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Conference Highlights of the 16th International
Conference on Human Retrovirology: HTLV and
Related Retroviruses, 26–30 June 2013, Montreal,
Canada
Benoit Barbeau1*, John Hiscott2,3, Ali Bazarbachi4, Edgar Carvalho5, Kathryn Jones6, Fabiola Martin7,
Masao Matsuoka8, Edward L Murphy9, Lee Ratner10, William M Switzer11 and Toshiki Watanabe12

Abstract

The 16th International Conference on Human Retrovirology: HTLV and Related Retroviruses was held in Montreal,
Québec from June 26th to June 30th, 2013 and was therefore hosted by a Canadian city for the first time. The major
topic of the meeting was human T-lymphotropic viruses (HTLVs) and was covered through distinct oral and poster
presentation sessions: clinical research, animal models, immunology, molecular and cellular biology, human
endogenous and emerging exogenous retroviruses and virology. In this review, highlights of the meeting are
provided by different experts for each of these research areas.

Keywords: HTLV-1, HTLV-2, BLV, Foamy virus, Adult T-cell leukemia/lymphoma, HTLV-1-associated
myelopathy/tropical spastic paraparesis

Introduction
The biannual conference on Human Retrovirology: HTLV
and Related Retroviruses was hosted in Montreal (Canada)
from June 26th to June 30th 2013. The meeting was
attended by over 260 participants, arriving from all five
continents. From a total of 221 submitted abstracts, 148
were selected for poster presentations, while 49 were
chosen for oral presentations during regular meeting
session, and 24 were selected for oral presentations
during workshop sessions. To encourage attendance by
promising young students, a total of twelve travel
awards were provided. At the end of the meeting, the
following awards were announced: the Quality Award in
Basic Science was given to Jean-Michel Mesnard and
Masao Matsuoka, the Quality Award in Clinical and
Translational Research was given to Ali Bazarbachi and
Olivier Hermine and the Quality Award for Rest of the
World was received by Anna Barbara Carneiro-Proeitti.

Edward Murphy received the Dale McFarlin prize and
the poster presentation awards went to Chloé Journo,
Anat Melamed and Megan Romeo.
The main topic of the meeting is HTLV-1 (human T-

cell leukemia virus type 1), which has been estimated to
infect nearly 20 million individuals worldwide [1]. This
virus is associated with two important diseases: adult T-
cell leukemia/lymphoma (ATLL) and HTLV-1-associated
myelopathy/tropical spastic paraparesis (HAM/TSP), al-
though other diseases have also been associated with in-
fection by HTLV-1 [2]. In contrast, HTLV-2 has only
been associated with a HAM-like disease, while newly
discovered HTLV-3 and HTLV-4 viruses have yet to be
associated with disease [3,4]. Non-human viruses, akin
to HTLV viruses, such as STLV-1, are also being studied
in simian models and can be associated with a simian form
of ATLL. A very important model, the bovine leukemia
virus (BLV), is known to induce B lymphoma in sheep and
bovines [5]. These various viruses and their impact on hu-
man and animal health were discussed throughout the
meeting, in sessions encompassing Clinical Research,
Animal Models, Immunology, Epidemiology, Molecular
& Cellular Biology, Human Endogenous & Emerging
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Exogenous Retroviruses, and Virology. As part of a series
of workshops, a clinical trial group session was further in-
cluded to this meeting. In this review, we present a series
of summaries covering each of the sessions of the 16th

International Conference on Human Retrovirology.

Clinical trial study groups
At the 16thInternational Retrovirology Conference, we
were given the opportunity to attend the HAM/TSP and
ATLL clinical trial workshop on the conference day out.
Prior to this event we were able to hear HTLV affected
patients share their plight with us at the opening cere-
mony and at an informal meeting.
Three issues were identified to be close to patients’

hearts:

� Patient and clinician education about HTLV and
HTLV-associated diseases to improve diagnosis,
access to experts in the field and reduce stigmatization

� Development of internationally recognised,
evidence-based treatment protocols for HTLV-
associated diseases

� Reduction or elimination of HTLV viral load

The aim of this workshop was many fold:
To take patients concerns into account and to increase

the awareness of the lack of evidence based treatment
particularly for HAM/TSP

� Increase awareness of the lack of clinical trials
planned for HTLV-1-associated disease

� The need for more proof-of-concept clinical trials
with the aim of advancing suitable drugs for next
phase clinical trials

� The need to actively seek out international partners
to design clinical trials with effective sample sizes

� And last but not least the need to include patients’
views and active participation in clinical trial
workshops and development

We tried to reach our aims by creating an atmosphere
of open discussion and debate. Scientists from both gen-
ders and many different ethnic backgrounds and HTLV
endemic countries were invited to express their opinions
on biomarker and diagnostic research as well as future
treatment options for HTLV-associated diseases. Markers
of disease stage/type differentiation, progression and treat-
ment response were discussed for both HAM/TSP and
ATLL. Over the past years, it has become very apparent
that both patient groups need very individualised and tai-
lored assessments and treatments [6-8].
The treatment of ATLL should be adapted to the clin-

ical presentation. The combination of zidovudine (AZT)
and interferon-alpha (IFN) is effective in the leukemic

subtypes of ATLL and should be considered as standard
of care first line therapy in that setting [9-11]. In order
to prevent the occurrence of resistance and relapse after
achieving complete remission, clinical trials assessing
additional targeted therapies such as the combination of
arsenic and IFN, Histone Desacetylase (HDAC) inhibi-
tors or monoclonal antibodies, particularly the promis-
ing anti-CCR4 antibody, are urgently needed [6,12-14].
Currently, due to the poor outcome of patients with ag-
gressive ATLL (acute and lymphoma forms), phase II
studies are necessary in the near future. In chronic and
smoldering forms, it is time to set up randomized phase
III studies to assess the efficacy of the addition of new
drugs for patients treated with AZT and IFN, in order to
achieve disease eradication rather than long term disease
control, which will allow eventual treatment cessation.
Currently, sodium valproate, Humik beta1 anti-CD122

and raltegravir are being tested in HAM/TSP patients
and corticosteroid trials are planned (HAMLET-P trial,
HAM/TSP Clinical Trial Study Group) [15-17]. The effi-
cacy of AZT and IFN in ATLL warrants testing this
combination in HAM/TSP patients, particularly at early
stages of the disease. Some trialists would like to see anti-
CCR4 antibodies tested in this cohort too. Other drug
candidates are cyclosporin A and methotrexate. Eradica-
tion of HTLV might be possible by elimination of infected
monocytes and through allogeneic hematopoietic stem
cell transplantation [18]. CNS imaging has advanced so
that asymptomatic carriers may be distinguished from pa-
tients with early HAM/TSP [19]. New imaging techniques
were presented which could potentially be used to also
measure and monitor treatment response.
In summary, we hope that this workshop allowed pa-

tients to be heard and facilitated collaborations between
groups located on different continents by giving a human
face to the diseases as well as expert groups. Through ac-
tive patient participation and international collaborations,
we will be able to design trials that address patients’ needs
directly with meaningful sample sizes reaching represent-
able statistical power.

Clinical research
In the clinical research session, a total of 47 abstracts
were submitted, which included 18 abstracts on ATLL,
25 on HAM/TSP, 4 on related diseases, and one on
co-infection. The distribution of countries from which
abstracts are coming, despite a certain bias for ATLL
studies from Japan, highlight the strong international
interest that these diseases has led to and the shared ef-
forts by a multitude of international research teams in
achieving viable alternative treatments. The international
distribution of abstracts also indicates that it is more
difficult to collect a large numbers of ATLL patients in
many countries beside Japan, whereas it is relatively
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feasible for HAM/TSP patients, although the funding
capacity of a given country is an important factor, which
can impact on the ease of patient recruitment.
Abstracts on ATLL are categorized into clinical trials,

pathophysiology and diagnosis. As for the treatment of
ATLL, reports on chemotherapy, antiviral therapy
and antibody therapy were alternatively presented.
Utsunomiya reported the results of a phase II study
of LSG15 (chemotherapy) with mogamulizumab, an anti-
CCR4 monoclonal antibody [20]. The results showed
higher complete remission (CR) rate in the group treated
with mogamulizumab than the control group (no moga-
mulizumab), suggesting promising effects of combined
therapy. Maeda et al. presented results of a mogamulizu-
mab monotherapy on chemotherapy-resistant patients
[21]. All 8 patients showed CR, which is striking and will
need to be carefully evaluated. Yonekura et al. reported
high rate of CR with skin lesions in 4 out of 6 patients
treated with mogamulizumab monotherapy [22]. These
data underline the importance of additional clinical stud-
ies evaluating the usefulness and the modality of mogamu-
lizumab. However, none of the studies compared this new
treatment with basic standard therapy proposed in other
countries, namely interferon plus zidovudine as a first line
treatment for treatment of naïve acute ATLL patients and
in combination with chemotherapy in the treatment of
naïve lymphomatous ATLL. Such comparison would more
realistically reflect the survival benefit of mogamulizumab
in patients with ATLL.
With respect to current antiretroviral therapy (AZT/

IFN), four abstracts described results of this treatment.
Among them, Pimentel et al. reported a retrospective
analysis of their results of 89 patients, who were either
treated with chemotherapy, AZT/IFN or both [23]. While
their results did not provide new information, they are
slightly different from those reported previously, compar-
ing results between chemotherapy and AZT/IFN therapy
in a single institution. Hodson et al. presented results
depicting molecular analysis of four patients with chronic
type ATLL after AZT/IFN therapy [24]. They suggested
the usefulness of new molecular techniques for proviral
load and clonality analyses (currently used as a standard
in clinical care in some countries), which actually led to
the identification of one cured patient with the disappear-
ance of a dominant clone. Kchour et al. rather focussed
on cytokine analysis of patients treated with AZT/IFN
combined with arsenic and argued that this therapy
induced restoration of an “immunocompetent-like” micro-
environment, although they did not directly analyze stro-
mal cells [25]. However, patients did display a high
response rate and CR rate as well as a shift of a cytokine
expression profile from a Th2 to a Th1 response.
Regarding other therapeutic modalities, Belrose et al.

focussed on the effect of valproate (VPA) on Tax, Gag

and HBZ expression in ex vivo cultured ATL cells [26].
Interestingly, VPA suppressed HBZ expression and in-
creased tax and gag mRNA levels. Oka et al. showed the
potential utility of photodynamic therapy [27]. Phillips
et al. reported results of a phase II study of lenalidomide
in patients with relapsed or refractory ATLL [28]. In this
small study, lenalidomide showed limited clinical activity
and manageable toxicity, as reported last year by a Japa-
nese group.
Suehiro et al. have highlighted results of a phase-I

study of a therapeutic vaccine [29]. Patients were vacci-
nated by autologous dendritic cells pulsed with peptides
corresponding to Tax-specific CTL epitopes. So far, two
patients were enrolled in the study and their clinical
outcomes were partial remission and stable disease.
Impressively, these results demonstrated that solely
targeting Tax in ATLL suffices to induce a significant
response.
Takemoto et al. showed the potential diagnostic utility

of serum sCD25 and sCD30 levels [30]. By studying 60
patients, Pornkuna et al. further suggested that sCD30
could be a new serum biomarker to predict two-year over-
all survival of ATLL patients [31]. On the other hand,
Amano et al. presented results of a pilot study on the im-
munotherapeutic potential of varicella vaccine in smolder-
ing and cutaneous ATLL [32]. Results appeared promising
since the median overall survival was 24 months, which
was significantly longer than previously reported findings
(16 months). Kagdi et al. demonstrated that, through
multi-color FACS analysis combined with integration site
(IS) analysis, CD127 expression was an important and sig-
nificant diagnostic tool [33].
As for HAM/TSP, there were many reports dealing

with HAM/TSP treatment, although they included a lim-
ited number of patients and need further studies. Such ex-
amples are listed: safety and efficacy of a humanized
monoclonal anti-IL15Rβ antibody (CD122) (Massoud
et al.) [34], potential use of BNZ-gamma peptide (select-
ively blocking binding and downstream signaling of IL-2,
IL-9 and IL-15) as a new drug (Massoud et al.) [35],
clinical study using Infliximab (anti-TNF-α monoclonal
antibody) (Martin et al.) [36], efficacy of Methotrexate
(Ahmed et al.) [37] and efficacy of Fampridine (a selective
neuronal potassium channel blocker) (Menna-Barreto)
[38]. One of the problems in these reports is the lack of
standard criteria for treatment efficacy, which makes it dif-
ficult to compare the results from the different clinical re-
search teams. From this point of view, it is important that
reports focus on this problem. As such, Adonis et al. re-
ported the usefulness of the 6 minute walk and 10 m
timed walk (10mTW) [39]. The latter is also evaluated as
a primary outcome measure of treatment response in a
multicenter international collaborative study, HAMLET-P
(Martin et al.) [40].
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CXCL10 and neopterin in cerebral spinal fluid (CSF)
were reported as candidate prognostic biomarkers for the
evaluation of clinical status and of drug effects (Yamano
et al.) [41]. The results were cross-validated in two patient
groups. Spinal cord cross-sectional area measured by MRI
was also presented as another biomarker candidate. It is
expected that these candidate markers will be evaluated
by international multi-institutional collaborative prospect-
ive studies to increase the evidence levels.
As for the clinical epidemiology of HAM/TSP, poor

prognostic factors have been reported by cohort studies.
Examples include levels of provirus DNA copies and gen-
der (female). Factors that affect the health and the quality
of life in patients were highlighted at this meeting, such as
HIV co-infection and physical inactivity. Nation-wide
epidemiological studies with a novel patient registration
system in Japan appears to be an important improvement
(Coler-Reilly et al.), which is expected to evolve into an
international system because of the relatively small num-
ber of HAM/TSP patients [42]. Three abstracts described
familial clustering of HAM/TSP patients (Nozuma et al.,
Coler-Reilly et al., and Alvarez et al.) [42-44]. Results from
Nozuma et al. and Coler-Reilly et al. suggested positive
clustering and lower age of onset [42,43]. On the other
hand, Alvarez et al. did not find clustering when com-
paring HAM/TSP patients to asymptomatic carriers,
although there are some families where HAM/TSP pa-
tients show clustering [44]. These sets of information
appear to be important for evaluating genetic risks for
HAM/TSP development.
Studies on clinical features of HAM/TSP were further

presented in three abstracts. A high incidence of pulmon-
ary lesions was reported by Honarbakhsh and Taylor.
Boa-Sorte et al. noted an association between HAM/TSP
and depression, while Gascón et al. provided evidence for
a possible relationship between the neurocognitive per-
formance and the degree of depression [45-47]. Tanajura
et al. and Matsuzaki et al. demonstrated that follow-up of
asymptomatic carriers is useful for early diagnosis of
HAM/TSP [48,49]. Risks for HAM/TSP development
were further described in two abstracts. Okajima et al.
reported an association of skin lesions with the high risk
for HAM/TSP and De Lourdes Bastos et al. showed a
higher frequency of HAM/TSP for carriers with tuber-
culosis [50,51].
Labanca et al. have shown that dizziness without an

apparent cause in HTLV-1-asymptomatic carriers may
be a useful symptom for early diagnosis of HAM/TSP
[52]. In this respect, galvanic vestibular stimulation may
thus be a useful test for diagnosis (Cunha et al.) [53]. A
high provirus load is a well-known risk factor for HAM/
TSP. Digital droplet PCR is a new promising method to
measure the copy number of provirus DNA and was re-
ported by Brunetto et al. [54]. Furthermore, Bassi et al.

claimed the need for an international, cross-sectional
study with standardized methodologies for measuring
the copy numbers of provirus DNA [55]. International
collaboration is expected to establish a standard method
and criteria for evaluating the risks.
Concerns regarding the HAM/TSP diagnostic criteria

proposed by WHO in 1989 were underscored by Bassi
et al. [55]. For improving diagnosis, MRI studies of the
brain and the spinal cord was evaluated. However, it was
shown that these approaches did not currently have enough
sensitivity or specificity (Bastos et al. and Romanelli et al.)
[56,57]. Presence of immune activation and immune re-
sponse to the virus in asymptomatic carriers may be the
cause for the difficulties in identifying diagnostic markers
(Bahia et al. and Matsuura et al.) [58,59].
Another disorder associated with HTLV-1 infection

was presented by Einsiedel et al., who reported an asso-
ciation with bronchiectasis in Indigenous Australians
[60]. Bronchiectasis patients showed a higher provirus
load and higher risks for shorter life expectancy. Detailed
studies appear to be required to describe health problems
in Indigenous Australians with HTLV infection.

Animal models
The current overview summarizes animal models for
HTLV-1 and related viruses, and highlights a few key
studies and presentations. An excellent recent review by
Bazarbachi and his colleagues provides an overview of ani-
mal models for delta-retroviruses which include HTLV-1,
2, BLV, and STLV-1 [61]. The studies have been per-
formed in non-human primates, rabbits, rats, and mice.
A recent review by Willems and colleagues highlights

the similarities of the genomes of HTLV-1 and BLV, and
points out that BLV has a worldwide distribution al-
though it has been effectively eradicated from Europe
[62]. One third of infected cattle develop lymphocytosis,
and 3-5% develop leukemia after 4–10 years. Presenta-
tions by Rodriguez et al. and Martinez et al. described
the use of the BLV model for development of vaccines
[63,64]. In particular, Rodriguez et al. described an at-
tenuated vaccine that efficiently and persistently protects
against BLV in real herd settings [64].
Another interesting application of this model was the

demonstration in 2005 that the histone deacetylase in-
hibitor, valproate, activates BLV expression and triggers
apoptosis, and induces leukemia regression in vivo [65].
The authors hypothesized that this was due to immuno-
logical clearance of cells expressing previously hidden
BLV antigens. This finding led to a clinical trial in HAM
patients, resulting in transient increases in proviral load,
which subsequently declined to levels below the baseline
level [66]. A study by Mahieux and colleagues in STLV-1
experimentally infected baboons, showed that the com-
bination of valproate and azidothymidine resulted in a
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strong decline in proviral load [12]. Altogether, these stud-
ies are important in opening the door to investigations of
HTLV latency, methods to reactivate and eradicate la-
tently infected cells, and possible clinical benefits of de-
pressing proviral load.
The rabbit model of HTLV-1 transmission is described

in an excellent recent review by DucDodon and Lairmore
[67]. These inbred, although not genetically identical rab-
bits, can be infected with HTLV-1-infected rabbit or hu-
man cells, and examined over the next 8 wks or longer for
anti-HTLV-1 humoral responses, and cells in different
lymphoid compartments for proviral load, and ex vivo cul-
ture studies of viral structural and regulatory protein
expression. This model, which resembles asymptomatic
infected humans, has been useful in defining key molecu-
lar determinants involved in virus replication, utilizing the
infectious molecular clone, ACH, that Jason Kimata con-
structed and characterized in Ratner’s lab almost 20 yrs
ago [68-72].
In a comprehensive study published by Franchini and

colleagues, HTLV-1 variants with mutations in p12, p30,
or HBZ were examined in human dendritic cells (DCs)
in culture, as well as in rabbits and rhesus macaques
[73]. They found that both p12 and p30, but not HBZ,
were important for virus production from human DCs.
However, in rabbits, the p12 and p30 knockout (KO) vi-
ruses showed a significant decline in virus levels only at
week 16, whereas lower levels of virus were found with
HBZ KO viruses at all time points. However, very differ-
ent results were found in macaques, where animals
exposed to the p12 KO virus failed to seroconvert, and
only 1 of 3 animals exposed to the p30 KO virus fully
seroconverted. All 4 animals exposed to HBZ KO vi-
ruses seroconverted. Thus, the seroconversion data in
macaques correlated with the data on virus infection of
human DCs in culture. However, reversion of HBZ mu-
tations were found in all macaques studied, suggesting
an important role of HBZ in macaques. Additional stud-
ies of STLV-1 in non-human primates were described in
the abstracts by Miura et al., Pise-Masison et al. and
Souquiere and Kazanji [74-76].
There have been numerous HTLV-1 transgenic animal

models, most of which have focused on Tax, as summa-
rized in a recent review by Ohsugi [77]. These mouse
models have utilized various promoters to drive Tax ex-
pression, including the viral, CD4, and metallothionein
promoters that resulted in arthritis and other inflamma-
tory disorders. Notably, models with the granzyme B
promoter, lck proximal or distal promoters have resulted
in leukemia/lymphoma-like diseases. It is important to
recognize that none of these models gave rise to a dis-
ease similar to HAM, and the single example cited in
this review (and Ohsugi et al.) [78] of transgenic mice
with paraparesis was due to lymphomatous involvement

of the spinal cord, which is quite distinct from the
pathophysiology of HAM.
In the GzmB-Tax model utilized in the Ratner labora-

tory, 100% of the animals developed tumors on the tails,
ears, extremities, with involvement of the spleen, blood,
bone marrow, osteolytic bone metastases and hypercal-
cemia, resembling the peripheral skin disease, leukemia
and bone disease developing in patients with ATLL
[79,80]. However, the majority of these murine tumors
were NK-T precursor cell tumors. Use of this model
was facilitated by studying bioluminescence with an in-
dicator to non-invasively examine Tax expression based
on the firefly luciferase (LUC) gene driven under the
regulation of the viral LTR [81]. These double trans-
genic TAX-LUC animals showed dynamic Tax activity
and activation of NF-κB. Moreover, granulocyte infiltra-
tion was visualized by conversion of luminol to a bio-
luminescent emitter [82]. These studies provide a highly
sensitive tool to detect neoplastic lesions in as few as 50
cells. One example of the use of this animal model to in-
vestigate the NF-κB target gene, IL-15, was described in
the oral presentation by Rauch et al. [83].
An intriguing transgenic mouse model with Tet-

inducible Tax was developed by Greene and colleagues
[84]. These mice developed a T cell inflammatory skin
disease. When Gzm-rTA mice were bred with the trans-
genic mice expressing Tax under the regulation of the
Tet-responsive promoter, these mice developed a Tax-
dependent CD4+ tumor that involved lymph nodes, liver,
lung, and spleen, and regressed upon withdrawal of Tax
expression (Rauch & Ratner, unpublished).
One particularly interesting application of proximal Lck -

Tax transgenic mice has been to identify cancer stem cells
from these tumors, representing a rare CD117+ cell type
[85]. This was followed by an interesting study of Bazarba-
chi and colleagues, using cells from these transgenic ani-
mals [86]. They demonstrated that the combination of
arsenic and interferon did not affect the growth of tumors
in treated mice, but instead blocked the transplantability of
these tumors into secondary recipients. Tumor cells from
As/IFN-treated mice exhibited markedly enhanced levels
of apoptosis in secondary recipients as compared to un-
treated animals. This work provides an important clue to
understanding the biology, chemoresistance, and possibly
an effective therapy of ATLL directed at cancer stem cells.
A study of an HSP90 inhibitor using this model was pre-
sented by Ikebe et al. [87].
A few transgenic animal models have been constructed

with other HTLV genes. Of note, transgenic animals ex-
pressing HBZ under the regulation of the murine CD4
promoter, reported by Matsuoka and colleagues, all de-
veloped inflammation, and about 40% of animals at 2 yrs
of age or older exhibited a CD4+ T cell lymphoma [88].
Ratner and colleagues found that transgenic animals
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expressing HBZ under the regulation of the granzyme B
promoter developed a non-lethal T cell malignancy with
100% incidence (Rauch & Ratner, unpublished). More-
over, their preliminary data suggests accelerated tumor
development in transgenic animals expressing Tax and
HBZ compared to those expressing Tax alone.
A particularly exciting approach utilized to model many

different viral infections has been the use of humanized
mice. In the review by DucDodon, the generation of
humanized mice from sublethally irradiated newborn
Rag2−/− gammac−/− animals by intrahepatic injection of
cord blood CD34+ cells is described [67]. By 6 wks of age,
human cells are found in the bone marrow, thymus,
spleen, and peripheral blood of these mice.
Intraperitoneal injection of irradiated HTLV-1-immor-

talized MT2 cells in these animals resulted in infection,
and a high proviral load in a subset of these animals,
20–40 wks after transplantation [89]. Animals with high
proviral load manifested HTLV-1-positive cells in the thy-
mus and spleen, expansion of single CD4+ and CD8+ cells
with CD25 expression, NF-κB activation, as well as lymph-
oma with clonal integration of the HTLV-1 provirus. This
is an important model that has the potential to explore
questions about pathogenic determinants of HTLV-1 and
interactions with human cellular determinants in an ATLL
animal model, as well as applications to investigations of
novel therapies or vaccines, as described in abstracts by
Saito et al. and Tezuka et al. [90-92].
A major shortcoming of animal models has been the

failure to develop an appropriate animal model for HAM.
Nevertheless, there are many new opportunities to use
animal models to explore questions about the determi-
nants of virus transmission, pathogenesis, latency, retro-
viral replication, clonal proliferation of infected cells, virus
spread, and ATLL stem cells, in order to develop methods
to prevent infection, develop vaccines, effective therapies,
and understand the role of stem cell transplantation in the
treatment of ATLL.

Epidemiology
After 30 years of HTLV epidemiology research, much
has been learned, but there are still gaps in our knowledge
about this human retrovirus. HTLV-1 and −2 prevalence is
well described in many countries; transmission is well
understood; pathogenesis research has yielded much
knowledge about disease mechanisms of ATLL and HAM/
TSP; and the clinical manifestations of ATLL and HAM/
TSP have been well described. However, there are signifi-
cant knowledge gaps regarding prevalence (Africa & Asia)
and secular trends are largely unstudied; the effectiveness
of prevention strategies is poorly described; prognosis at
single-patient levels is still elusive; and patient-centered
research on symptoms is in its infancy: what does “living
with HTLV” mean?

During the oral session of the meeting, Gessain and
Cassar presented their recently published estimate of
5–10 million HTLV-1 carriers in the world [93,94],
which is lower than the previous estimate of 10–20 mil-
lion [1]. Perhaps, more important than a single number,
this work identified gaps in HTLV-1 prevalence data, es-
pecially in East and North Africa, China and India. It was
also agreed that a similar review of literature and global
estimate would be very useful for HTLV-2 infection.
Usadi et al. presented data on telomere length in

ex vivo peripheral blood mononuclear cells (PBMCs)
from asymptomatic HTLV-1- and HTLV-2-infected sub-
jects [95]. Overall, there was no difference in telomere
length between infected and uninfected individuals after
matching for age and other demographic characteristics.
Interestingly, HTLV-1-infected subjects did not show an
age-related decline in telomere length. Finally, among
HTLV-2-infected persons, there appeared to be an asso-
ciation between shorter telomere length and the abnor-
malities in vibration sense.
Pataccini et al. presented a very detailed comparison

of enzyme immunoassay (EIA) test performance in the
setting of blood bank screening in Latin America [96].
A total of 14 HTLV-1, 13 HTLV-2 and 233 negative
samples were tested with five different EIAs. All tests
had 100% sensitivity, but there was substantial variation
in specificity ranging from 93.1% to 99.1%. This informa-
tion will be valuable to blood bankers when they choose
an EIA assay to minimize false positive reactivity, which
can result in the loss of blood units and potential false
notification of blood donors regarding HTLV infection.
De Campos et al. presented research on the impact of

urinary incontinence on the quality of life of a cohort of
HTLV-1-infected women in Salvador, Brazil with over-
representation of HAM cases [97]. Bladder dysfunction
was very common, with a 61% prevalence of urinary in-
continence, and a 71% prevalence of detrusor hyperactiv-
ity, and 29% with sphincter dyssynergy. Of particular
interest, data showed a substantial adverse impact of blad-
der symptoms on the quality of life among these women.
Finally, dos Santos et al. presented work indicating

that the IL28B gene polymorphism SNP rs8099917 allele
GG is associated with HTLV‐1‐associated myelopathy/
tropical spastic paraparesis (HAM/TSP) [98]. Her work,
analogous to a similar IL28 gene polymorphism associ-
ated with reduced clearance of hepatitis C virus, suggests
that host genetic variation may be associated with poor
control of HTLV-1 infection and thereby increase the
risk of neurologic disease.
There were a total of 15 posters presented at the confer-

ence; highlights are noted below, by geographic region.
Brazil: Gadelha et al. analyzed a large cross-sectional

study of 2,766 pregnant women in the southern Bahia,
Brazil and found a confirmed HTLV-1 prevalence of
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1.05% [99]. The same group reported genetic similarities
between HTLV-1 viral isolates obtained from Brazil and
those obtained from Mozambique and South Africa,
suggesting that African slaves imported into Brazil may
have originated from or transited through Southern
Africa before transportation to Brazil [100].
The GIPH cohort from Brazil reported that, among

233 HTLV-1-positive individuals examined by a neurolo-
gist, 12% were diagnosed with HAM/TSP and there was
a high prevalence of other symptoms including myalgia,
urinary incontinence and gait abnormalities [101]. This
prevalence should not be confused with HAM/TSP inci-
dence, which the same group has previously published
as 5.3 cases per 1,000 HTLV-1-seropositive cases per year
(95% confidence interval: 2.6 -10.9) [102]. The same group
charted family trees to infer vertical versus sexual trans-
mission in 95 family groups [103]. In 23 (24%) of the
families, transmission occurred vertically and 58 (61%)
occurred via sexual transmission, highlighting the import-
ance of sexual transmission in maintaining HTLV-1 preva-
lence in an endemic population.
USA: Chang et al. reported on the prevalence of

HTLV among 2 million first-time, United States blood
donors during 2000 – 2009 [104]. A total of 104 (5 per
105) had HTLV-1 antibodies and 300 (14.7 per 105) had
HTLV-2 antibodies. HTLV-1 was associated with female
sex, older age, and black and Asian race/ethnicity, while
HTLV-2 was associated with female sex, older age, non-
white race/ethnicity, lower education and residence in the
Western and Southwestern United States. Overall, preva-
lence had declined since the 1990s, and there was evidence
of a decreasing birth cohort effect. Finally, Switzer and
colleagues reported a cross-sectional study of 234 US thal-
assemia patient sera collected in 2008, of whom 3 (1.3%)
were confirmed HTLV-seropositive [105,106]. These data
support HTLV testing of other patients requiring further
transfusions.
United Kingdom: Croxford et al. reported baseline

data on 892 cases of HTLV-1 in England and Wales
from 2003 to 2012 from the UK National Reference La-
boratory; the cohort will be followed prospectively [107].
Australia: Cassar et al. reported on the molecular

epidemiology of HTLV-1 in Australia, finding that the
Australian isolates belonged to HTLV-1 subtype C (the
Melanesian subtype), and that two variants mapped sep-
arately to the north versus south and central regions of
Australia [108].
Africa: Filippone et al. reported additional data on po-

tential interspecies transmission of HTLV-I in 269 Bantu
and Pygmy subjects from rural Cameroon, who had been
bitten or otherwise exposed to primates [109]. HTLV-1
prevalence was 23/269 (8.5%) among bitten individuals
versus 4/269 (1.5%) in controls without primate bites.
Fox et al. reported on HTLV-1 seroprevalence among

418 paired mother and child samples from healthy mothers
and children at a hospital in Malawi [110]. Three (0.72%)
women were HTLV-1-positive and 8 (1.9%) women had
HTLV-2 infection; of these 11 women, two children were
also seropositive, indicating probable mother to child trans-
mission at rates consistent with those reported in literature.
BLV: Choudhury et al. reported an interesting story of

false positive BLV tests due to a colostrum replacer with
passive acquisition of anti-BLV antibodies in cattle with-
out BLV infection [111].
The author suggests a few important priorities in HTLV

epidemiology research. First, we need to fill in gaps in
HTLV-1 prevalence in Africa, China and India; second,
monitor secular (time) trends in well-defined populations
(e.g. blood donors and pregnant women); third, search for
new human retroviruses in concert with other viral dis-
covery efforts in humans and animals; finally, larger mo-
lecular epidemiology studies of selected populations of
interest (Caribbean, Bakola pygmies, Amerindians) are
needed to study puzzles on historical origins of HTLV-1
and −2. Prevention efforts to limit HTLV infection, in-
cluding bottle feeding by HTLV-infected mothers and
condom usage, need to be implemented in HTLV endemic
populations. We need better epidemiological monitoring
of the effectiveness of such targeted (and coincidental,
HIV- or STI-related) prevention interventions. Finally, the
association between transmission route and disease out-
comes needs to be better defined and changes in disease
incidence in response to shifts in transmission routes need
to be monitored.

Immunology
HTLV-1 infects CD4+ CD25+ T cells with a contribution
to transmission by cells of the myeloid lineage. The
immunopathogenic consequences of HTLV-1 infection
are profound and reflect one of the most active areas of
HTLV-1 research. The International Conference on Hu-
man Retrovirology in Montreal reflected this high level
of activity with many important contributions regarding
immunopathogenesis and immunotherapy of HTLV-1
infection.
How human retroviruses are initially recognized by the

innate immune system and how that sensing of infection is
transmitted to generate a robust immune response has
been a poorly understood area of viral immunology. Recent
advances in the identification of sensors that recognize in-
coming pathogens have begun to reveal the mechanisms
underlying the early host response to HTLV-1 infection.
Sze et al. investigated the mechanisms underlying myeloid
cell infection by HTLV-1 and demonstrated that HTLV-1
infection induced apoptosis of monocytes in a manner
dependent on SAMHD1, a deoxynucleoside triphosphate
triphosphohydrolase that functions as a restriction factor
to limit HIV-1 replication [112]. A 90 nucleotide replicative
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intermediate from the U5 region of HTLV-1 bound to the
DNA sensor STING, and mediated the antiviral response
via IRF3 activation. These authors further demonstrated
that STING-mediated apoptosis in infected monocytes re-
quired the generation of a pro-apoptotic complex between
IRF3 and the Bcl-2 protein Bax. In a related study, Alais
et al. examined the involvement of dendritic cell subsets as
potential viral reservoirs that spread HTLV-1 to surround-
ing lymphocytes [113]. Distinct monocyte-derived DC
(MDDC) subsets were isolated and infected with HTLV-1
biofilm; MDDC subsets were not equally susceptible to
HTLV-1 infection, with DC maturation altering suscep-
tibility to HTLV-1 infection, suggesting that differential
susceptibility of various DC subsets to HTLV-1 infec-
tion may differently shape immune responses and there-
fore affect viral pathogenesis.
De Castro-Amarante and colleagues analyzed genomic

DNA isolated from sorted CD4+, CD8+ CD14++CD16–,
CD14+CD16++, and CD14++CD16+ cells by nested PCR;
in HTLV-1 patients with high proviral load (PVL), all
monocyte subsets as well as CD4+ and CD8+ cells were
positive for HTLV-1 [114]. In contrast, the intermediate
monocytes were negative or very weakly positive for
HTLV-1 in patients with low PVL. To test whether natural
STLV-1 infection recapitulates infectivity by HTLV-1,
monocyte subset distribution in 8 STLV-1-infected Rhesus
macaques and 16 naïve animals was examined. Consistent
with human infection, the frequency of intermediate
monocytes was higher in infected macaques compared to
naïve animals with a positive correlation between PVL
and intermediate monocyte frequency.
To explore the host-pathogen interaction between DCs

and cell-free HTLV-1, Rahman et al. evaluated FLT3
ligand-cultured mouse bone marrow-derived DCs (FL-
DCs) and chimeric HTLV-1 for various immune markers
[115]. FL-DCs upregulated expression of surface markers
(CD80, CD86, and MHC class II) on infection; however,
the level of MHC class I remained unchanged. Multiplex
cytokine profiling revealed production of an array of pro-
inflammatory cytokines and type 1 IFN (IFN-α) by FL-
DCs treated with virus. Gene expression studies using type
1 IFN-specific and DC-specific arrays revealed upregula-
tion of IFN-stimulated genes, most cytokines, and tran-
scription factors, but a distinct downregulation of many
chemokines. Another study from the same group explored
the role of DCs during early HTLV-1 infection in vivo. A
chimeric HTLV-1 with a replaced envelope gene from
Moloney murine leukemia virus was used to allow HTLV-
1 to fuse with murine cells. In addition, a CD11c-
diphtheria toxin receptor transgenic mouse model system
was used to generate conditional transient depletion of
CD11c(+) DCs [116]. Infection of transgenic mice with
HTLV-1 was achieved using both cell-free and cell-
associated infection routes in the absence and presence

of DCs. The ablation of DCs led to an enhanced suscep-
tibility to infection with cell-free, but not cell-associated
HTLV-1 in both CD4 and non-CD4 fractions. Infection
with cell-free virus in the absence of DCs also led to in-
creased levels of Tax mRNA in the non-CD4 fraction.
Moreover, depletion of DCs significantly dampened the
cellular immune response against both cell-free and
cell-associated virus.
Therapy for HTLV-1 infection remains a challenge. As

pathology in HTLV-1 infection is in part related to
lymphocyte proliferation and activation, immunotherapy
has been considered a potential treatment for HTLV-1. It
is well known that the association of IFN-α plus zidovu-
dine has prolonged the lifetime of patients with ATLL. A
study showed how IFN-α downregulated HTLV-1 expres-
sion and also induced apoptosis of ATL transformed cells
[117]. Both IFN-α and IFN-β increased apoptosis, had
antiproliferative and antiviral effects, and decreased
pro-inflammatory cytokine levels. AZT combined with
IFN-α induced cell apoptosis in IL-2-dependent HTLV-
1-infected T-cells, associated with phosphorylation of
p53 and enhanced expression of genes responsive to
p53. In a study by Khouri et al., IFN-β treatment was
however significantly more effective in inhibiting viral
p19 protein level and lymphoproliferation, when com-
pared to IFN-α [118]. Van Weyenbergh described anti-
CD3 antibody therapy as a treatment for transplant
rejection and several autoimmune diseases; its potential
in HAM/TSP had not been investigated [119]. In con-
trast to normal donors and patients in early disease
stages, anti-CD3 treatment did not increase lymphopro-
liferation in PBMCs from advanced HAM/TSP patients,
but strongly induced apoptosis. In addition, anti-CD3
treatment did not induce a pro-inflammatory cytokine
storm, either at the protein or mRNA level. Using micro-
array analysis, treatment of HAM/TSP PBMCs with anti-
CD3 mAb had a pronounced effect on gene expression,
significantly down-regulating certain pro-inflammatory
genes and up-regulating cell cycle-related and immuno-
regulatory genes, such as CTLA4. Ramos’ group presented
data using brentuximab vedotin (SGN-35), an anti-CD30
monoclonal antibody conjugated to a potent microtubule
poisoning agent monomethyl auristatin E that is effective
in the treatment of CD30-expressing lymphomas [120].
The proportion of CD30+ ATLLs was 36% (95% CI 11%-
61%), including 47% in lymphomatous-type, 28% in acute-
type, and 10% in indeterminate cases. Four of 12 (33%)
acute-type ATLL cytospin cases were CD30+; however, a
high expression of 80% was observed in only one case.
One patient with CD30+ acute-type ATLL with diffuse
skin involvement treated with brentuximab had an object-
ive transient response. Uto and colleagues studied the
induction of cytotoxic T lymphocytes as a strategy for
elimination of infected cells [121]. The immunization with
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PIC nanoparticles carrying HTLV-1 Tax peptide induced
expansion of Tax-specific CD8+ T cells. In contrast, no
such induction was observed with the peptide alone or
peptide plus an aluminum adjuvant.
Enose-Akahata et al. evaluated the immune response

against HBZ in HTLV-I-infected individuals [122]. The
immunoreactivity for HBZ was detected in subsets of all
HTLV-I-infected individuals, but did not discriminate
between asymptomatic carrier, ATLL and HAM/TSP.
However, the frequency of detection of HBZ-specific anti-
bodies in the serum of ATLL patients with the chronic
subtype was higher than in ATLL patients with the lym-
phomatous subtype. Antibody responses against HBZ did
not correlate with proviral load and HBZ mRNA expres-
sion in HAM/TSP patients, but the presence of HBZ-
specific response was associated with reduced CD4+ T cell
activation in HAM/TSP patients. Rowan et al. searched
for the role of host cytotoxic T-lymphocyte (CTL) re-
sponses in limiting expansion of HTLV-1-infected CD4 +
T-cells in vivo and assayed the ability of equally efficient
Tax-and HBZ-specific CTL clones to kill unstimulated,
naturally infected cells from HLA-A*02 +HTLV-1+ indi-
viduals [123]. Infected cells, which expressed Tax during
the course of the assay, upregulated surface expression of
HLA-A*02, and were eliminated efficiently by Tax-specific
CTL. HBZ-specific CTL killed Tax+ cells less efficiently,
preferentially killing cells with high levels of HLA-A*02.
Niederer et al. performed integration site analysis in
Japanese HTLV-infected asymptomatic carriers and HAM/
TSP patients to test the hypothesis that a strong CD8+ T-
cell response to HBZ alters the frequency distribution of
infected T-cell clones and selects the genomic environ-
ment of the proviral integration site (IS) in vivo [124]. A
high-throughput protocol was used to map and quantify
IS in 95 HAM/TSP patients and 68 asymptomatic car-
riers (ACs) from Kagoshima, Japan, and 75 ACs from
Kumamoto, Japan. Individuals with 2 or more HLA
class I alleles predicted to bind HBZ were classified as
‘strong’ HBZ binders. The results suggest that the pre-
dicted strength of HBZ binding does not influence the
overall clone frequency distribution. However, clonal
abundance was correlated with frequency of proviral in-
tegration within transcriptionally active areas in weak
HBZ binders, but not strong HBZ binders.
Recent studies have shown that a large percentage of

HTLV-1-infected subjects, who do not fulfill the criteria
for HAM/TSP, have overactive bladder as well as other
neurologic manifestations. The fact that patients with over-
active bladder have an exaggerated immunologic response
similar to HAM/TSP, with high production of TNF-α and
IFN-γ as well as higher proviral load than HTLV-1 carriers,
provides evidence that overactive bladder is an oligosymp-
tomatic form of HTLV-1 (Santos et al.) [125]. As patients
with HAM/TSP have already a fibrotic spinal cord and a

low possibility of restoring the neurologic damage caused
by viral infection, identification of other neurologic dis-
eases that precede or are oligosymptomatic forms of
HAM/TSP is a tool to evaluate efficacy of drugs against
HAM/TSP.
Ciliao-Alves et al. investigated the expression of the

human leukocyte antigen-G (HLA-G) for its immunosup-
pressive effects [126]. A correlation between HLA-G
polymorphisms in symptomatic and asymptomatic HTLV-
1-infected individuals indicated that HTLV-1-related
symptoms in HAM/TSP group could be partially deter-
mined by higher expression of HLA-G. Higher expression
of HLA-G may protect HTLV-1-infected cells against im-
mune system attack, leading to the increased proviral load
and HAM/TSP symptoms. Olavarria and colleagues stud-
ied HLA-A, -B and –C polymorphisms and determined
the individual ancestry proportion of European, African
and Amerindian in 209 HTLV-1-infected individuals in
order to identify genetic factors that associate with HAM/
TSP [127]. When considering only the HAM/TSP sub-
sample, the results suggested that European ancestry were
predisposed to higher PVL, while African ancestry was as-
sociated with lower PVL.
Pinto et al. compared the global gene expression pro-

file of circulating CD4+ T cells in healthy control (CT),
asymptomatic HTLV-1 carrier (HAC) and HAM/TSP
group [128]. Twenty five differentially expressed genes
in common between CT vs. HAM/TSP and HAM/TSP
vs. HAC were identified in the granzyme A (GZMA) sig-
naling pathways. GZMA and PRF1 gene expression were
significantly increased in HAM/TSP group compared to
CT and HAC groups. Foxp3 gene expression was signifi-
cantly increased in HAM/TSP group. GZMA, GZMB,
and PRF1 genes positively correlated with Foxp3 gene
expression. Menezes et al. tested Fas expression and
function in lymphocyte activation, apoptosis, lympho-
proliferation and gene expression profiling, using flow
cytometry and microarray analysis in PBMCs from
HAM/TSP patients, asymptomatic HTLV-1-infected in-
dividuals and healthy controls [129]. Fas expression was
increased in both asymptomatic HTLV-1-infected indi-
viduals and HAM/TSP patients, as compared to unin-
fected controls. In HAM/TSP, Fas expression correlated
positively to lymphocyte activation markers (HLA-DR,
CD86), but negatively to disease duration. Likewise, in-
creased Fas expression in HAM/TSP did not lead to in-
creased apoptosis upon in vitro culture. However, in
HAM/TSP patients, IFN-α-induced Fas expression par-
alleled decreased lymphoproliferation.
HTLV-1 is primarily found in the CD4 + CD25+ T cell

subset (Tregs), the cells that are responsible for peripheral
immune tolerance and which are known to be dysfunc-
tional in HAM/TSP. However, due to the inherent inflam-
matory component of HAM/TSP, markers normally used
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to characterize T regs, such as CD25, FoxP3, and CTLA4
are problematic in differentiating Tregs. Recent evidence
has shown that FoxP3 expression and function is deter-
mined epigenetically, specifically through DNA methy-
lation in the Treg-specific methylation region (TSDR).
Anderson analyzed the methylation status of specific
CpGs in the TSDR in PBMCs, CD4+ T cells, and CD4 +
CD25+ T cells from normal healthy donors (NDs) and
HAM/TSP patients [130]. Decreased demethylation in
PBMCs and CD4 + CD25+ T cells from HAM/TSP pa-
tients as compared to NDs was demonstrated despite
the increased CD4 + CD25+ frequency in HAM/TSP.
Further, decreased TSDR demethylation correlated with
decreased functional suppression in Treg cells of HAM/
TSP patients.
Similar to other infectious diseases, a large number of

HTLV-1-infected individuals remain carriers, suggesting
that effective immunologic responses able to control viral
proliferation can be developed. CD8+ T cells play a pivotal
role in both protection and pathology associated to
HTLV-1. It is known that the killing immunoglobulin-like
receptor (KIR) genotype influences CTL efficiency by af-
fecting HLA class I-mediated HTLV-1 immunity. The
observation that, after PBMC stimulation with TAX pep-
tides, the frequency of KIR2 DL2+ CD8+ T cells is higher
in HTLV-1 carriers than in patients with HAM/TSP sug-
gests a potential role of these cells in the control of the
virus (Twigger et al.) [131]. HTLV-1-infected T cells can
also be killed by ADCC with a rat monoclonal antibody
against HTLV-1 envelope GP46 or a human polyclonal
IgG purified from serum of HAM/TSP patients (Tanaka
et al.) [132]. A vaccine able to induce or boost anti-GP46
antibody responses may have a potential for protection
and therapy against HTLV-1.
Despite advances in the knowledge on the immuno-

pathogenesis of HTLV-1 infection, the mechanisms of
cellular migration to the central nervous system (CNS)
and the maintenance of the inflammatory process in pa-
tients with HAM/TSP is not completely understood.
HAM/TSP patients have high levels of CXCL10 in the
CSF as well as a large number of cells in the CSF ex-
pressing CXCL10-binding receptor CXCR3. As CXCL10
is produced by astrocytes upon stimulation of IFN-γ, this
feedback loop via astrocytes producing CXCL10 and
attracting CXCR3-positive cells is likely critical for main-
tenance of chronic inflammatory response in HAM/TSP
(Sato et al.) [133]. In another study by Enose-Akahata
et al., the B cell-attracting chemokine-1, CXCL13, was
found to be increased in CSF of HAM/TSP patients, an
increase which correlated with higher HTLV-1-specific
antibody responses in CSF and a concomitant decrease
of plasma blasts in peripheral blood [134]. Such CSF-
associated humoral response could be associated to
HAM/TSP progression.

It is known that HTLV-1 modifies the immune response
of the host toward other pathogens, increasing susceptibil-
ity and worsening clinical manifestations of other infectious
diseases. HTLV-1 infection causes an exaggerated produc-
tion of Th1 cytokines that may down-regulate IL-4, IL-5
and IL-13 production. Treg cells or regulatory molecules
may also decrease the host immune response to other
pathogens. In addition, impairment of the innate immune
response and antigen-presenting cells may contribute to
the increased susceptibility to other pathogens seen in
HTLV-1 infection. For instance, HTLV-1-transformed ATL
cells were unable to boost the production of type I inter-
ferons in response to Sendai virus infection. Expression
of Tax alone repressed the induction of interferon pro-
duction by RIG-I + PACT, TBK1 and IRF3. Reciprocal
co-immunoprecipitation experiments confirmed the as-
sociation of Tax with TBK1 kinase that phosphorylates
IRF3 [135]. Additionally, Souza et al. observed that vac-
cinated HTLV-1 carriers had a lower antibody produc-
tion in response to the tetanus toxoid when compared
with seronegative controls, suggesting that HTLV-1 is
able to decrease antibody production toward a biased
antigen [136]. In this study, a decreased expression of
co-stimulatory molecules in macrophages from HTLV-1
donors as well as a decreased frequency of dendritic
cells in HTLV-1-infected subjects were also observed.
The immunopathogenesis studies presented during

the conference clearly testify to the rapid advancement
of knowledge concerning the immunologic response in
HTLV-1 infection; these studies identify potential bio-
markers associated with protection and severe path-
ology, define molecular mechanisms involved in the
downregulation of viral proliferation and suggest novel
immunotherapeutic approaches to the treatment of
HTLV-1-associated diseases. These studies have been
performed with in vitro models, animal models and with
patient material. Future studies will be designed to
translate the basic knowledge into reality for patients
who suffer from HTLV-1 infection.

Molecular and cellular biology
HTLV-1 transmits primarily by cell-to-cell contact. The
virus has evolved mechanisms to maximize transmission
and escape from the host immune system by clonal pro-
liferation of infected cells. This attribute likely leads to
development of ATLL and HAM/TSP. At the stage of
transmission of HTLV-1, cell surface glycans play an im-
portant role, partly through biofilm-like extracellular viral
assembly sites enriched in carbohydrates. By MALDI-TOF
MS analysis, Kodama et al. demonstrated the increased
expression of O-glycans in CD4+ T cells from HAM/TSP
patients, which might enhance cell-to-cell transmission of
HTLV-1 [137].
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Tax is an important viral protein for viral replication
and proliferation of infected cells and acts in several
ways at transcriptional, post-transcriptional and post-
translational levels. Interestingly, data from Barez et al.
demonstrated that the interaction of Tax with MCM2-7
not only modulates reprogramming of replication ori-
gins, but also alters Tax transactivation of the 5’ LTR
and thereby viral transcription itself [138]. Tax also in-
hibits nonsense-mediated mRNA decay (NMD), which
might help viral replication (Mocquet et al.) [139].
Results from these authors highlight an interaction
between Tax and two NMD-associated factors, UPF1
and INT6/EIF3E and additionally underscores Tax-
dependent altered morphology of P-bodies and of their
content in both NMD factors. In another study by Pène
et al., analysis of Tax sumoylation allowed the authors
to conclude that this post-translational modification
was not necessary for Tax-mediated activation of the
IKK complex and subsequent NF-κB activation [140].
HBZ is another important player in HTLV-1 patho-

genesis. It has been reported that not only the HBZ pro-
tein but also HBZ mRNA has important functions (see
Barbeau et al., 2013) [141]. HBZ mRNA suppresses
apoptosis by inhibiting the induction of p21 and Bax by
ultraviolet light (Goicochea et al.) [142]. Vernin et al.
presented another mechanism by which HBZ could act
upon cell proliferation and also genetic instability, which
involved induced overexpression of oncogenic miR-17
and miR-21 [143]. On the other hand, Gazon et al. pre-
sented data arguing that HBZ might suppress expression
of Dicer 1, and thereby reduce miRNA biogenesis via in-
hibition of JunD binding to the promoter [144]. Brain-
derived neurotrophic factor (BDNF) variant 5 expression
is enhanced in HTLV-1-infected cells, via increased tran-
scription caused by the activation domain of HBZ. Ex-
pression of the receptor of BDNF, TrkB, is also increased
in HTLV-1-infected cells, which leads to activation of a
BNDF/TrKB autocrine loop (Polakowski et al.) [145]. In
addition, HBZ suppresses the canonical Wnt pathway
via interaction with TCF-1/LEF-1. However, HBZ enhances
Wnt5a expression, which is a ligand for non-canonical
Wnt pathway. Thus, HBZ modulates the Wnt pathway
towards conditions, which could be favourable for the
survival of peripheral T cells (Ma et al.) [146].
The long latent period before the onset of ATLL sug-

gests that genetic and epigenetic changes accumulate in
the host genome before malignant transformation. In
this conference, enhanced expression of the Gem protein
(Chevalier et al.) [147] and protein methyltransferase 5
(Panfil et al.) [148] have both been described in ATL
cells. The GEM protein through its ability in altering the
cytoskeleton might thus influence cell-to-cell transmis-
sion of HTLV-1 and in fact, Chevalier et al. have indeed
observed GEM-mediated enhancement of conjugates

between infected and non-infected cells. The increased
level of PRMT5 in ATL cell lines observed by Panfil
et al. have been linked to cell proliferation and viral rep-
lication. In another study, Marçais et al. presented data
demonstrating that inactivating mutations of TET2 were
frequent in patients with ATLL [149].
Post-transcriptional modulation of cellular genes in

ATL cells is also of potential interest for the understand-
ing of transformation induced by HTLV-1. Through
Exon Chip Human microarrays, Thenoz et al. provided
evidence for the presence of alternative spliced events (a
total of 3642 involved genes) in ATL cell samples differ-
ing from cell samples with the untransformed pheno-
type. These alternatively spliced genes were shown to be
part of pathways for p53 signalling, cell cycle and DNA
replication [150]. Another post-transcriptional process
linked to ATLL has been reported in ATL cells, in which
suppressed expression of miR31, which targets the NIK
kinase, is linked to activation of NF-κB and increased ex-
pression of EZH2 [151]. NF-κB activates EZH2 expres-
sion, which leads to suppressed expression of miR31. In
addition, EVC1/2 expression is enhanced in ATL cells,
which is implicated in activation of the Hedgehog signal-
ling pathway (Yamagishi et al.) [152].
Studies using the oncogenic virus, BLV, have also

helped to identify mechanisms involved in disease medi-
ated by this virus and viral persistence. Durkin et al.
reported the expression of five viral miRNAs that are
implicated in the pathogenesis of BLV-associated disease
[153]. In another study, Gillet et al. provided an analysis
of the clonality of BLV-infected cells after primary infec-
tion. Their results revealed massive depletion and selec-
tion of BLV-infected cells during the first 2 months [154].
In this early stage, infected cells that have integration sites
near a promoter or host gene were eliminated. Neverthe-
less, clone abundance did correlate with proximity of the
provirus to a transcribed region among surviving clones.
Based on these observations, integration sites may influ-
ence the initial negative selection in the early phase of in-
fection and clone abundance during chronic infection.
These effects appear to be similar to those observed in
HTLV-1 infection.

Human Endogenous and emerging Exogenous
Retroviruses
In recent decades, we have witnessed the emergence of
several simian retroviruses crossing species into humans,
some of which, like HIV and HTLV, spread globally and
can cause disease. Others, such as simian foamy virus
(SFV), and the novel HTLV-3 and −4 viruses discovered
in 2006, seem to have a limited spread and an unknown
clinical outcome in infected people [155]. Moreover, during
the past five years, a mouse retrovirus called XMRV (xeno-
tropic murine leukemia virus-related virus) was reported
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in prostate cancer and chronic fatigue syndrome, but was
shown in subsequent studies to be a laboratory contamin-
ant and not a bona fide human virus [156-158]. In this ses-
sion, and information presented in several posters, we
learned more about the public health importance of these
novel emerging human retroviruses and ongoing research
to investigate the potential for human endogenous retrovi-
ruses to cause disease. New data on the possible contribu-
tion of mouse mammary tumor virus (MMTV) to biliary
cirrhosis in humans were also presented.
SFV is widely distributed in nonhuman primates (NHPs)

and various ape- and monkey-specific strains have been
identified in persons exposed to NHPs in various contexts,
including occupationally at zoos and research centers, and
naturally by hunting, butchering, and keeping NHP pets.
Globally, about 138 persons have been identified with SFV
infection in a total of 12 countries, including a recent
report of two primate workers in China [155,159,160].
Prevalences have ranged from 0.5 – 19%, depending on
the severity of the NHP exposure, with a higher prevalence
in persons who sustained severe injuries [155]. Nonethe-
less, little is known about the public health consequences
of SFV infection, as only a limited number of close
contacts of infected persons have been tested for evidence
of person-to-person transmission [155]. Although many
SFV-infected persons in the US have reported donating
blood before knowing their infection status, an absence
of blood-borne transmission was observed in a look
back study of leukocyte-reduced blood product recipi-
ents from one SFV-infected person in the U.S [155]. All
persons identified with SFV infection to date appear
healthy [155,160,161].
To investigate the potential for person-to-person trans-

mission, Rua et al. determined proviral (DNA) and viral
(RNA) loads in saliva and blood specimens (PBMCs and
plasma) collected from hunters in Cameroon infected with
gorilla SFV (SFVgor) [162]. While low proviral loads were
reported in the saliva and PBMCs, viral RNA was not de-
tected in any specimen, suggesting an absence of active
viral replication, which may help explain the apparently
low transmissibility. Rua et al. also investigated the genetic
heterogeneity in a subset of the proviral sequences and
found that SFV is stable in these individuals, further sup-
porting limited viral replication in these compartments
and in infected persons, similar to that reported previously
by others [155].
A poster by Filippone et al. reported for the first time

co-infection of SFVgor-infected hunters in Cameroon,
mostly pygmies, with HTLV-1 [109]. Phylogenetic ana-
lysis showed that some of the HTLV-1 envelope (env)
sequences in these individuals were more similar to
STLV-1 in monkeys and gorillas, suggesting a recent
cross-species transmission from NHPs, similar to that
reported in other hunters in Cameroon by Wolfe et al.

[163]. Any effect that these co-infections will have on
the clinical or virologic outcome of each virus in the
new host is unknown. A recent study reported an in-
creased SIV-related disease progression in SFV co-infected
macaques [164]. In addition, SFV and HIV-1 dual infec-
tions have been reported in persons in both Cameroon and
the Democratic Republic of Congo (formerly Zaire), which
raises the possibility of SFV causing an opportunistic dis-
ease in persons immunocompromised by HIV-1 [165].
Thus, a low incidence of disease in SFV-infected persons,
like that seen in HTLV infection, cannot be excluded at
this point. Additional data and novel study designs are
needed to assess both disease associations and transmis-
sion risks of SFV in humans.
To date, HTLV-3 has been identified in only four per-

sons living in the forests of Cameroon while HTLV-4
has only been found in a single hunter from Cameroon
[163,166-168]. HTLV-4 is the only human retrovirus for
which a simian counterpart has not yet been identified.
As for SFV, the limited number of infected persons greatly
hinders efforts to understand the public health signifi-
cance of these emerging human retroviruses. However, in
silico, in vitro, and animal model studies can all help to
better understand the pathogenic and transmission poten-
tial of these viruses. For example, sequence analysis of the
complete genomes of HTLV-3 and HTLV-4 showed that
the Tax3 and Tax4 proteins are more similar to those of
Tax 1 (HTLV-1) and Tax2 (HTLV-2), respectively, by pos-
sessing a PDZ motif in its carboxyl terminus, which is ab-
sent in Tax 2 and Tax4 [166,167,169-171]. Since, HTLV-1
is more pathogenic than HTLV-2 and the PDZ domain is
essential for the Tax-1 transforming activity, it was sug-
gested that HTLV-3 may have a pathogenic potential simi-
lar to that of HTLV-1 [172]. Additional in vitro and
in vivo animal model studies are needed to show that
Tax3 does transform infected cells and cause oncogenesis.
Larocque et al. [173] reported on the further charac-

terization of the HTLV-3 and −4 antisense proteins (APH3
and APH4) that were initially discovered by in silico ana-
lysis of their complete genomes and shown in vitro by Lar-
ocque et al. in 2011 to encode proteins that down-regulate
Tax-mediated LTR activation, but which have a distinct
subcellular localization [174]. Unlike the HTLV-1 HBZ,
which has a canonical bZIP domain, APH2 (HTLV-2),
APH3 and APH4 have an atypical bZIP-like motif with
four leucine heptads followed by a leucine octet instead of
the five leucine heptads in HBZ [169]. HBZ and APH2
have been shown to differently affect Jun-dependent tran-
scription and which has also been suggested to explain the
differential pathogenic potential of HTLV-1 and HTLV-2.
At the meeting, Larocque presented new data that
showed, by using co-immunoprecipitation experiments,
that APH3 and APH4 interacted with all tested Jun
members and that both antisense proteins up-regulated
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Jun-mediated transactivation of a heterologous pro-
moter. She also showed by mutation analysis that the
putative bZIP-like domains and corresponding leucine
residues were critical for the Jun factor interaction and
modulation of transcription. These studies demonstrated
the conservation of the Jun-mediated transcription in
HTLV, despite having different cellular and subcellular lo-
calizations. More studies are needed to further characterize
these novel antisense proteins and to determine their pos-
sible role in HTLV-3 and −4 replication and their in vivo
effect on transmissibility and disease. In addition, these
studies may allow a better understanding of the function of
HBZ and HTLV-1-associated disease.
ERVs integrated into mammalian germ line genomes

many millennia ago [175]. In animals, such as cats (fe-
line leukemia virus), mice (murine leukemia virus and
mouse mammary tumor virus), chickens (avian leukosis
virus), koalas (koala endogenous retrovirus) and sheep
(Jaagsiekte sheep retrovirus), ERVs are associated with
malignancies and can grow in human cells in vitro [176].
In humans, the association of ERVs (HERVs) with disease
has been controversial. About 8% of the human genome is
composed of HERVs and, although most are defective,
viral expression occurs in human tissues [175,176]. Thus,
HERV particles or antibodies have been reported in vari-
ous autoimmune and neurodegenerative diseases (mul-
tiple sclerosis, rheumatoid arthritis, schizophrenia) and
cancer (teratocarcinoma, leukemia, ovarian and breast
cancer) [175,176]. However, in most reports, it has been
difficult to determine if HERV expression causes these dis-
eases or is up-regulated following disease development.
Like other retroviruses, HERVs are proposed to possibly
affect gene transcription by insertional mutagenesis and
recombination, modulation of gene expression via LTR ac-
tivation, and HERV proteins have been proposed to cause
immunosuppression and cell fusion (envelope), auto-
immunity (Gag), and control of nuclear factors (Rec and
Np9 bind to the promyelocytic leukemia zinc finger to
interfere with repression of c-myc) [175,176]. Nonetheless,
modern approaches and traditional epidemiological stud-
ies are needed to better determine an association of HERV
with disease, including microarray and whole transcrip-
tome analyses and testing of coded specimens from rigor-
ously designed case–control studies. One such study was
presented in a poster by Babaian and Mager, who have de-
veloped a bioinformatic transcriptome data pipeline to as-
sess LTR-based host gene activation using normal and
cancer cells [177]. These methods will be useful for evalu-
ating a role of HERV-based LTR activation of host genes
in carcinogenesis.
Andrew Mason gave an overview of current data on the

role of the human betaretrovirus (HBRV), a virus with
high identity to the endogenous betaretrovirus MMTV, in
primary biliary cirrhosis (PBC) [178]. In addition to results

previously published [179-181], including nested PCR de-
tection of HBRV sequences in persons with PBC and other
liver diseases and isolation of virus from PBC patient
lymph nodes, phylogenetic analyses of HBRV LTR se-
quences obtained from liver biopsy specimens of PBC
patients were also described. All patient LTR sequences
formed three separate clusters with MMTV LTR se-
quences, suggesting that the inferred topology is inconsist-
ent with a common source of contamination. However, all
three clusters had very low bootstrap support, suggesting
the inferred genetic relationships could also be random
and which is probably a consequence of the short align-
ment length (62-bp) used for the phylogenetic analysis.
Additional data on HBRV integration sites using a nested
ligation-mediated PCR technique were presented. HBRV
integrated in > 400 sites in vitro in Hs578T-infected cells
(a human breast cancer cell line) and > 2,700 sites in vivo
in patient specimens and was integrated on each chromo-
some. HBRV was reported to preferentially integrate
within 100 nucleotides of the NF-κB and SP1 transcription
factor motifs. Paradoxically, HBRV integration was also
reported in > 10% of negative control specimens and in
the Y-chromosome of the infected Hs578T cell line, which
is a female cell line and does not have a Y chromosome.
More studies are necessary to confirm these findings and
to evaluate an association of HBRV or MMTV with
human disease. Importantly, as we learned with the de-
discovery of XMRV [157,158], mouse DNA can contamin-
ate many reagents and specimens used in these studies
and more rigorous study designs, including blinded testing
of cases and controls and confirmation of integration per-
formed at independent laboratories, are critically needed
to adequately investigate an association of novel human
viruses with disease.
Understanding the epidemiology of SFV, HTLV-3 and

HTLV-4 and determining whether these retroviruses
transmit from person-to-person and cause disease will
help to better understand the public health significance
of these emerging infections. Testing of close contacts of
persons infected with these three retroviruses will help
define their transmission potential. While many in vitro
studies have shown that HTLV-3 resembles HTLV-1 bio-
logically, it remains to be determined if Tax3 can induce
cell proliferation either in vitro or in vivo like Tax1 and
thus share the same pathogenic potential. Similarly, more
research is needed to further characterize the antisense
proteins of all four HTLV groups and to investigate their
roles in viral replication, persistence, and pathogenesis.
Population-based and expanded molecular epidemiologic
studies will determine how widespread these viruses are
and determine their natural history in their primate hosts
and humans. Specifically, identifying the simian reservoir
for STLV-4 will aid in our understanding of the natural
history and epidemiology of HTLV-4. More rigorous study
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designs that include modern technological tools like
microarrays and next-generation sequencing will benefit
studies to determine associations of HERV and HBRV
with disease.

Virology
Although certain steps in the transmission, persistence
and pathogenesis of HTLV-1 and other deltaretroviruses
have been well characterized, many aspects of the vir-
ology of deltaretroviruses remain poorly understood. For
example, few studies published to date have provided
insight into the mechanism of viral entry, integration site
preference, or the identity of factors that determine
whether the virus is expressed or becomes latent. Simi-
larly, little is known about the factors that contribute to
the persistence of virally infected cells or to the develop-
ment of disease in infected individuals. The presenta-
tions and posters in the Virology section in this year’s
conference provided many novel insights into the biol-
ogy of deltaretroviruses.
Little is known about the early stage of deltaretroviral

infection, including the route of viral entry required for
productive infection and the location of proviral integra-
tion sites. Jones et al. presented evidence that productive
infection of dendritic cells by HTLV-1 occurs following
entry by macropinocytosis, a type of endocytosis [182].
They observed that reagents that block macropinocytosis
dramatically reduce infection of dendritic cells by HTLV-
1. In addition, CD4+ T cells, which cell-free HTLV-1 does
not routinely infect in vitro, were productively infected
following treatment with a reagent that induces macropi-
nocytosis. Two other studies presented by Sze et al. and
Alais et al. respectively demonstrated that monocytes
were not susceptible to HTLV-1 infection due to DNA
sensor STING-dependent and SAMHD1-induced apop-
tosis and that different DC subsets were not equally in-
fected by HTLV-1, possibly accounting for different forms
of viral pathogenesis [112,113].
Insight into the integration site preferences of HTLV-1

was provided by Cook et al., who used a high-throughput
method to characterize proviral integration sites in cells
from asymptomatic carriers and individuals with ATLL
[183]. They observed that the provirus is typically inte-
grated into transcriptionally active regions of the host
genome in individuals with ATLL; this group recently re-
ported that this was true for HTLV-1 integrated in cells
from individuals with HAM/TSP [184]. The current study
also revealed that not all cases of ATLL are monoclonal.
Using this same high-throughput method, Melamed et al.
performed two studies characterizing HTLV integrated in
the genome of PBMC of infected individuals [185,186]. In
one study, the group characterized the PVL and clone fre-
quency distribution in CD4+ and CD8+ T cells in asymp-
tomatic HTLV-1 carriers and individuals with HAM/TSP.

HTLV-1-infected CD8+ T cells had a clonal distribution
distinct from infected CD4+ cells: infected CD8+ clones
were significantly over-represented among the most abun-
dant clones in the blood. In the other study, clone fre-
quency distribution in individuals with HTLV-2, which
preferentially infects CD8+ T cells, was examined. The
clone frequency distribution of HTLV-2 in PBMCs was
distinct from that of HTLV-1 and resembled that of
HTLV-1-infected CD8+ T cells. The authors suggest that,
in infections by both viruses, there is a greater degree of
selective oligoclonal clonal expansion of infected CD8+ T
cells. Laydon et al. reported that their studies, using a
novel mathematical model (DivE) to estimate the number
of individual viral clones in the peripheral blood of HTLV-
1-infected individuals, indicate that the number is more
than two logs higher than previous estimates [187].
Since each unique clone reflects a de novo infection
event, these observations strongly suggest that there is
more cell-to-cell viral spread in infected individuals
than previously believed.
Envelope surface (SU) proteins are critical for the ini-

tial binding and entry of retroviruses into target cells
and are a major target of the immune response. Since
retroviral SU proteins are always glycosylated, it is gen-
erally believed that the function of this “glycan shield” is
to sterically block components of the immune system
from interacting with the SU protein. However, a study
of the effect of BLV SU glycosylation sites by de Brog-
niez et al. raises the possibility that these modifications
may play another role in this protein [188]. They observed
that a mutation that blocks glycosylation at residue N230
enhances, rather than inhibits, replication of the virus
in vivo. Novel insights into the infected lymphocyte popu-
lations in BLV-infected, clinically normal cattle were pro-
vided by Aida et al., who developed a quantitative real-
time PCR method that measures the PVL of both known
and novel BLV variants in infected animals, like that in
HTLV-1-associated ATLL [189]. They observed that PVL
correlates with BLV disease progression. Examination of
different cell types revealed that, although the cell type be-
lieved to be the target of this virus (CD5+ IgM+ B cells)
have the highest PVL, other cell types (CD5- IgM+ B cells,
CD4+ cells, and CD8+ T cells) were infected to a greater
extent than previously believed.
Another area of active research over the past few years

has been the efforts to identify biomarkers that can pre-
dict which HTLV-I–infected individuals are at increased
risk for developing disease. Two studies presented at this
conference by Kagdi et al. described the development of
an 11-color flow cytometric assay to aid in the diagnosis
of, and to monitor, ATLL [33,190]. Using this approach,
they discovered that CD4+CD25+CCR4+ T cells can be
used as a marker for two aspects of HTLV-1 infection
and disease: the frequency of CD4+CD25+CCR4+ T cells
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correlated with the PVL, and the expression of CD127
on these cells correlated with the ability to achieve re-
mission status.
Previous studies have reported that individuals with

HAM/TSP have a higher PVL than asymptomatic indi-
viduals, and high PVL has been considered a risk factor
for development of HAM/TSP. However, in a long-term
study presented by Goncalves et al., PVL only had mod-
est prognostic value in the examined GIPH cohort.
Moreover, changes in clinical status and PVL did not co-
incide in this study: for all five patients for whom PVL
was determined both prior to and after development of
disease, the median PVL was dramatically higher during
the asymptomatic period than after the onset of HAM/
TSP [191].
Although current serologic assays are important tools

for screening donated blood and identifying individuals
infected with HTLV-1 or HTLV-2, these assays have lim-
itations. The development of improved tests is hindered
by the lack of a suitable reference panel for these viruses.
Morris and Cowan reported on the progress that the
World Health Organization has made to develop such a
reference panel [192]. Initial screening tests have identi-
fied two candidates for HTLV-1a and HTLV-2 for this
panel. These are in the process of being formulated into
lyophilized preparations, and will soon be distributed to
laboratories for testing in a small international collabora-
tive study.
As is the case for cellular genes, the ability of retrovi-

ruses to be expressed is based on the state of the chro-
matin structure. Since the presence of heterochromatin
on the integrated HTLV-1 genome blocks transcription
of the virus, expression of the virus requires chromatin
remodelling. One of the ways that Tax regulates this re-
modelling involves complexes that require energy from
ATP hydrolysis. Using siRNAs, Guendel et al. examined
the effect of two ATP-chromatin remodelling complexes
on transcription [193]. They observed that BAF com-
plexes are regulated by phosphorylation of the Baf 53
subunit, and that PBAF complexes substitute the nega-
tive inhibitory BAF complexes needed for activated tran-
scription. Mann et al. discovered a novel role for Tax in
transcriptional activation involving interaction with an
elongation factor [194]. The positive transcription elong-
ation factor b (pTEFb), which is recruited to the LTR by
Tax, requires additional proteins for efficient elongation
during transcription. Microarray analyses revealed that a
single such factor, ELL2, was upregulated by Tax. Further
studies revealed that this protein increased Tax-mediated
transcription from the HTLV-1 LTR.
Infected cells can silence expression of viruses, includ-

ing HTLV-1, by microRNAs (miRNAs). It is known that
HTLV-1 can dysregulate the cellular RNAi pathway, and
at this conference, Van Duyne et al. reported that RNAi

pathways are altered following interactions of HTLV-1
Tax with Drosha, the enzyme that performs the initial
cleavage during processing of miRNAs [195]. They pre-
sented evidence that Tax interacts with Drosha, and pre-
vents the initial cleavage of miRNAs by Drosha. They
also reported that Drosha was present at lower levels in
HTLV-1-infected cell lines and infected primary cells
than in uninfected cells.
Studies examining interactions of Tax with host proteins

and miRNAs were also presented by Fujikawa et al. [196].
Recently, this group reported that the protein EZH2, which
is overexpressed in ATL cells, induces constitutive NF-κB
activation by repressing a tumor-suppressive miRNA [151].
At this conference, they reported that Tax directly interacts
with EZH2 in HTLV-1-infected cells and that independent
expression of Tax in primary immune cells results in over-
expression of EZH2. Taken together, these results suggest
that Tax epigenetically affects gene expression through
interaction with EZH2.
Ueno et al. presented evidence that a specific poly-

morphism in the HTLV-1 genome is associated with dis-
ease [197]. Individuals infected with the cosmopolitan
type A subtype of HTLV-1 in Jamaica and the northern
part of Iran are at greater risk for developing HAM/TSP
than individuals from Japan infected with this subtype.
This group discovered a polymorphism in the pX region
of Jamaican and Iranian (J/I) subtype A viruses, which
results in an extra 20 amino acids at the C-terminus of
Rex. Infectious clones containing the pX region of the J/I
subtype A viruses have a higher ratio of full length to
doubly-spliced pX mRNA, and produce higher levels of
virus, than the Japanese (JP) subtype A virus. These obser-
vations suggest that the higher level of HAM/TSP in indi-
viduals from Jamaica and Iran may reflect higher viral
loads in these individuals due to a decreased ability of the
mutant Rex protein in the J/I subtype A viruses to control
expression of the virus.
In many infected individuals, HTLV-1 is transcription-

ally silent, and the majority of leukemic cells from ATLL
patients do not express the tax gene transcript. Studies by
Cook et al. examined the factors contributing to the silen-
cing of tax expression in cells from individuals with ATLL
[183]. They observed that Tax was not expressed in 65%
of the cases of ATLL examined, and that this lack of ex-
pression was the result of promoter deletion, tax gene
nonsense mutations, or tax promoter hypermethylation.
Cells secrete endosome-derived microvesicles called exo-

somes, and recent studies have shown that some viruses
use exosomes to enhance their spread. Narayanan et al. re-
ported that, in addition to proteins usually associated with
exosomes, exosomes derived from HTLV-1-infected cells
contain gp46 and Tax, as well as inflammatory media-
tors including IL-6 and IL-10 [198]. Treatment of naïve
cells with exosomes secreted from HTLV-1-infected
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cells induced a response in reactive oxygen species pro-
duction. The authors suggest that these exosomes may
play a role in pathogenesis of HTLV-1 infection.
The likelihood of long-term progression to AIDS in

individuals co-infected with HTLV-2 and HIV-1 is sig-
nificantly lower than in individuals infected with HIV-1
alone. Barrios et al. found that expression of Tax-2 in
HIV-1-infected PBMCs resulted in a significant reduc-
tion in HIV-1 produced by the cells, and that this de-
creased expression was preceded by increased levels of
CC-chemokines [199]. The authors state that these ob-
servations, along with a similar but less robust inhibition
of HIV-1 infection by Tax-1, suggest that Tax plays a
role in generating antiviral responses against HIV-1.
NF-κB signaling plays a pivotal role in Tax-1-mediated

transformation and ATLL leukemogenesis. Huleihel and
Shvarzbeyn observed that the natural product Propolis
(PE) and its active component, caffeic acid phenethyl
ester, inhibit the activation of NF-κB-dependent pro-
moters by Tax-1, and that PE could also efficiently inhibit
the activation of SRF- and CREB-dependent promoters
[200]. Xiang et al. found that treatment of HTLV-1-
transformed T cells with the anti-helminthic molecule
niclosamide induced degradation of Tax with subsequent
suppression of transcription of HTLV-1 viral genes and
apoptosis [201].

Conclusions
At the 16th International Conference on Human Retrovi-
rology: HTLV and Related Viruses, researchers presented
their exciting and original findings, which will have an
important impact on both clinical and fundamental re-
search. Scientists and clinicians had the opportunity to
actively engage with patient representatives from Brazil,
UK and Japan, who openly shared their concerns and
needs with the scientific community at the opening cere-
mony. Following the formation of the Clinical Trial Groups
during the previous meeting held in Leuven, Belgium, in
2011, a specific clinical trial workshop was organised,
allowing clinicians and researchers to specifically discuss
ongoing and future drug trials. We are looking forward to
the 17th International Conference on Human Retrovirol-
ogy: HTLV and Related Viruses, which will be held in Les
Trois-Ilets, Martinique in June 2015.
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