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Abstract

Many phenotypes of public health importance (e.g., diabetes, coronary artery disease, major
depression, obesity, and addictions to alcohol and nicotine) involve complex pathways of action.
Interactions between genetic variants or between genetic variants and environmental factors likely
play important roles in the functioning of these pathways. Unfortunately, complex interacting
systems are likely to have important interacting factors that may not readily reveal themselves to
univariate analyses. Instead, detecting the role of some of these factors may require analyses that
are sensitive to interaction effects.

In this study, we evaluate the sensitivity and specificity of the restricted partition method (RPM) to
detect signals related to coronary artery disease in the Genetic Analysis Workshop 16 Problem 3
data using the 50,000 k candidate gene single-nucleotide polymorphism set. Power and false-
positive rates were evaluated using the first 100 replicate datasets. This included an exploration of
the utility of using of all genotyped family members compared with selecting one member per
family.

Background
Coronary artery calcification (CAC) is a quantitative trait
that is a consistently found in areas of coronary artery
narrowing. In the Genetic Analysis Workshop (GAW) 16
simulation, CAC was used as a surrogate for plaque
build-up as a risk factor for a heart attack. Coronary

event (CE), e.g., myocardial infarction, was a binary trait
included in the data. Because the Framingham Heart
Study sample was not ascertained as a case-control study
and CEs were relatively rare in the data, we expected the
data would have less power to detect factors contributing
CE independently from CAC than it would to detect
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factors contributing directly to CAC. We note that lipids
(high-density lipoprotein, low-density lipoprotein, and
triglycerides as well as the composite score, total
cholesterol) are well known factors associated with
coronary artery disease.

Methods
The restricted partition method (RPM) uses multiple
comparisons to evaluate whether the phenotypes asso-
ciated with each (multilocus) genotype in a particular
model (e.g., a two-SNP model consisting of nine
genotypes) come from the same distribution. If the
answer is “no”, the method proposes a partition of the
genotypes. The test statistic is the proportion of the trait
variation explained by the partition. The statistic’s
significance is determined by permutation testing.
Because the RPM is appropriate for either quantitative
or binary phenotypes [1,2], we chose to analyze both the
quantitative trait CAC and the binary trait CE. In order to
improve our ability to detect factors contributing directly
to CAC, our phenotype for analysis was the residual after
regression involving age, sex, total cholesterol, and high-
density lipoproteins. The current version of the RPM
does not allow for adjustments for covariates when a
binary trait is being analyzed. Thus, our analysis of the
binary trait CE did not include adjustments for these
factors.

The RPM was developed as a method for analyzing
datasets consisting of unrelated subjects. Since the
Framingham Heart Study data is family-based, one
goal of this study was to compare the utility of naively
including all subjects in an RPM analysis to that of
analyzing a subset of the data consisting of only one
subject per family. A second question addressed by these
analyses is whether true signals could be distinguished
from noise in pairwise analyses of a large set of
candidate SNPs.

We knew the true model before starting our analyses.

CAC model
The true model for CAC involved the lipids (which were
modeled using genetic variants from the 500,000
genome-wide association study [GWAS] SNP set), age,
and five SNPs from the 50,000 candidate gene SNP set
that directly affected CAC. One of these SNPs, Het, acted
independently of the others and displayed over-dom-
inance (heterosis). SNPs PE1 and PE2 interacted with
each other to affect CAC, but theoretically would not
display any effects when analyzed separately. SNPs ME1
and ME2 acted primarily through an interaction, but
ME2 displayed a measurable effect when analyzed alone,
while ME1 did not. Perhaps unrealistically, the

dependence of CAC on lipids was modeled in such a
way that exercise and lipid-lowering medication could
decrease CAC.

CE model
The primary risk factor for CE was CAC. Thinking of CAC
as a surrogate for plaque build-up, the constricting effect
of smoking on arteries can be viewed as if smoking
effectively increased CAC. This was how the effect of
smoking was incorporated in the generating model. The
model included two additional polymorphisms that
modified risk: SLoc modified of risk only in smokers;
EventLoc had a small direct effect on risk for all subjects.

For a complete description of the simulation model
including a diagram illustrating the relationships
between predictors and phenotypes, see Kraja et al. [3].

Data
Because CAC only develops in middle age, but is affected
by lipid-lowering medication, we restricted our analyses
on data from the second examination of each subject in
the hope of maximizing the variance in CAC due to
genetic effects. Because of the computational complexity
of analyzing all pairwise interactions, we used only the
first 100 data replicates and the 50,000 candidate gene
SNP set for our analysis.

Analyses were first run on the full dataset of 6479
subjects, ignoring family structure. Next, analyses were
run on a subset consisting of just one member of each
family, the oldest subject (N = 1130). We will refer to
these two datasets as the “full data” and the “unrelateds
data,” respectively. The goal of this dual analysis
approach was to evaluate the benefits of increased
sample size versus the potential increase of false
positives when including related individuals in an
analysis intended for unrelated (or very distantly related)
individuals. The two datasets had similar distributions of
the sexes (45.7% male in the full data, 46.6% male in the
unrelateds) and smoking (21.2% of women, 24.9% of
men smoked in the full data, 21.3% of women and
25.0% of men smoked among the unrelateds). Because
of the ascertainment strategy, the average age in the
“Unrelateds” dataset was greater than that in the full
dataset (63.1 vs. 52.6) and the CE rate was higher
(11.8% vs. 7.7%). If this difference has an effect, it
would be expected to increase to power of the
“Unrelateds” data to detect factors related to CE.

For each of the first 100 data replicates, the true
contributing factors to the two traits were evaluated
using the RPM, using univariate or two-way analyses as
appropriate. The proportion of trait variation explained
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by the model and a permutation p-value based on
10,000,000 permutations were recorded for each.

To estimate the false-positive rates, we began by cleaning
the data as we would for any analysis: removing all
monomorphic SNPs (defined by fewer than 0.1%
heterozygous subjects) and SNPs with a high proportion
of missing genotypes (missing in more than 700 subjects
in the full data, missing in more than 100 in the
unrelateds). Because signals associated with SNPs in
linkage disequilibrium (LD) with the true causative
factors for CAC and CE should not be considered “false”
positives, we removed the few SNPs displaying LD with
any causative SNP (r2 > 0.1) from this portion of the
analysis. This left 42,461 SNPs for the analysis of false
positives in the “All Subjects” dataset, and 41,101 SNPs
in the “Unrelateds” dataset. Univariate RPM analyses
were run on all these SNPs for each of the two traits in
each of the 100 replicate datasets. p-Values were
estimated from 1,000,000 permutations per SNP. To
save computation time, the false-positive distribution for
pairwise analyses was not estimated by exhaustively
evaluating all of the nearly 1 billion pairs of null SNPs in
each replicate. Instead, the distribution was estimated
from a random sampling of 1,000,000 null pairs chosen
independently from each of the 100 replicates (for a
total 100,000,000 pairs).

Results
Results from the RPM analysis of both datasets using the
second visit can be found in Tables 1 and 2. The RPM
provides two measures of “signal": the model R2 and a
permutation-based p-value. Typically, these would be
used jointly to enhance computational efficiency. The
tables contain results from using different thresholds on
the two measures as tests of significance.

Table 1 contains results from the analyses including all
the subjects. In the analysis of the CAC phenotype, the
univariate signal from the over-dominant locus Het was
easily detected in the univariate analysis. Also, although
it had a smaller effect size, the epistatic locus ME2, which
was designed to display a small main effect, was
detectable as well. As expected, univariate analysis had
no power to detect the loci designed to have purely
epistatic effects (ME1, PE1, and PE2).

When analyzing the data containing all the subjects, the
effect sizes due to the epistatic interactions were well
above the level of background noise. For instance, no
randomly sampled pair explained more than 1% of the
trait variance. In contrast, the two interacting pairs could,
on average, account for approximately 5% and 11% of
the trait variance, respectively.

Because only 100 million pairs of SNPs were sampled
from the approximately 901 million possible pairs of
SNPs in this data, the average number of false positives
for the two-way analyses were approximated by multi-
plying the observed number of false positives by 9.01. If
no false positives were observed for a given threshold,
our best estimate is that we could expect fewer than 10
false positives if a full two-way analysis of all the SNPs
were to be performed.

The CAC loci produce a weaker signal in the CE
phenotype, but the interactions are still detectable, as
is smoking.

Table 2 presents results parallel to those of Table 1, but is
based on analysis of the smaller dataset consisting of just
one person per pedigree. As expected, the power is
decreased for most thresholds. In addition, the test
statistics for both the true models and models based on
random noise have increased variance. In this case, the
level of background noise is comparable to the true
signals.

Conclusion
The first point suggested by these data relates to
including genotyped relatives in an analysis designed
for unrelated individuals. It is often argued that the
conservative approach is to select one subject per family,
because including relatives in such an analysis can give
rise to false-positive signals. Others argue that as long as
the family size does not vary dramatically in the sample
(leading to a few families driving the results), the
increased power gained by including related subjects
can be worth the loss of an accurate estimate of
effect-size.

In the GAW16 simulated data, based on the true
Framingham Heart Study genotypes and family structure,
analysis using the RPM lends support to the latter
argument. In this case, including related individuals in
the analysis caused only a moderate increase in false
positives, but greatly increased the power to find true
signals. This proved to be particularly useful in these data
because the signals associated with the phenotypes were
particularly modest: with 1130 unrelated individuals,
many of the signals did not exceed the level of background
noise; with 6479 related individuals, they did.

As we continue to try to determine factors contributing
to common, complex phenotypes we will likely continue
to find that we are looking for factors of modest effect
size. Our results suggest that for a sufficiently large gain
in sample size, it may be worth violating the assumption
of unrelatedness.
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A second point relates to search strategies for detecting
interacting trait predictors. All such strategies carry
considerable computational and statistical costs. Given
the design of the generating model [3], one can see a
priori that the cheapest approach, namely testing for
interactions among the top univariate signals, would
almost certainly have failed to detect either of the
interactions in the models for CAC and CEs. Similarly,
the intermediate method of testing a top univariate
result against all other predictors might have found one
of the interactions, depending on how low into the
univariate list one was willing to go. However, it is
extremely unlikely that both of the interactions could

have been found without some sort of exhaustive search
through all pairs.

Finally, we note the effect of missing data. In these analyses
we included SNPs that had approximately a 90% call rate. It
is now common to require call rates of at least 98% for a
SNP to be included in analysis. Although this has not
proved to be a problem for recent datasets we have worked
with, in the Framingham Heart Study Candidate Gene data
it would have eliminated nearly 25% of the SNPs. However,
we also found that lowering the call rate threshold caused a
rapid increase in false-positive calls.We are not certain if this
is due simply to the instability of themodels produced from

Table 1: Power and false-positive rates: all subjects (N = 6479)

CAC p-value Threshold R2 Threshold R2 Meana

10-3 10-4 10-5 10-6 10-7 0.005 0.01 0.02 0.03 0.04

Univariate
Powerb

Het 100 100 100 100 100 100 100 100 29 0 0.0279
ME1 0 0 0 0 0 0 0 0 0 0 0.0001
ME2 85 69 50 32 12 12 0 0 0 0 0.0034
PE1 0 0 0 0 0 0 0 0 0 0 0.0001
PE2 0 0 0 0 0 0 0 0 0 0 0.0001
Avg(#FP)c 89.8 6.9 3.2 0.9 0.1 3.3 1 1 0.3 0
E(#FP)d 42.5 4.2 0.4 0 0

Two-way
Power
ME1*ME2 100 100 100 100 100 100 100 100 100 100 0.0539
PE1*PE2 100 100 100 100 100 100 100 100 100 100 0.1095
Avg(#FP) 1.6 M 202 K 28 K 3484 631 68 K 175 <10 <10 <10
E(#FP) 901 K 90 K 9014 901 90

Univariate
Coronary Event
Power
Het 68 42 28 19 11 13 0 0 0 0 0.0026
ME1 0 0 0 0 0 0 0 0 0 0 0.0001
ME2 3 0 0 0 0 0 0 0 0 0 0.0003
PE1 0 0 0 0 0 0 0 0 0 0 0.0001
PE2 0 0 0 0 0 0 0 0 0 0 0.0001
Smoke 98 96 87 71 56 47 1 0 0 0 0.0049
SLoc 0 0 0 0 0 0 0 0 0 0 0.0002
Event Loc 11 2 0 0 0 0 0 0 0 0 0.0008
Avg(#FP) 80.4 5.1 4.6 3.6 2.1 3.2 2 2 1.3 0
E(#FP) 42.5 4.2 0.4 0 0

Two-way
Power
ME1*ME2 100 99 98 86 82 97 29 0 0 0 0.0089
PE1*PE2 100 100 100 100 100 100 100 40 0 0 0.0193
Smoke*SLoc 99 95 87 63 47 77 5 0 0 0 0.0069
Avg(#FP) 1.5 M 173 K 21 K 925 90 96 K 174 <10 <10 <10
E(#FP) 901 K 90 K 9014 901 90

aMean RPM R2 for the factors in the model estimated by the RPM in 100 data replicates.
bPower, number of replicates for which the factor passed the threshold.
cAvg(#FP), average number of observed “false positives” in the univariate analyses per replicate. For two-way analyses, estimated from 108 sampled
pairs for the analyses of R2 and 107 sampled pairs for the analyses of p-values.
dE(#FP), expected number of false positives in the analysis of one replicate assuming the tests were independent.
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small samples or if the data from the low call rate SNPs are
truly unreliable.
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Table 2: Power and false positive rates - unrelated subjects (N = 1130)

CAC p-value Threshold R2 Threshold R2 Meana

10-3 10-4 10-5 10-6 10-7 0.005 0.01 0.02 0.03 0.04

Univariate
Powerb

Het 100 100 100 100 97 100 100 100 95 68 0.0447
ME1 0 0 0 0 0 9 0 0 0 0 0.0011
ME2 2 0 0 0 0 22 5 0 0 0 0.0027
PE1 0 0 0 0 0 6 0 0 0 0 0.0007
PE2 0 0 0 0 0 1 0 0 0 0 0.0002
Avg(#FP)c 49.0 7.5 1.3 0.1 0.03 757.4 89.2 2.3 1.0 0.6
E(#FP) 41.1 4.1 0.4 0.0 0.0

Two-way
Power
ME1*ME2 100 100 100 100 100 100 100 100 100 100 0.0806
PE1*PE2 100 100 100 100 100 100 100 100 100 100 0.1187
Avg(#FP) 1.8 M 400 K 3634 1183 422 120 M 24 M 513 K 13.3 K 550
E(#FP) 845 K 84 K 8446 845 84.5

Univariate
Coronary Event
Power
Het 4 2 0 0 0 44 15 2 0 0 0.0041
ME1 0 0 0 0 0 4 0 0 0 0 0.0007
ME2 1 0 0 0 0 4 1 0 0 0 0.0010
PE1 0 0 0 0 0 1 0 0 0 0 0.0003
PE2 0 0 0 0 0 4 0 0 0 0 0.0006
Smoke 24 12 4 2 1 63 25 4 1 0 0.0068
SLoc 0 0 0 0 0 8 1 0 0 0 0.0012
Event Loc 0 0 0 0 0 18 1 0 0 0 0.0017
Avg(#FP) 36.7 4.5 0.8 0.1 0.01 631.1 69.0 1.8 0.1 0.0
E(#FP) 41.1 4.1 0.4 0.0 0.0

Two-way
Power
ME1*ME2 43 16 7 1 0 98 88 43 6 0 0.0183
PE1*PE2 94 75 45 25 8 100 100 92 51 9 0.0301
Smoke*SLoc 25 7 4 1 0 81 54 12 3 0 0.0114
Avg(#FP) 746 K 83 K 9740 342 84 100 M 18 M 402 K 15.6 K 967
E(#FP) 845 K 84 K 8446 845 84.5

aMean RPM R2 for the factors in the model estimated by the RPM in 100 data replicates.
bPower, number of replicates for which the factor passed the threshold.
cAvg(#FP), average number of observed “false positives” in the univariate analyses per replicate. For two-way analyses, estimated from 108 sampled
pairs for the analyses of R2 and 107 sampled pairs for the analyses of p-values.
dE(#FP), expected number of false positives in the analysis of one replicate assuming the tests were independent.
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This article has been published as part of BMC Proceedings Volume 3
Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/3?issue=S7.
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