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Introduction
Morphogenesis of mammalian heads is a complex process coor
dinating differential cell proliferation, death, migration, and pat
terning in all germ layers. Craniofacial malformations in humans 
are major congenital disorders and a primary cause of infant mor
tality (1, 2). More than 700 distinct human craniofacial anomalies 
have been described, including cleft lip, cleft palate, Treacher Col
lins syndrome, and holoprosencephaly. However, our knowledge 
of the genetic and environmental factors causing these anomalies 
is as yet very limited; this has hindered the development of effec
tive treatments and preventative care for most of these anomalies.

Vertebrate animal models have been effective tools for under
standing the conserved molecular processes governing head mor
phogenesis. In mammals, the prospective brain (anterior neuro
ectoderm) is induced by the anterior visceral endoderm and 
subsequently transforms into the anterior neural plate. Transcription 
factors, such as OTX2, LIM1, SSDP1, and HEX, and signaling path
ways, such as WNT and BMP, define the complex network involved in 
this anterior specification (3–8). Upon neurulation, the anterior neural 
plate forms a neural tube that subdivides into 3 vesicles: the prosen
cephalon (forebrain), mesencephalon (midbrain), and rhomben
cephalon (hindbrain) (9). When neural progenitor cells increase in 
population, the brain vesicles experience robust size expansion, with 
a cell cycle time of 7 hours in the prosencephalon and 8.5 hours in 
more caudal regions (10, 11). Importantly, cell proliferation is tightly 

controlled during brain expansion (12, 13). Poor cell cycle regulation 
is associated with a variety of head malformations (1, 2). However, the 
specific cell cycle factors involved in craniofacial morphogenesis have 
remained obscure. Their discovery is challenging, likely due to func
tional redundancy, such that the null alleles of cyclins, cyclindepen
dent kinases (CDKs), and CDK inhibitors (CDKIs) do not incur overt 
craniofacial defects (14, 15).

Sitespecific proteolysis regulates a variety of physiological 
and cellular processes, including the activation of caspases for 
cell death execution and the cleavage of the Notch intracellular 
domain for cell fate determination (16). Taspase1 (TASP1; thre
onine aspartase) is a 50kDa endopeptidase of a family of hydro
lases possessing an asparaginase 2 homology domain (17, 18). Our 
initial genetic study of taspase1null (Tasp1–/–) mice uncovered 
a critical role for TASP1 in cell cycle control (19). Tasp1–/– mice 
exhibited decreased overall body size; Tasp1–/– mouse embryonic 
fibroblasts (MEFs) exhibited impaired cell cycle progression, with 
upregulation of CDKIs p16Ink4a, p21Cip1, and p27Kip1 and down
regulation of Ccne1, Ccna2, and Ccnb (19). Bona fide TASP1 sub
strates with conserved IXQL(V)D/G cleavage site motifs include 
a ubiquitously expressed general transcription factor TFIIAαβ, 
a testisenriched general transcription factor ALFαβ (TFIIAlike 
factor), histone methyltransferases MLL1 (also known as MLL) 
and MLL2 (also known as MLL4), and Drosophila HCF (19–22). 
We discovered that TASP1mediated proteolysis activates the full 
histone methyltransferase activities of MLL1 and MLL2, which in 
turn target cyclin gene promoters via E2F transcription factors (19, 
23). On the other hand, it remained unclear how TASP1 mediates 
the transcriptional regulation of CDKIs.

Head morphogenesis requires complex signal relays to enable precisely coordinated proliferation, migration, and patterning. 
Here, we demonstrate that, during mouse head formation, taspase1-mediated (TASP1-mediated) cleavage of the general 
transcription factor TFIIA ensures proper coordination of rapid cell proliferation and morphogenesis by maintaining limited 
transcription of the negative cell cycle regulators p16Ink4a and p19Arf from the Cdkn2a locus. In mice, loss of TASP1 
function led to catastrophic craniofacial malformations that were associated with inadequate cell proliferation. Compound 
deficiency of Cdkn2a, especially p16Ink4a deficiency, markedly reduced the craniofacial anomalies of TASP1-deficent mice. 
Furthermore, evaluation of mice expressing noncleavable TASP1 targets revealed that TFIIA is the principal TASP1 substrate 
that orchestrates craniofacial morphogenesis. ChIP analyses determined that noncleaved TFIIA accumulates at the p16Ink4a 
and p19Arf promoters to drive transcription of these negative regulators. In summary, our study elucidates a regulatory circuit 
comprising proteolysis, transcription, and proliferation that is pivotal for construction of the mammalian head.
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phalic cell proliferation. Noncleaved TFIIAαβ is more stable and 
accumulates at p16Ink4a and p19Arf promoters. Excessive p16Ink4a 
and p19Arf transcription and aberrant craniofacial formation result 
when there is no TASP1 or TASP1 is unable to proteolyze TFIIAαβ. 
Together, our genetic and biochemical studies establish what we 
believe to be a novel essential pathway for mammalian head mor
phogenesis in which transcription of cell cycle regulators (p16Ink4a 
and p19Arf) is modulated via posttranslational sitespecific proteoly
sis of a general transcription factor, TFIIAαβ.

Results
TASP1 deficiency leads to craniofacial malformations. Our initial 
study of TASP1deficient mice on a mixed 129SvJ/C57BL/6 (N2) 
genetic background revealed that Tasp1–/– pups typically die on P1, 
without a visible milk spot (19). Skeletal and histological analysis 
revealed that newborn (P0) Tasp1–/– pups had a shortened skull 
and a distorted tongue (Supplemental Figure 1, A and B; supple
mental material available online with this article; doi:10.1172/
JCI77075DS1), which suggests that their demise resulted from 
suckling defects. Studies in mice deficient for Otx2 or Lim1, two 
master transcription factors for mammalian head morphogene
sis, have shown that the murine C57BL/6 genetic background is 
associated with greater susceptibility to head malformation (33, 
34). Hence, our original line of Tasp1+/– mice was backcrossed to 
C57BL/6 mice. Interestingly, backcrossing beyond 6 generations 

The critical step of mRNA transcription is the recruitment and 
assembly of a transcription preinitiation complex, which consists of 
RNA polymerase II and general transcription factors (TFIIA, TFIIB, 
TFIID, TFIIE, TFIIF, and TFIIH) (24–26). TFIIA enhances transcrip
tion by stabilizing the binding of TATAbinding protein (TBP) at the 
promoter DNA and by counteracting the inhibitory effects of nega
tive cofactors, like NC2/Dr1 and TAF1 (27–29). In higher eukaryotes, 
TFIIA exists as a heterotrimer composed of 3 subunits: α, β, and γ. 
TFIIAαβ is translated as a single polypeptide and site specifically 
proteolyzed by TASP1 into α and β subunits (30). Biochemical stud
ies revealed that cleavage of TFIIAαβ increases susceptibility to pro
teasomemediated degradation but does not affect TFIIA’s ability to 
enhance transcription in vitro (31). Importantly, cleaved and non
cleaved TFIIAαβ are equally capable of interacting with the TFIIAγ  
subunit and with TBP. Recently, we generated a knockin mouse 
expressing a noncleavable mutant form of TFIIAαβ and discovered 
that TFIIA proteolysis promotes TFIIAmediated targeting of TBP 
related factor 2 (TRF2) at the spermiogenic gene loci (Tnp and Prm) 
in a testisspecific manner (32). Consequently, TASP1 noncleavable  
TFIIAαβ knockin (Tfiianc/nc) mice exhibit male sterility (32).

Here, we report that the TASP1mediated proteolysis of TFIIAαβ  
actively represses the transcription of negative cell cycle regulators 
p16Ink4a and p19Arf, transcribed from the Cdkn2a locus, to enable 
proper mammalian head development. TASP1 deficiency in mice 
leads to fatal craniofacial malformations and impaired telence

Figure 1. Craniofacial malformations observed in Tasp1–/– mice. (A) Frequencies of live WT, Tasp1+/–, and Tasp1–/– animals observed at the indicated devel-
opmental stages. The expected genotype percentages from this intercross are 25%, 50%, and 25% for WT, Tasp1+/–, and Tasp1–/–, respectively. The reduc-
tion of the Tasp1–/– frequency between E18.5 and P1 indicates perinatal lethality. (B) Frequencies of the head malformations in WT, Tasp1+/–, and Tasp1–/– P0 
pups. Tasp1-deficient animals displayed a range of head and face deformities. (C) Images on the top row are representative Tasp1–/– pups exhibiting smaller 
eyes (microphthalmia), absence of eyes (anophthalmia), lack of jaw (agnathia), and rod-like nose (ethmocephaly) as well as complete absence of cranio-
facial structures anterior to the ears (acephaly). Scale bar: 2.0 mm. Images on the bottom row show malformation of skull derivatives. Skull structures are 
identified where indicated. bo, basioccipital bone; bs, basisphenoid; e, exoccipital bone; f, frontal bone; i, interparietal bone; mn, mandible; mx, maxilla; n, 
nasal bone; p, parietal bone; pm, premaxilla; s, supraoccipital bone; tp, temporal bone; tr, tympanic ring.
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Prenatal examinations of embryos demonstrated that more 
than 90% of Tasp1–/– embryos at developmental stages E9.5 to 
E14.5 displayed major craniofacial defects, whereas E8.5 Tasp1–/– 
embryos were indistinguishable from their WT littermates (Fig
ure 2A and Supplemental Figure 2A). The prosencephalons, nasal 
processes, and first pharyngeal arches of Tasp1–/– embryos (E9.5–
E10.5) were hypoplastic or absent (Figure 2, A and B). E14.5–E18.5 
Tasp1–/– embryos exhibited severe underdevelopment or complete 
absence of the cerebral cortex and striatum as well as absence of 
the tongue and lower jaw (Figure 2, A and B). Additionally, most 
Tasp1–/– embryos at developmental stages later than E9.5 displayed 
smaller trunk sizes compared with those of their WT littermates 
(Figure 2A). Interestingly, this marked reduction in body length 
distinguishes Tasp1deficient animals from mice lacking differ
ent head organizer genes, like Otx2, Lim1, Ssdp1, Hex, Hesx1, 

resulted in marked infertility of Tasp1+/– males (32). Tasp1–/– mice 
were born from Tasp1+/– (N6) intercrosses at near the expected 
Mendelian ratio, but all died within the first day after birth (Figure 
1A). Strikingly, all these C57BL/6 background–enriched Tasp1–/–  
mice displayed arrays of craniofacial malformations, ranging 
from smaller eyes (microphthalmia), absence of eyes (anophthal
mia), absence of lower jaw (agnathia), and rodlike nose (ethmo
cephaly) to complete absence of head structures anterior to the 
ears (acephaly) (Figure 1, B and C). In acephalic Tasp1–/– pups, the 
facial bones rostral to the parietal bones were missing or severely 
deformed, whereas caudal bones, such as the interparietal and 
suboccipital bones, were present (Figure 1C). On the other hand, 
we did not observe overt craniofacial defects in the 129SvJ back
ground–enriched Tasp1–/– pups from intercrosses of Tasp1+/– mice 
that had been backcrossed to the 129SvJ strain for 6 generations.

Figure 2. Disruption of brain architecture in Tasp1–/– embryos. (A) Lateral views of representative WT and Tasp1–/– embryos at different developmen-
tal stages (E8.5–E14.5). Tasp1–/– embryos at E9.5 and older show truncations of head structures (93.8% at E9.5, n = 16; 93.0% at E10.5, n = 41; 100% at 
E12.5, n = 12; 94.3% at E14.5, n = 175). Scale bar: 1.0 mm. (B) Hematoxylin and eosin–stained sagittal sections of WT and Tasp1–/– heads at the indicated 
developmental stages. Skull structures are identified where indicated. Note the hypoplasia of prosencephalic derivatives in Tasp1–/– embryos. cp, choroid 
plexus; cx, cerebral cortex; di, diencephalon; mes, mesencephalon; np, nasal process; oe, olfactory epithelium; os, optic stalk; p, pons; pa, first pharyn-
geal arch; rh, rhombencephalon; str, striatum; t, tongue; tel, telencephalon. Scale bar: 1.0 mm. (C) Whole-mount anti-CD31 IHC of E10.5 WT and Tasp1–/– 
embryos showing spreading of cranial vessels throughout entire heads. At least 3 embryos were tested for each group. Scale bar: 0.5 mm. (D) Hema-
toxylin and eosin–stained sagittal sections of WT and Tasp1–/– E10.5 embryos. Tasp1–/– hearts are smaller but exhibit normal development. at, atrium; ec, 
endocardial cushion; tr, myocardial trabeculae; vn, ventricle. At least 3 embryos were tested for each group. Scale bar: 0.5 mm. (E) Whole-mount in situ 
hybridization with Tasp1 antisense and sense (negative control) probes on E10.5 WT embryos. Tasp1 mRNA was detected at brain ventricles, pharyngeal 
arches, and limb buds. At least 3 embryos were tested for each probe. Scale bar: 1.0 mm.

Downloaded from http://www.jci.org on April 14, 2015.   http://dx.doi.org/10.1172/JCI77075



The Journal of Clinical Investigation   R e s e a R c h  a R t i c l e

1 2 0 6 jci.org   Volume 125   Number 3   March 2015

liferation accounts for the abnormal development of the Tasp1–/– 
prosencephalon. In comparison with that in WT embryos, E10.5 
Tasp1–/– embryos showed reduced thickness of the telencephalic 
neuro ectoderm, which was composed of 5 to 8 layers of neural 
progenitor cells, rather than the normal 6 to 10 layers (Figure 3A). 
Moreover, significantly fewer mitotically active cells were detected 
in Tasp1–/– prosencephalons by phospho–histone H3 (pHH3) stain
ing than in WT prosencephalons (Figure 3A). The pHH3positive 
WT cells were ordinarily widely distributed, whereas the few 
Tasp1–/– proliferating cells were restricted to the ventricular side 
(Figure 3A). On the other hand, comparable proliferation was 
detected in Tasp1–/– and WT first pharyngeal arches and nasal com
partments (Figure 3A). Of note, Tasp1–/– and WT E10.5 prosence
phalons showed no difference in apoptosis (Figure 3B).

Cdkn2a deficiency rescues the craniofacial and body size anom-
alies of Tasp1–/– embryos. To elucidate how TASP1 organizes head 
morphogenesis, we performed comparative microarray analyses 
on prosencephalons and mesencephalons from E10.5 Tasp1–/– 
and WT embryos. Gene Ontology analysis revealed that the 
genes that were associated with “cell proliferation” and “met
abolic process” are overrepresented among the genes differen
tially expressed between Tasp1–/– and WT embryo heads (Figure 

and Dkk1deficient animals (5–7, 34–37). Tasp1deficient animals 
have cranial morphogenetic defects, with normal or only slightly 
smaller body dimensions. Defects in the cardiovascular system 
can impede expansion of embryonic tissues by limiting distribu
tion of nutrient and oxygen. However, this is unlikely the cause for 
craniofacial defects in Tasp1–/– embryos, because they exhibited 
normal development of cranial blood vessels (Figure 2C) and the 
heart (primitive ventricle, atrium, endocardial cushion, and myo
cardial trabeculae) (Figure 2D). Furthermore, wholemount in situ 
hybridization of E10.5 embryos indicated prominent expression of 
TASP1 in the brain ventricles, pharyngeal arches, and limb buds 
(Figure 2E). This distinct pattern of TASP1 expression is consistent 
with the major phenotypes of Tasp1–/– embryos seen in head and 
pharyngeal arches.

The telencephalons of Tasp1–/– animals exhibit impaired cell pro-
liferation. Our prior studies using MEFs identified cyclin genes, 
genes encoding CDKIs, and Hox genes as the key downstream 
transcriptional effectors regulated by TASP1 through sitespe
cific proteolysis of nuclear factors (19). It is unlikely that the Hox 
code has any influence on forebrain development, as the cephalic 
expression boundary of Hox genes is at the rhombomere (38). 
Thus, we focused on investigating whether a disruption of pro

Figure 3. Tasp1 loss results in reduced pro-
liferation in the Tasp1–/– developing fore-
brain. (A) Immunohistochemical staining 
for pHH3 reveals reduced mitotic growth in 
the prosencephalic region of E10.5 Tasp1–/– 
embryos. The percentage of pHH3-positive 
cells normalized to Hoechst-positive cells 
differed between WT and Tasp1–/– embryos 
in the telencephalic neuroectoderm (ne) 
but not in the first pharyngeal arch or the 
nasal process (n = 3 throughout). Scale 
bar: 0.2 mm. Error bars represent SD. *P < 
0.05, unpaired 2-tailed Student’s t test. (B) 
Apoptotic cells in the E10.5 prosencephalon 
were observed by IHC detection of cleaved 
caspase-3 (arrowheads). The percentage of 
cleaved caspase-3–positive cells normal-
ized to Hoechst-positive cells did not differ 
between WT and Tasp1–/– embryos (n = 6 
[Tasp1–/–]; n = 5 [WT]). Scale bar: 0.2 mm. 
Error bars represent SD.
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(Figure 4B). On the other hand, none of the gene sets associ
ated with head development was overrepresented in GSEA. The 
Cdkn2a locus encodes 2 distinct proteins from alternative read
ing frames: p16Ink4a, which is a CDKI, and p19Arf, which pro
motes p53dependent apoptosis and cell cycle arrest (39). Quan
titative RT-PCR analyses demonstrated that the mRNA levels of 

4A). Gene set enrichment analysis (GSEA) of the Molecular Sig
nature Database (C2 canonical pathways) indicates that 4 of the 
20 gene sets with the highest normalized enrichment scores are 
associated with cell proliferation (Figure 4B and Supplemental 
Table 1). These 4 gene sets commonly contain the negative cell 
cycle regulators p21Cip1 (also known as Cdkn1a) and Cdkn2a 

Figure 4. Craniofacial and body size anomalies of Tasp1–/– embryos are rescued by Cdkn2a deficiency. (A) RNA harvested from E10.5 WT and Tasp1–/– 
heads was subjected to microarray. Gene Ontology analysis shows functional categories of differentially expressed genes in the order of the enrichment 
score. (B) GSEA of expression signals from WT and Tasp1–/– samples. Enrichment plot of the “CELL_CYCLE_KEGG” gene set, indicating enrichment of 
cell cycle–associated genes among significantly upregulated mRNAs in Tasp1–/– heads (P < 0.01, normalized enrichment scores = 1.57). Genes showing 
core enrichment (indicated by inclusion in the purple bar under the enrichment plot) are listed by relative expression (red, high; blue, low). (C) Increased 
p16Ink4a and p19Arf mRNA levels were detected in E10.5 Tasp1–/– embryonic heads by quantitative RT-PCR (n = 3 throughout). Error bars represent SD.  
*P < 0.05, **P < 0.01, unpaired 2-tailed Student’s t test. (D) Frequencies of the otocephalic phenotypes in E14.5 embryos of the indicated genotypes.  
Note that Cdkn2a deficiency significantly rescued Tasp1–/– craniofacial malformations. **P < 0.01, Fisher’s exact test. (E) Body sizes of E18.5 embryos of 
the indicated genotypes. The distance from the ears to the base of tail was measured using ImageJ analysis. Note that Cdkn2a deficiency significantly 
rescued the reduced body sizes of Tasp1–/– embryos (n = 4 throughout). Error bars represent SD. **P < 0.01, unpaired 2-tailed Student’s t test.
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p16Ink4a, p19Arf, and p21Cip1 were 2 to 3fold higher in Tasp1–/– 
heads than in WT E10.5 heads (Figure 4C). Expression of Ccne1 
and Ccna2, which were previously identified as TASP1regulated 
genes in MEFs (19), was only minimally reduced Tasp1–/– heads 
(Figure 4C).

We further determined the mRNAs levels of head organizer 
genes, including Otx2, Hex, Hesx1, and Dkk1, and did not detect 
significantly altered expression in Tasp1–/– E9.5 embryos (Supple
mental Figure 2B). Of note, Hex expression was reduced by 25% 
(Supplemental Figure 2B). Since heterozygous loss of Hex does 
not induce overt craniofacial aberration (6), the observed Hex 

reduction is unlikely to account for the drastic malformations of 
the Tasp1–/– embryo heads. Since MLL1, a substrate of TASP1, was 
shown to activate expression of MMP1 and MMP3 via interaction 
with ETS2 transcription factor (40) and remodeling of extracellu
lar matrix is important for tissue morphogenesis, we determined 
the expression of several MMPs (Supplemental Figure 2C). In 
Tasp1–/– E10.5 embryos, Mmp3 was reduced. Of note, mice deficient 
in Mmp3 did not exhibit any craniofacial defects (41). Hence, the 
Mmp3 reduction is unlikely to account for the overt head defects 
of Tasp1–/– animals. There were no significant differences in the 
expression of Mt1-Mmp, which is required for cranial skeleton 

Figure 5. Genetic knockin of cleavage-resistant forms of TASP1 substrates reveals that noncleavage of TFIIAα-β phenocopies the craniofacial malfor-
mations observed in Tasp1–/– mice. (A) Mll1nc/nc, Mll2nc/nc, and Mll1nc/nc Mll2nc/nc mice at P0 did not display craniofacial defects. Scale bar: 2.0 mm. (B) WT, 
Tfiia+/nc, and Tfiianc/nc mice obtained from Tfiia+/nc intercrosses were observed at the expected Mendelian ratios at the indicated developmental stages. 
Nearly 100% of Tfiianc/nc mice died within the first day of birth. (C) Tfiianc/nc P0 animals exhibited head malformations similar to those observed in Tasp1–/– 
animals. Scale bar: 2.0 mm. (D) WT and Tfiianc/nc E10.5 and E14.5 embryos with head malformations. Frequencies of the otocephalic phenotypes in E14.5 
WT, Tfiia+/nc, and Tfiianc/nc embryos are shown. Scale bar: 1.0 mm. 
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development, between WT and Tasp1–/– embryos (Supplemental 
Figure 2C) (42). Furthermore, Tasp1–/– embryos did not exhibit sig
nificant alteration in the expression of Sox1 and Sox2, two key reg
ulators of neuroectoderm (43). Overall, these results suggest that 
TASP1 is necessary for expansion of the prosencephalon, in part 
through its restriction of p16Ink4a, p19Arf, and p21Cip1 expression.

To test the hypothesis that cell cycle regulation constitutes the 
key mechanism by which TASP1 coordinates mammalian cranial 
morphogenesis, we generated mice deficient in both Tasp1 and 
Cdkn2a, using Cdkn2a–/– mice, in which both p16Ink4a and p19Arf 
are deficient, on a pure C57BL/6 background. Remarkably, the 
deletion of Cdkn2a in our Tasp1–/– Cdkn2a–/– mice significantly res
cued the head and body size anomalies of Tasp1–/– mice (Figure 4, 
C and D). A greater proportion of E14.5 Tasp1–/– Cdkn2a–/– embryos 
developed a normal head (35.9% in Tasp1–/– Cdkn2a–/– embryos 

versus 5.7% in Tasp1–/– embryos), and a smaller proportion failed to 
develop a prosencephalon (5.1% in Tasp1–/– Cdkn2a–/– embryos ver
sus 18.3% in Tasp1–/– embryos) (Figure 4D). To further understand 
how p16Ink4a and p19Arf contribute to craniofacial develop
ment, we generated Tasp1–/– p16Ink4a–/– and Tasp1–/– p19Arf–/– mice, 
respectively, using p16Ink4a–/– and p19Arf–/– mice on a C57BL/6 
background. Deficiency of p16Ink4a reduced the incidence of 
prosencephalon loss (9.7% in Tasp1–/– p16Ink4a–/– embryos versus 
18.3% in Tasp1–/– embryos) (Figure 4D). However, neither p16Ink4a 
nor p19Arf deficiency alone rescued the gross craniofacial defects 
of Tasp1–/– mice. Thus, it is likely that suppression of both p16Ink4a 
and p19Arf during cranial morphogenesis is crucial for normal 
head development.

Tfiianc/nc mice exhibit the same craniofacial malformations as 
Tasp1–/– mice. In mammals, the bona fide substrates proteolyzed 

Figure 6. Loss of TFIIAα-β proteolysis leads to TFIIA stabilization at the Cdkn2a locus. (A) Quantitative RT-PCR detected increased p16Ink4a, p19Arf, and 
p21Cip1 mRNA levels in Tfiianc/nc E10.5 embryo heads relative to levels in WT embryo heads. The mean was calculated from n = 3 (Tfiianc/nc) and n = 5 (WT). 
Error bars represent SD. *P < 0.05, **P < 0.01, unpaired 2-tailed Student’s t test. (B) Immunoblots of WT and Tfiianc/nc MEFs validated increased levels of 
p16Ink4a and p19Arf proteins in Tfiianc/nc cells. (C) Immunoblots showing levels of TFIIAα, TFIIAα-β, TFIIAγ, TASP1, TBP, and β-actin in WT, Tasp1–/–, and 
Tfiianc/nc E10.5 embryo heads. Note the accumulation of TFIIAα-β in the Tasp1–/– and Tfiianc/nc lysates. (D) Illustration depicting the role of TFIIA in p16Ink4a 
and p19Arf regulation. During craniofacial development, TASP1-mediated cleavage of TFIIAα-β promotes TFIIA degradation, resulting in limited p16Ink4a 
and p19Arf transcription. (E) ChIP assay detected an increase of TFIIA at the Cdkn2a locus of Tfiianc/nc E10.5 embryo heads relative to that in WT embryo 
heads. TFIIA binding relative to input was quantified as a percentage by quantitative RT-PCR targeting the p16Ink4a transcription start site (TSS), the 
p19Arf transcription start site, and the Cdkn2a 3-kb upstream sequence (control) (n = 4 [Tfiianc/nc]; n = 5 [WT]). Error bars represent SD. *P < 0.05, unpaired 
2-tailed Student’s t test.
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TASP1mediated cleavage of TFIIAαβ contributes to the steady
state transcription by regulating TFIIA turnover. Noncleaved 
TFIIAαβ retains its cleaved form’s ability to bind TBP and is tran
scriptionally active (30). Accretion of high levels of noncleaved 
TFIIAαβ through either cleavage site mutation (Tfiianc/nc) or loss 
of TASP1 function (Tasp1–/–) should therefore increase the associ
ation of TFIIA at the TFIIA target gene loci (Figure 6D). We tested 
this hypothesis by performing ChIP assays on the heads of E10.5  
Tfiianc/nc and WT embryos. Indeed, we observed a significant 
increase in TFIIA occupancy at p16Ink4a and p19Arf promoters in 
Tfiianc/nc embryos (Figure 6E).

Discussion
The morphogenesis of the vertebrate head, which is composed of 
a group of the most elaborate organs in the body, demands a series 
of dynamic events, coordinating the proliferation, migration, 
and patterning of different lineages of cells. Brain vesicles, the 
prosencephalon, mesencephalon, and rhombencephalon, derive 
from the anterior neuroectoderm (9). Defects in induction of the 
anterior neuroectoderm in mouse models deficient in Otx2, Lim1, 
Ssdp1, and Hex commonly result in the absence of the prosence
phalon by E8.5 and acephaly at P0, if not in prenatal lethality (3–
5). In this study, we identified a variety of craniofacial defects in 
Tasp1–/– pups at P0 (Figure 1B). However, Tasp1–/– embryos at E8.5 
displayed no overt defects in the prosencephalon (Figure 2A), and 
acephaly was an uncommon phenotype of P0 Tasp1–/– pups (Fig
ure 1C). These observations indicate that TASP1 plays a role in the 
events subsequent to anterior neuroectoderm induction.

Importantly, the most common phenotype of Tasp1–/– embryos 
was hypoplasia of the prosencephalon starting at E9.5 (Figure 2, 
A and B). The prosencephalon serves as a signaling center and a 
structural support that is critical for the development of craniofa
cial tissues. For example, the optic vesicle, which develops in the 
lateral wall of the diencephalon, releases BMP4 and induces the 
lens placode (47, 48). Sonic hedgehog (Shh) expressed in the ven
tral prosencephalon is essential for expansion of the frontonasal 
process that develops into the nose and upper jaw (49, 50). Further
more, expression of Shh in the anterior foregut endoderm immedi
ately beneath the prosencephalon was shown to be pivotal for the 
induction of the first pharyngeal arch, which develops into lower jaw 
(51, 52). Consistently, frequency analysis of the craniofacial defects 
of Tasp1–/– animals suggested that the shrunken prosencephalon in 
E10.5 embryos results in anophthalmia or microphthalmia at E14.5 
and P0, while prosencephalon loss at E10.5 results in agnathia in 
addition to eye defects (Figure 1C and Supplemental Figure 2A), 
suggesting development of eyes is dependent on intact prosence
phalon. Histologically, the hypoplastic prosencephalons of E10.5 
Tasp1–/– embryos displayed reduced thickness of the telencephalic 
neuroectoderm, overall impaired cell proliferation, and restriction 
of a few proliferating cells to the ventricular side (Figure 3A). The 
telencephalic neuroectoderm of E10.5 WT embryos consisted pri
marily of the ventricular zone (VZ) on the lumenal side and the sub
ventricular zone (SVZ) on the surface side. In the VZ, apical neural 
progenitor cells undergo asymmetric divisions to produce inter
mediate neural progenitor cells and neurons. Intermediate neural 
progenitor cells translocate externally to form the SVZ, in which 
they undergo symmetric divisions (53). The histological features of 

by TASP1 are TFIIAαβ, ALFαβ, MLL1, and MLL2. ALFαβ is 
expressed predominantly in the testes and ovaries (44–46), 
whereas TFIIAαβ, MLL1, and MLL2 are expressed ubiquitously, 
including in the head. Hence, we investigated whether TASP1
mediated cleavage of MLL1, MLL2, or TFIIAαβ contributes 
to head morphogenesis. Mll1nc/nc, Mll2nc/nc, and Mll1nc/nc Mll2nc/nc 
knockin mice carry homozygous noncleavable mutant Mll1 and/
or Mll2 alleles at their native genomic loci (19, 32). None of these 
mice displayed craniofacial defects on a C57BL/6 background 
(N10) (Figure 5A). This result is consistent with our previous find
ings in MEFs that TASP1mediated cleavage of MLLs regulates 
cyclin genes but not CDKIs (19). Hence, we generated homozygous  
Tfiianc/nc mice (32) that were backcrossed with C57BL/6 mice. Like 
Tasp1–/– pups, Tfiianc/nc pups on the C57BL/6 background–enriched 
background (N6) were born at the expected Mendelian ratio from 
Tfiia+/nc (N6) intercrosses and succumbed to death within the first 
day after birth (Figure 5B). Remarkably, Tfiianc/nc and Tasp1–/– mice 
displayed closely similar otocephalic phenotypes and diminished 
body sizes at birth (Figure 5C) and during embryogenesis (Figure 
5D). Of note, Tfiia is expressed ubiquitously in E10.5 embryos 
(Supplemental Figure 3A), and thereby, the expression of Tasp1 
likely dictates where cleaved TFIIA functions. Notably, none of the  
Tfiianc/nc mice exhibited acephaly (P0) or prosencephalon loss 
(E14.5). This result suggests that proteolysis of TFIIAαβ may not 
be the only way that TASP1 regulates craniofacial development. 
Therefore, we generated triple mutant Tfiianc/nc Mll1nc/nc Mll2nc/nc ani
mals. However, introduction of Mll1nc and Mll2nc alleles into Tfiianc/nc  
mice did not increase the severity of cranial anomalies (Supple
mental Figure 3B).

Noncleaved TFIIAα-β is stabilized and targets to the Cdkn2a 
locus. Thus far, our genetic results demonstrate that (a) Tasp1–/– 
mice exhibited severe cranial anomalies with disrupted cell prolif
eration, (b) homozygous loss of Cdkn2a significantly rescued these 
defects, and (c) Tasp1–/– mice and Tfiianc/nc mice displayed a highly 
similar spectrum of cranial anomalies. Based on these findings, we 
hypothesized that TASP1 may promote proper head morphogenesis  
through the cleavage of TFIIAαβ to prevent undesirable aber
rant transcription of p16Ink4a and p19Arf. Accordingly, we inves
tigated whether loss of TASP1mediated cleavage of TFIIAαβ  
alters the expression of major cell cycle regulators in Tfiianc/nc 
heads. Quantitative RT-PCR and immunoblotting revealed upreg
ulation of p16Ink4a, p19Arf, and p21Cip1 but no changes in the 
mRNA levels of of Ccnd1, Ccne1, and Ccna2 (Figure 6, A and B), 
supporting TASP1/TFIIA regulation of p16Ink4a/p19Arf/p21Cip1 
as an important regulatory axis in cranial morphogenesis.

Next, we examined how TASP1mediated cleavage of TFIIAαβ  
prevents induction of p16Ink4a and p19Arf. Previous studies have 
shown that noncleaved TFIIAαβ is less susceptible to proteasome
mediated degradation than its cleaved form (31). Consistently, 
immunoblotting of TFIIA protein in E10.5 Tasp1–/– and Tfiianc/nc 
heads showed an accumulation of noncleaved TFIIAαβ (Figure 
6C). Interestingly, the TFIIAγ subunit of TFIIA also exhibited sta
bilization in Tasp1–/– and Tfiianc/nc lysates, albeit to a lesser extent 
than TFIIAαβ (Figure 6C). Notably, TFIIAγ exhibited stabilization 
in Tasp1–/– and Tfiianc/nc lysates, but not in Tfiia+/nc lysate (Supple
mental Figure 3C), suggesting that TFIIAγ is stabilized only when 
all of the TFIIAαβ stays noncleaved. These results suggest that 
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the Tasp1–/– embryo heads, possibly reflecting the tissue specificity. 
In addition to cyclin genes, MLL1 and MLL2 also drive transcrip
tion of Hox genes, which regulate specification of the anterior 
posterior axis during embryogenesis (38). However, Hox genes 
seem irrelevant to the craniofacial anomalies caused by TASP1 
deficiency, because no Hox genes are expressed anterior to the 
rhombencephalon, and none of the Hoxdeficient mouse models 
reportedly display craniofacial phenotypes observed in Tasp1–/– 
embryos (Mouse Genome Informatics, http://www.informatics.
jax.org). Consistently, Mll1nc/nc, Mll2nc/nc, and Mll1nc/nc Mll2nc/nc mice 
displayed no obvious craniofacial defects, thus we concluded that 
TASP1mediated proteolysis of MLL1 and MLL2 is dispensable for 
normal head development.

In contrast to cyclin genes, how TASP1 controls the tran
scription of CDKIs has been an open question. Here, we discov
ered that failure in TASP1mediated proteolysis of TFIIAαβ in 
Tfiianc/nc animals resulted in a robust increase of p16Ink4a and 
p19Arf (Figure 6, A and B), thus demonstrated a signaling cas
cade that we believe to be novel comprising TASP1 (protease), 
TFIIA (general transcription factor), and CDKN2A (cell cycle 
regulators). We displayed in mouse embryos that noncleavage 
of TFIIAαβ leads to increased protein stability of TFIIAαβ and 
TFIIAγ, consistent with the previous finding in vitro that TASP1
mediated proteolysis of TFIIAαβ accelerates proteasome
mediated degradation (31). Noncleaved TFIIAαβ was shown to 
interact with TBP and TFIIAγ and enhance transcription as effi
ciently as its cleaved form (31, 58). Consequently, our findings in 
vivo suggest that the primary function of TASP1mediated TFIIA 
proteolysis is the regulation of cellular levels of TFIIA. Our 
ChIP assays showed that stabilization of TFIIAαβ in Tfiianc/nc  
embryos leads to significantly increased TFIIA occupancy on 
p16Ink4a and p19Arf promoters. Accordingly, we concluded that 
TASP1 cleaves TFIIAαβ to prevent excess recruitment of TFI
IAαβ to p16Ink4a and p19Arf promoters during mammalian cra
nial morphogenesis. Recently, we elucidated a specific role for 
TASP1mediated proteolysis of TFIIAαβ in mammalian sper
matogenesis (32). Proteolysis activated TFIIA’s ability to recruit 
TRF2 for the upregulation of spermiogenic genes (Tnp and Prm) 
through targeting respective promoters (Supplemental Figure 
4), and Tfiianc/nc animals display immature spermiogenesis in 
spite of the improved protein stability that noncleavage confers 
on TFIIAαβ (32). Notably, it is unlikely that recruitment of TRF2 
by proteolyzed TFIIAαβ occurs during craniofacial morphogen
esis, because the phenotype of TRF2deficient mice is limited 
to defects in spermiogenesis. Animals deficient in TRF2 incur 
neither other embryogenesis defects nor lethality (59). Hence, 
TASP1 uses various strategies to achieve sophisticated control 
over diverse biological processes.

Methods
Mice and skeletal studies. Tasp1–/–, Mll1nc/nc, Mll2nc/nc, and Tfiianc/nc mice 
were generated as previously described (19, 32). p16Ink4a–/– (FVB.129 
Cdkn2atm2.1Rdp), p19Arf–/– (B6.129-Cdkn2atm1Cjs), and Cdkn2a–/– (B6.129 
Cdkn2atm1Rdp) mice were purchased from the NCI Mouse Repository. 
Tasp1+/–, Tfiia+/nc, and p16Ink4a–/– mice were backcrossed with C57BL/6 
animals for 6 generations (N6) and maintained by intercrosses. Mll1nc/nc  
and Mll2nc/nc mice were backcrossed with C57BL/6 mice for 10 gener

Tasp1–/– embryos suggest that TASP1 may be required primarily for 
the division of intermediate neural progenitors in the SVZ and thus 
for expansion of the SVZ.

Of all the cranial organs, the brain experiences the most dra
matic expansion during inflation of the brain vesicles. Cell prolif
eration is locally regulated to shape the complex structure of the 
brain. For instance, the cells in the alar region of the neural plate 
proliferate more than those in the floor region to enable neural 
tube closure (13). The cells in the prosencephalic vesicle proliferate 
more than the cells at the boundary between the prosencephalon 
and the mesencephalon to enable prosencephalon expansion (12). 
However, the molecular machinery regulating cell proliferation in 
early brain development is poorly understood. Several cell cycle 
regulators, including cyclin D2, p21Cip1, p27Kip1, and p57Kip2, 
have been implicated in corticogenesis but not in early cranio facial 
development (54–56). None of the mouse models with cyclin, 
CDK, or CDKI deficiency exhibit critical craniofacial defects 
other than changes in the thickness of limited cerebral cortical lay
ers (14, 15), most likely because of functional redundancy among 
cell cycle regulators. The relevance of negative cell cycle regula
tors p16Ink4a and p19Arf to embryonic development has long 
been dismissed, as their expression is barely detectable in mouse 
embryos (E7.5–E17.5) by Northern blot (57). However, p16Ink4a 
and p19Arf levels increase over passages of MEFs, suggesting that 
p16Ink4a and p19Arf transcription is actively repressed during 
embryogenesis (57). Here, we discovered that TASP1 depletion 
leads to robust upregulation of p16Ink4a and p19Arf in developing 
mouse heads (Figure 4C). We showed that compound deficiency 
of Cdkn2a, the locus from which p16Ink4a and p19Arf are tran
scribed, significantly rescues the craniofacial anomalies of Tasp1–/– 
animals, thereby demonstrating that p16Ink4a and p19Arf play an 
important role in craniofacial development (Figure 4C). Cdkn2a 
deficiency rescued all of the observed craniofacial phenotypes of 
Tasp1–/– embryos, including anophthalmia and agnathia, indicat
ing that cell cycle deregulation is the principal defect that TASP1 
depletion causes. However, Cdkn2a deficiency did not affect a 
complete rescue: more than 60% of Tasp1–/– Cdkn2a–/– animals 
still showed craniofacial defects (Figure 4C). One hypothesis that 
accounts for this incomplete rescue is that p21Cip1, another CDKI 
that showed upregulation in Tasp1–/– embryos, also contributes to 
craniofacial defects and that p21Cip1 and p16Ink4a have redun
dant roles in cell cycle regulation. This hypothesis could be tested 
by examining the rescue of Tasp1–/– phenotypes by deficiencies of 
both Cdkn2a and p21Cip1. An alternative hypothesis is that cell 
cycle regulation is not the only mechanism by which TASP1 coor
dinates craniofacial morphogenesis. This latter hypothesis is sup
ported by our characterization of Tfiianc/nc embryos, none of which 
exhibited prosencephalon loss at E14.5 or acephaly at P0 (Figure 
5, B–D), despite displaying clear upregulation of p16Ink4a, p19Arf, 
and p21Cip1 (Figure 6A).

In a previous study on MEFs, we demonstrated that TASP1 
loss leads to concurrent downregulation of Ccne1, Ccna2, and 
Ccnb and upregulation of CDKIs p16, p21, and p27 (19). We also 
provided evidence that TASP1 helps MLL1 and MLL2 regulate the 
expression of cyclin genes by activating their histone methyltrans
ferase activities (ref. 19 and Supplemental Figure 4). Interestingly, 
we did not observe significant downregulation of cyclin genes in 
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ViiA7 RealTime PCR System (Applied Biosystems). Gene expression 
data were normalized against Gapdh detected using a Gapdh TaqMan 
probe (Applied Biosystems). For microarray analysis, samples prepared 
from RNA isolated from E10.5 prosencephalons and mesencephalons 
were hybridized to GeneChip Mouse ST 1.0 (Affymetrix). The expression 
signals were subjected to Gene Ontology analysis (Partek) and GSEA 
(http://www.broadinstitute.org/gsea/index.jsp) to identify overrepre
sented groups of genes, with common biological processes or pathways. 
Microarray data were deposited in GEO (accession no. GSE64533).

Immunoblot analysis. Dissected E10.5 mouse heads (prosence
phalons and mesencephalons) or E13.5 primary MEFs at passage P2 
were lysed in RIPA buffer supplemented with complete protease inhib
itors (Roche). The mouse head lysates were homogenized for complete 
dissociation using FastPrep24 and Lysing Matrix D (MP Biomedicals). 
Samples were loaded onto NuPAGE gels (Invitrogen) and transferred 
onto PVDF (ImmobilonP, Millipore). Proteins of interest were blotted 
with specific antibodies and detected with enhanced chemilumines
cence reagents (Western Lightening, Perkin Elmer) and the LAS-300 
Imaging System (FUJIFILM Life Science). Antibodies against TASP1 
and TFIIAα (SM346) are as previously described (32, 61); antibodies 
against p16Ink4a (sc74401, Santa Cruz), p19Arf (ab26696, Abcam), 
TFIIAγ (sc5316, Santa Cruz), TBP (sc204, Santa Cruz), and anti–β
actin (AC-15, SigmaAldrich) were purchased commercially. See com
plete unedited blots in the supplemental material.

ChIP assay. Tissue was collected from the prosencephalons, mesen
cephalons, upper jaws, and eyes (but not from the rhombencephalons and 
lower jaws) of E12.5 mouse embryos; minced with a razor blade; and fixed 
with 1% PFA. The approximately 10 mg chromatin obtained from 4 × 106 
to 5 × 106 cells was sonicated using a Bioruptor (Diagenode) for 28 min
utes to sheer the DNA into fragments of 100 to 400 base pairs. Immuno
precipitation was performed using antibodies against TFIIAα (MO431) or 
rabbit IgG (SigmaAldrich) and antirabbit IgG Dynabeads (Invitrogen). 
The antiTFIIAα antibody was generated by immunizing rabbits against 
the peptide encompassing aa 1–276 of human TFIIAαβ. Precipitated 
DNA was assessed by quantitative RT-PCR using genespecific oligonu
cleotide primers (listed in Supplemental Table 2). The immunoprecipita
tion efficiency was determined as the percentage relative to input.

Statistics. Results are presented as mean ± SD. Except where otherwise 
specified, statistical significance was determined by unpaired 2tailed  
Student’s t test. A P value of less than 0.05 was considered significant.

Study approval. All animal work was performed in accordance to a 
protocol approved by the Institutional Animal Care and Use Commit
tee of Memorial SloanKettering Cancer Center.
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ations (N10). Skeletal studies were performed as previously described 
(19). Briefly, skulls were stained with alizarin red and alcian blue for 
visualization of bone and cartilage, respectively. Mouse embryos and 
P0 pups were photographed with an Infinity camera (Lumenera) under 
a stereoscopic microscope (Zeiss Stemi 2000-C, Zeiss). For measure
ment of embryo body sizes, a digital image of each embryo was con
verted into a binary file. The distance between the ears and the tail 
base was then calculated using the Measure Roi Curve plugin for the 
ImageJ software program.

MEFs. MEFs were harvested from WT and Tfiianc/nc E13.5 mouse 
embryos according to the standard protocol (60). MEFs were cultured 
in Iscove’s Modified Dulbecco’s Medium supplemented with 20% 
fetal bovine serum.

Histology, immunohistochemistry, and cell quantification. Tissues 
or whole embryos were collected and fixed in 4% paraformaldehyde 
(PFA) or Bouin’s solution. Paraffinembedded samples were sectioned 
(5–7 μm), rehydrated, and subjected to hematoxylin and eosin stain
ing, immunohistochemistry (IHC), or Hoechst (Invitrogen) staining. 
For IHC of sections, samples were blotted with the antibody specific 
to pHH3 Ser10 (06-570, Upstate) or cleaved Caspase3 (9661, Cell 
Signaling) and visualized with DAB and nickel chloride (Vector Labs). 
For wholemount IHC, E10.5 embryos were bleached in 6% H2O2/
methanol and dehydrated in 100% methanol. Samples were blocked 
in 5% skim milk and 1% Triton X-100 in PBS and incubated with anti
CD31 antibody (557355, BD Pharmingen). Following incubation with 
peroxidaseconjugated antirat IgG, staining was visualized with the 
DAB Peroxidase Substrate Kit (Vector Labs). Images were acquired 
with a SPOT camera (Diagnostics Instruments) mounted on an Olym
pus IX51 microscope (Olympus). Where indicated, cell numbers were 
determined using the ITCN plugin for the ImageJ software program 
and normalized to the number of Hoechstpositive cells.

In situ hybridization. Wholemount in situ hybridization was per
formed on E10.5 mouse embryos. The cDNAs of mouse Tasp1 and 
Tfiia1 were used as the templates to generate RNA probes. Embryos 
were fixed with 4% PFA in PBS, permeabilized with proteinase K, and 
then postfixed with 4% PFA and 0.2% glutaraldehyde in PBS. Hybrid
ization was performed overnight at 65°C with DIGlabeled RNA probes 
in hybridization buffer (50% formamide, 5x SSC, 0.3 mg/ml yeast 
RNA, 0.1 mg/ml heparin, 1x Denhardt’s, 0.1% Tween 20, and 5 mM 
EDTA). Embryos were washed with 50% formamide in 2x SSC, blocked 
in 1.5% Blocking Reagent (Roche) in KTBT (50 mM TrisHCl, 140 M 
NaCl, 10 mM KCl, 0.1% Tween 20), and incubated overnight at 4°C 
with APconjugated antiDIG Fab fragments (Roche). After extensive 
washes, the color reaction was carried out using BM purple (Roche).

RNA isolation, quantitative RT-PCR, and microarray analysis. For 
RNA isolation, surgically dissected E10.5 mouse heads (prosencephalons 
and mesencephalons) were homogenized in TRIzol reagent (Invitrogen) 
using FastPrep24 and Lysing Matrix D (MP Biomedicals). cDNA was 
produced from total RNA extracted using SuperScript II (Invitrogen), 
oligodT (Invitrogen), and random decamer primers (Ambion) accord
ing to the manufacturer’s instructions. Quantitative RT-PCR was per
formed using SYBR Green Master Mix (Applied Biosystems), genespe
cific oligonucleotide primers (listed in Supplemental Table 2), and the 
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