 pili may be necessary
for mobilization of UPEC and dispersal
away from the biomass. It is thus possible
that induction of marA coincides with
upregulation of flagella. Previous studies
identified a role for toxin-antitoxin systems
in relaying stress signals and modulating
the shift from the biofilm to the plank-
tonic state.37 The hierarchical network
upstream of marA remains unclear. The
membrane protein MppA has been pre-
viously identified as a potential membrane
stress transducer that is found upstream
of marA,38 but more recent reports argue
against such a relationship.39 Further
characterization of the role of MarA in
UPEC biofilm formation and dispersal
will provide new insights into the mech-
anism by which MarA gets induced and
how exactly it exerts its regulatory function
on type 1 pili and possibly other UPEC
biofilm factors.
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