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The landscape of RNA polymerase II transcription
initiation in C. elegans reveals promoter and enhancer
architectures
Ron A.-J. Chen,1,5 Thomas A. Down,1,5 Przemyslaw Stempor,1 Q. Brent Chen,2

Thea A. Egelhofer,3 LaDeana W. Hillier,4 Tess E. Jeffers,2 and Julie Ahringer1,6

1The Gurdon Institute, and Department of Genetics, University of Cambridge, Cambridge CB3 0DH, United Kingdom; 2Department

of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina

at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA; 3Department of Molecular, Cell and Developmental Biology, University

of California Santa Cruz, Santa Cruz, California 95060, USA; 4Department of Genetics and Genome Sequencing Center, Washington

University School of Medicine, St. Louis, Missouri 63108, USA

RNA polymerase transcription initiation sites are largely unknown in Caenorhabditis elegans. The initial 59 end of most
protein-coding transcripts is removed by trans-splicing, and noncoding initiation sites have not been investigated. We
characterized the landscape of RNA Pol II transcription initiation, identifying 73,500 distinct clusters of initiation.
Bidirectional transcription is frequent, with a peak of transcriptional pairing at 120 bp. We assign transcription initiation
sites to 7691 protein-coding genes and find that they display features typical of eukaryotic promoters. Strikingly, the
majority of initiation events occur in regions with enhancer-like chromatin signatures. Based on the overlap of tran-
scription initiation clusters with mapped transcription factor binding sites, we define 2361 transcribed intergenic en-
hancers. Remarkably, productive transcription elongation across these enhancers is predominantly in the same orientation
as that of the nearest downstream gene. Directed elongation from an upstream enhancer toward a downstream gene could
potentially deliver RNA polymerase II to a proximal promoter, or alternatively might function directly as a distal pro-
moter. Our results provide a new resource to investigate transcription regulation in metazoans.

[Supplemental material is available for this article.]

Transcription is a fundamental process that plays a central role in

development and cellular responses. The regulation of transcrip-

tion is complex, often involving interplay between promoters and

regulatory elements such as enhancer regions. A prerequisite for

understanding the mechanisms and principles of this process re-

quires identification of these sites and their relationships.

Caenorhabditis elegans is a widely used and powerful model

organism for functional genomic studies. The genome of 100 MB

is well-annotated and 303 smaller than that of humans, making

genomic studies highly accessible (The C. elegans Sequencing

Consortium 1998). However, despite these advantages, study of

transcription regulation has been hampered because the tran-

scription initiation sites of most C. elegans genes are unknown.

More than 70% of protein-coding genes are trans-spliced to a

22-nt leader RNA encoded from another region of the genome

(Allen et al. 2011; Blumenthal 2012). The region from the initial

59 end to the trans-splice site, termed the ‘‘outron,’’ is spliced off

and degraded (Bektesh and Hirsh 1988; Blumenthal 1995).

Consequently, the annotated start sites for most C. elegans genes

mark trans-splice sites rather than transcription initiation sites

because cDNAs and RNA-seq data derived from total RNA in-

dicate the structure of the mature trans-spliced transcript. Using

these positions or translational start sites as transcription start

sites (TSSs), some promoter features have been described (Ooi

et al. 2006, 2010; Gerstein et al. 2010; Liu et al. 2011b). However, the

true sites and features of RNA polymerase II transcription initiation

and the chromatin landscape at these sites remain to be discovered.

In eukaryotes, regulatory and chromatin features of protein-

coding TSSs have been extensively documented (de Hoon and

Hayashizaki 2008; Jiang and Pugh 2009; Venters and Pugh 2009).

For example, transcription initiation sites often possess an initiator

element (Inr), and a subset of genes have a TATA-box 25 to 32 nt

upstream of the TSS which has a role in focusing start-site selection

(Weis and Reinberg 1992; Smale 1997; Juven-Gershon et al. 2008;

Lenhard et al. 2012). An Sp1 motif has also been reported to play

a role in transcript initiation (Segal et al. 1999; Wierstra 2008).

Active promoters usually contain a nucleosome-depleted region

(NDR) flanked by well-positioned nucleosomes (Bernstein et al.

2004; Lee et al. 2004; Nishida et al. 2006; Henikoff 2007; Jiang and

Pugh 2009; Rhee and Pugh 2012). In addition, nucleosomes near

active protein-coding TSSs are enriched for trimethylation of H3K4

and acetylation of H3K27 (Turner 2000; Barrera and Ren 2006).

Furthermore, histone variants H3.3 and H2A.Z, associated with

unstable nucleosomes, are also enriched in promoter regions

(Zhang et al. 2005; Millar et al. 2006; Raisner and Madhani 2006;

Whittle et al. 2008; Weber et al. 2010).

Recent high-throughput sequencing studies in other organ-

isms have uncovered novel transcriptional phenomena at pro-

moters and enhancers. For example, in yeast and mammalian cells,

it has been observed that transcription at protein-coding promoters

often initiates bidirectionally, whereas bidirectional transcription is

5These authors contributed equally to this work.
6Corresponding author
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infrequent in Drosophila (Core et al. 2008; Neil et al. 2009; Seila et al.

2009; Xu et al. 2009; Nechaev et al. 2010; Flynn et al. 2011;

Kharchenko et al. 2011; Wei et al. 2011). How bidirectional tran-

scription initiation drives productive transcription elongation pri-

marily in the coding direction is not well understood (Seila et al.

2008, 2009; Flynn et al. 2011), but a recent report has suggested that

gene loops can play a role (Tan-Wong et al. 2012). In addition, it has

been shown that mammalian enhancer regions are transcribed, but

transcription initiation within enhancer regions has not been well

characterized (De Santa et al. 2010; Kim et al. 2010; Melgar et al.

2011; Ong and Corces 2011; Preker et al. 2011; Wang et al. 2011).

The mechanism and functions of transcription at enhancers are

unclear. Proposed models suggest regulatory functions or, alterna-

tively, that the process of transcription could act to generate regions

of open chromatin in order to enhance the accessibility of down-

stream coding promoters (Travers 1999; Ong and Corces 2011;

Natoli and Andrau 2012).

Here, we globally identify sites of RNA polymerase II tran-

scription initiation and elongation in C. elegans. We assign tran-

scription start sites to protein-coding and noncoding genes and

find that bidirectional transcription is widespread. Furthermore,

we discover 2361 mapped transcription factor binding sites that

overlap transcription initiation clusters, defining a set of tran-

scribed enhancers. We show that productive transcription elon-

gation across these regions is usually oriented toward and in the

same orientation as that of the nearest downstream gene. Our

characterization of this regulatory architecture and provision of

transcription initiation and elongation resources will facilitate

studies of transcription regulation in metazoans.

Results

Identification of C. elegans RNA polymerase II transcription
initiation sites

To globally capture RNA polymerase II initiation sites, including

nascent transcripts before they have been trans-spliced, we isolated

short (20–100 nt) nuclear RNAs with a 59 cap from mixed-stage

embryos, and prepared and sequenced RNA-seq libraries (hereafter

called short cap RNAs). We also made strand-specific RNA-seq li-

braries from capped nuclear RNAs over 200 nt long to assess nu-

clear expression of elongated transcripts (hereafter called long cap

RNAs). In total, we obtained ;50 million uniquely mappable reads

for the short capped RNA libraries and ;55 million uniquely

mappable reads for the long capped RNA libraries. As expected for

RNA polymerase II transcription initiation sites, there is strong

enrichment for Ser5 phosphorylated RNA Pol II (the initiating

form) near the 59 ends of short cap RNA reads (Fig. 1A).

We observed that short cap RNA reads often mapped near the

59 ends of genes. For non-trans-spliced genes, reads initiated at or

near the annotated starts of WormBase transcripts (Fig. 1B,C). In

contrast, for trans-spliced genes, where the WormBase transcript

starts usually mark the trans-splice site, short cap RNA reads initi-

ated upstream, and we observed long cap RNA signals covering the

outron region between the trans-splice site and the short cap RNA

tags (Fig. 1B,C). The outron signals are not observed in RNA-seq

libraries prepared from whole-cell (mainly cytoplasmic) poly(A)+

RNAs (Supplemental Fig. S1). Initiation sites are broadly distrib-

uted upstream of trans-spliced transcripts (Fig. 1C), indicating that

transcription does not initiate at a fixed position relative to trans-

splice sites.

As in other organisms, we observed that the initiation sites of

short cap RNAs are usually closely clustered (Supplemental Fig. S1).

We grouped the 59 tags into clusters, which defined 73,500 RNA

polymerase II transcription initiation clusters (TICs) (see Methods;

Supplemental Tables S1, S2). To link TICs to annotated WormBase

genes, TICs mapping from �200 bp to +100 bp of an annotated

WormBase transcript start, or where long cap RNA signal was

present between an annotated transcript start and a TIC, were

assigned as potential transcription start sites for protein-coding

genes (n = 10,106 TICs assigned to 7691 genes) (Supplemental

Tables S1, S2). A further 14,810 TICs mapped within the body of

protein-coding genes and might mark alternative 59 ends or have

regulatory functions, and 3637 TICs were assigned to ncRNA

genes. The remaining 44,947 TICs were unassigned. Unassigned

TICs map on the anti-sense strand in gene bodies or not within

�200 bp to +100 bp of an annotated transcript start (from�200 bp

to +100 bp).

Chromatin features of transcription initiation sites

To characterize the identified TICs, we analyzed the distributions

of chromatin features that have well-characterized properties at

promoters, transcribed regions, and enhancers using heat map

Figure 1. Transcription initiation regions (TICs) are occupied by RNA Pol II and enriched near the 59 end of coding genes. (A) Heat map displays of
forward strand TICs (n = 36,662) ranked by enrichment of Pol II Ser5 ChIP-chip signal. All panels are plotted for the enrichment of signal in 2-kb windows
centered at cap RNA TSSs. (B) Genome browser views of short cap RNA (orange) and long cap RNA (green) signals at a non-trans-spliced and a trans-
spliced gene. (*) The outron region. (C ) The fraction sites where at least two cap RNA starts were analyzed relative to WormBase transcript start sites of
trans-spliced (blue) and non-trans-spliced (red) genes are plotted in an 800-bp window. (D) Mononucleosome signal (adult) anchored at either cap RNA
TSSs (red) or WormBase transcript starts (gray).

1340 Genome Research
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plots. We selected the mode of each TIC as a representative TSS for

analysis and ranked the TSSs based on the ratio of H3K4me3 to

H3K4me1 ChIP signals to more easily visualize promoter and en-

hancer characteristics (Guenther et al. 2007; Heintzman and Ren

2007; Gerstein et al. 2010; Pekowska et al. 2011; Rada-Iglesias et al.

2011).

TSSs assigned to protein-coding genes display chromatin

features typical of promoters in other organisms. Near the TSSs, we

observed generally higher H3K4me3 than H3K4me1 and high

levels of H3K27ac (Supplemental Fig. S2), a signature of active

protein-coding promoters (Ruthenburg et al. 2007; Lenhard et al.

2012). Productive elongation detected by long cap coverage is

observed downstream from the assigned coding TSSs, and

H3K36me3 signal, a mark of transcriptional elongation of protein-

coding genes (Guenther et al. 2007; Sati et al. 2012), is usually also

present (Supplemental Fig. S2). Regions with the highest levels of

H3K4me3 appear to be divergent promoters, as these additionally

display H3K36me3 and reverse strand long cap RNA signals up-

stream of the TSSs.

To further validate the protein-coding gene TSS assignments,

we compared the patterns of chromatin signals anchored at the

starts of WormBase transcripts to the same set of genes anchored at

the newly assigned cap RNA TSSs (Fig. 1D; Supplemental Fig. S3).

We observed that promoter-associated chromatin signals are

sharper at short cap TSSs (Supplemental Fig. S3). Additionally,

plotting nucleosome signal at short cap RNA TSSs reveals a

wave-like pattern, indicating that nu-

cleosomes are well-phased at C. elegans

promoters (Fig. 1D; Supplemental Fig.

S3), as observed in other eukaryotic cells

(Bernstein et al. 2004; Lee et al. 2004;

Nishida et al. 2006; Henikoff 2007;

Jiang and Pugh 2009; Rhee and Pugh

2012). Such positioning is not clear using

WormBase TSSs.

In contrast to the cap RNA TSSs

assigned to protein-coding genes, un-

assigned TSSs and those assigned to

noncoding RNA (ncRNA) genes are

enriched for chromatin features typical

of enhancers, with higher H3K4me1

relative to H3K4me3 and low levels of

H3K36me3 (Supplemental Fig. S2). ncRNA

and unassigned TSSs are frequently em-

bedded within long cap RNA signal, in-

dicating they lie in regions with productive

transcriptional elongation (Supplemental

Fig. S2). To summarize, TSSs assigned to

protein-coding genes show conventional

promoter chromatin signatures, whereas

ncRNA and unassigned TSSs are enriched

for enhancer-like chromatin signatures.

Core promoter elements are correlated
with different initiation types

We observed that the TICs have a range of

patterns, from a single strong peak to

a broad distribution of initiation events

(Supplemental Fig. S4), as has been seen

in humans and Drosophila (Carninci et al.

2006; Ni et al. 2010). We developed

a shape score, which we defined as the fraction of reads associated

with the highest point in the TIC, to categorize TICs containing at

least 10 tags (see Methods). A sharp TIC where all tags map to the

same position has a score of 1, whereas a broad TIC containing

multiple starts of similar heights will have a low score. We defined

sharp promoters as TICs with scores of 0.7–1.0 and broad ones as

those between 0 and 0.2 (Supplemental Fig. S4). The remaining

TICs have intermediate characteristics.

To look for fixed sequence features in the protein-coding

promoters, we aligned TSSs of sharp and broad promoters using the

WebLogo sequence analysis tool (Fig. 2A; Crooks et al. 2004). As in

other organisms (Zhang and Dietrich 2005; Carninci et al. 2006),

we found that transcription preferentially initiated at the adenine

of a TCA sequence, with a stronger preference in sharp compared

to broad promoters. In addition, in sharp promoters, there is a

weak enrichment for T/A-rich sequence between �25 to �30, corre-

sponding to the region where TATA-boxes reside (Juven-Gershon

et al. 2008).

To further investigate core promoter sequence features, we

examined the occurrence of Inr and TATA motifs as well as that of

Sp1, a widely active transcription factor, using published position

weight matrices (Lenhard et al. 2012). We found that the Inr motif

was present in both types of protein-coding promoters, with

slightly higher frequency in sharp promoters (Fig. 2B). In contrast,

the TATA motif was only associated with sharp promoters (Fig. 2B);

a bias for TATA occurrence in sharp promoters was also reported in

Figure 2. Protein-coding promoter sequence features. (A) WebLogo analysis of sequence aligned at
sharp and broad TSSs. (B) Inr, TATA, and Sp1 motif occurrence at sharp and broad protein-coding TSSs.

C. elegans RNAP II transcription initiation

Genome Research 1341
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human and Drosophila (Ni et al. 2010; Rach et al. 2011). Similar to

the TATA motif, we found that the Sp1 motif was associated pri-

marily with sharp promoters (Fig. 2B). Of note, sharp TSSs with

a TATA box were substantially less likely to harbor an Inr motif at

the TSS than those without a TATA box, suggesting some degree of

redundancy between TATA and Inr (P = 5 3 10�15; x2 test).

Characterization of bidirectional transcription

In the heat map analyses, we observed that reverse strand TSSs

were often located a short distance upstream of forward strand

TSSs, indicative of bidirectional transcription initiation (Supple-

mental Fig. S2). To investigate the occurrence of bidirectional

transcription, we plotted the density of forward and reverse strand

short cap initiation sites across the three classes of TSSs. This

analysis showed a strong peak of reverse strand signal ;120 bp

upstream of the initiation sites of all TSS classes (protein-coding,

noncoding, and unassigned) (Fig. 3); 39% of all TICs have an up-

stream reverse strand initiation within 200 bp. The bidirectional

signal observed for protein-coding genes is not simply due to di-

vergent protein-coding transcription (head to head configuration,

where the upstream gene is transcribed in the opposite orienta-

tion) because it is also clearly evident at tandemly transcribed

protein-coding genes (tail to head, where the upstream gene is in

the same orientation) (Supplemental Fig. S5). We conclude that

transcription initiation in C. elegans is often bidirectional.

Most transcription factor binding sites initiate transcription

Recent studies in mammalian cells identified transcripts and en-

gaged RNA polymerase II within enhancer regions, indicating that

these regions are transcriptionally active (De Santa et al. 2010; Kim

et al. 2010; Melgar et al. 2011; Wang et al. 2011; Natoli and Andrau

2012). However, where transcription initiates within enhancer

regions and the relationship between transcription factor binding

sites and enhancer transcription initiation are unclear.

To investigate these questions, we used a set of C. elegans

transcription factor (TF)-binding regions defined from ChIP map-

ping of 22 transcription factors (Gerstein et al. 2010). We focused

on ‘‘factor-specific regions’’ bound by 1–4 TFs (n = 13,156, 79% of

binding sites), as these are enriched for containing expected se-

quence motifs and being located near genes known to be under

their regulation. As expected, we observed that most factor-specific

TF regions have a classical enhancer signature of high H3K4me1

and low H3K4me3 (Fig. 4B), in contrast to protein-coding pro-

moters, which have the opposite pattern (Fig. 4A).

Using our short and long cap RNA data, we next examined the

relationship between transcription factor binding, transcription

initiation, and productive transcription elongation. We first asked

whether transcription initiates near TF-binding sites. Remarkably,

we observed that 65% of factor-specific TF-binding regions overlap

a TIC. Therefore, TF-binding sites frequently initiate transcription.

To further explore the transcription initiation activity of TF-bind-

ing sites, we plotted the frequency and positions of transcription

initiation events relative to TF-binding sites. We observed peaks of

transcription initiation closely flanking the TF-binding sites, with

60% of transcribed binding sites having both forward and reverse

strand short cap RNA signals (Fig. 4B,C). RNA Pol II is also clearly

enriched at TF-binding regions (Fig. 4B). These results demonstrate

that bidirectional transcription is initiated at TF-binding sites.

Characterization of a novel widespread regulatory architecture

We used the criterion of overlap between transcription factor

binding regions and transcription initiation sites to define active

enhancers (Melgar et al. 2011). We first selected intergenic TF-

binding sites that were at least 500 bp from an annotated transcript

start and that overlapped a TIC, then removed regions that

appeared to be unannotated promoters based on having a signa-

ture of high H3K4me3/low H3K4me1 (Fig. 5). These intergenic

TF-binding regions that initiate transcription define 2361 tran-

scribed enhancers. Supporting the view that these sites identify

active enhancers (Supplemental Fig. S6), they overlap previously

published functionally validated embryonic enhancer regions

(Landmann et al. 2004; Lei et al. 2009).

We find that features of enhancer transcription initiation sites

differ from those of protein-coding promoter TSSs. First, although

enhancer TSSs are enriched for the Inr initiation element, TATA

and Sp1 elements are essentially absent (Supplemental Fig. S7).

Second, chromatin features also differ at enhancer and promoter

TSSs. In addition to differences in relative levels of H3K4me3 and

H3K4me1 described above, HTZ-1 is strongly enriched at protein-

coding TSSs, but nearly absent at enhancer TSSs (Supplemental Fig.

S7C). Further, whereas histone H3 and mononucleosomes are de-

pleted at protein-coding TSSs, these show weak enrichment at

enhancer TSSs (Supplemental Fig. S7C). In summary, promoter

sequence elements and the chromatin signature of enhancer TSSs

differ from those of protein-coding genes.

We next examined whether transcription initiation at en-

hancers was productively elongated or, alternatively, whether

initiation events generally produced short transcripts. To answer

this question, we analyzed the abundance of nuclear long cap RNA

signals (generated from nuclear capped RNAs > 200 nt) on each

strand of intergenic enhancers. We find that enhancers generally

produce elongated transcripts and that there is a striking bias for

transcription to be predominantly on one strand (Fig. 6A,B).

Figure 3. Bidirectional transcription is widespread in C. elegans. The frequency of forward (red) and reverse (blue) transcription initiations were analyzed
at (A) coding, (B) ncRNA, and (C ) unassigned TSSs. The distribution of signal is plotted in 1-kb windows at mode TSSs of the TICs.

Chen et al.
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Therefore, although most enhancers initiate bidirectional tran-

scription, productive elongation is primarily in one direction.

Since enhancers are often located upstream of their target

genes, we investigated the relationship between enhancer and

downstream gene transcription. We assigned intergenic enhancers

to the nearest downstream protein-coding gene, and asked

whether the direction of transcription across the enhancer was

related to that of the downstream gene. To be confident in the

assignment of the downstream gene, we limited this analysis to

intergenic enhancer regions upstream of tandemly transcribed

genes, excluding divergently transcribed genes. Remarkably, for

90% of enhancer regions, the majority of elongated transcription is

in the same orientation as that of the downstream gene (Fig. 6B).

We also found that the level of transcription across enhancers is

positively correlated with that of the downstream gene (r = 0.45,

Spearman’s P < 10�7). Together, these results support the view that

transcribed enhancers are active regulatory regions for down-

stream gene expression (Fig. 6C).

Discussion
Here, we characterized the global landscape of RNA polymerase II

transcription initiation in C. elegans. As in other eukaryotic cells

(Lenhard et al. 2012), we find that transcription initiation in

Figure 4. TF-binding regions initiate bidirectional transcription. Comparison of the enrichment of Pol II (Ser5), H3K4me3, and H3K4me1 at TSSs of
ubiquitously expressed protein-coding genes (n = 4282) (A), and factor-specific TF-binding regions (n = 13,516) (B). Heat map rows are ranked by
H3K4me3/H3K4me1 ratio and all signals plotted in 2-kb windows centered at (A) TIC mode TSSs, or (B) the midpoint of TF-binding regions. (C ) Forward
(red) and reverse (blue) TIC coverage plotted in a 2-kb region centered at the midpoints of factor-specific TF-binding regions; 60% of sites have both
forward and reverse strand signals.

Figure 5. Intergenic TF-binding regions overlapping TICs are enriched for enhancer-like chromatin signature. Heat map analysis for the indicated
enrichment signals displayed as 8 k-means clustered groups based on H3K4me3 and H3K4me1 (n = 3137). All signals were plotted in 2-kb windows
centered at the midpoint of TF-binding regions. A promoter-like signature of high H3K4me3/low H3K4me1 is found in clusters 1– 4 (n = 776). In contrast,
clusters 5–8 show an enhancer-like chromatin signature, high H3K4me1 and low/under-enriched H3K4me3 (n = 2361).
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C. elegans is often bidirectional. In addition to identifying tran-

scription initiation sites at protein-coding genes, we also docu-

mented abundant intergenic and intronic transcription initiation

sites and defined thousands of active enhancers based on the

transcriptional activity of mapped transcription factor-binding

sites. The global identification of transcription start sites will fa-

cilitate future studies of gene expression regulation in C. elegans

and allow comparative analyses with other eukaryotes.

Mammalian enhancer regions have also been shown to be

transcribed, but this phenomenon is not well-characterized, and

its function is not yet known (De Santa et al. 2010; Kim et al. 2010;

Koch et al. 2011; Melgar et al. 2011; Wang et al. 2011; Natoli and

Andrau 2012). In addition, both unidirectional and bidirectional

transcription has been observed. The relationships between the

different reports of mammalian enhancer transcription are unclear

because the studies used different cell lines and methods and

assayed different types of sites: DNAse I hypersensitive sites, CBP-

binding sites, TF-binding sites, or regions with enhancer-like

chromatin signatures. In C. elegans, we observed that although

transcriptional initiation at enhancers is usually bidirectional,

productive elongation across them is predominantly in one di-

rection, usually oriented toward the downstream gene. These en-

hancer transcripts are either unstable or not exported from the

nucleus, as they are primarily apparent in libraries made from

nuclear RNA and usually undetectable in libraries generated from

whole-cell poly(A)+ (mainly cytoplasmic) RNA. We note that since

the binding sites for only a small percentage of C. elegans tran-

scription factors are available, the set of enhancers identified here

is unlikely to be complete.

Oriented transcription across enhancers may seem to be at

odds with the classical view that enhancers act in an orientation-

independent manner. However, oriented enhancer function has been

documented (Swamynathan and Piatigorsky 2002; Hozumi et al.

2013). Furthermore, although transcription across C. elegans enhancer

regions is oriented, we do not know whether the enhancer function of

these binding sites is oriented as well. For example, orientation could

be determined through interactions with other regulatory elements

associated with the downstream gene (e.g., the promoter).

Transcription from enhancer regions toward proximal pro-

moters might create an open chromatin environment (Hirota et al.

2008) or could potentially deliver RNA polymerase II to the pro-

moter (Vernimmen et al. 2011). Another possibility is that up-

stream enhancers could function as alternative promoters for

protein-coding genes. Such a function would be in line with a re-

cent report in mouse showing that active upstream intergenic

enhancers can function as alternative tissue-specific promoters

(Kowalczyk et al. 2012). C. elegans genes associated with upstream

transcribed enhancers are enriched for having developmental,

signaling, or neuronal functions, types of genes that usually show

tissue or temporally restricted expression, and underenriched for

genes with general cellular functions (Supplemental Table S4).

Direct tests will be necessary to address whether enhancers have

promoter activity because trans-splicing would remove upstream

transcribed regions from the mature transcript. However, if up-

stream enhancers do function as promoters, they appear to have

different characteristics than proximal promoters (Supplemental

Fig. S7). In the future, it will be of interest to functionally analyze

enhancer transcription and explore the similarities and differences

Figure 6. Definition of a novel regulatory architecture. (A) Genome browser image of signals indicating enhancers, TICs (red: forward strand; blue:
reverse strand), H3K4me3, H3K4me1, whole-cell (mainly cytoplasmic) RNA, and nuclear long cap RNA from the plus and minus strands, with gene
annotation below. (B) RNA Pol II elongation across enhancers is in the same orientation as that of the nearest downstream gene. Plots show forward strand
long cap RNA-seq read count (log10 scale) relative to reverse strand signal over enhancers upstream of forward (red) or reverse (blue) strand tandem genes.
The red dots showing enhancers upstream of the tol-1 gene (forward strand) shown in A were circled. (C ) Proposed model illustrating the architecture and
potential regulatory roles of transcribed enhancers.
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in regulatory architecture between different organisms. Our find-

ing of a novel widespread regulatory architecture in C. elegans and

generation of new resources will facilitate future studies of gene

expression regulation in metazoans.

Methods

Preparation of nuclear capped RNA-seq libraries
Worms were grown in liquid culture and two million adults bleached
to obtain mixed staged embryos as previously described (Stiernagle
2006). Nuclei were isolated from embryos using the method of Ooi
et al. (2010). Nuclei were further purified by centrifugation through
a 1.8 M sucrose cushion in 10 mM Tris pH 7.5, 10 mM MgCl2. RNA
was extracted from the purified nuclei using Tripure (Roche).

To prepare short cap RNA-seq libraries, we followed the pub-
lished method by Nechaev et al. (2010) with minor modification.
In brief, total nuclear RNA (20 to 25 mg) was run on a poly-
acrylamide gel and a size range of 20 to 100 nt extracted. To enrich
for capped RNA, the purified short nuclear RNA was incubated
with 59 to 39 RNA nuclease, Terminator (Epicentre), to deplete
noncapped RNA. The enriched short capped RNA was cloned and
PCRed using Illumina short RNA-seq adapters according to the
manual instruction. To construct long cap RNA-seq libraries, total
nuclear RNA was incubated with DNAse I (Ambion) to remove
genomic DNA contamination, followed by Qiagen Mini-Elute
columns (cut-off size > 200 nt RNAs). These cleaned-up ‘‘long’’
nuclear RNAs were treated with Terminator nuclease to enrich for
capped RNA. Strand-specific long cap RNA libraries were made
using the dUTP replacement method (Levin et al. 2010) and Illu-
mina paired end adapters.

Short cap RNA and long cap RNA-seq libraries were sequenced
using on Illumina GIIA instruments (SE36 and PE36, respectively).
Two biological replicates were prepared for each library type.

Mapping, clustering of 59 end tags, and shape score

Short cap reads were mapped to the WS220 reference sequence
using BWA 0.5.9 (Li and Durbin 2009). The 36-bp reads were first
mapped in their entirety, and those that did not align were then
trimmed of any 39 adaptor match and then retried. Mappings with
quality < 10 were discarded at this point. Mapped reads were split
by strand, with forward and reverse strand mappings analyzed in-
dependently, and mappings with the same strand and 59 end posi-
tion (cap-stacks) were combined. To define cap clusters, all cap-
stacks containing two or more tags were clustered using a single-
linkage approach, merging two or more stacks if they lie within
50 bp of one another. Singleton cap-stacks (not considered in the
initial clustering step) were added to a cluster if they lay within
the clustered region or 25 bp on either side. The final boundary
coordinates of each cluster were then defined to include any sin-
gleton stacks. Finally, clusters overlapping rRNA, tRNA, miRNA,
snRNA, snoRNA, or snlRNA genes (from Ensembl release 61/WS220)
were excluded from the set. Using pooled cap RNA-seq data sets (two
biological and one technical replica; 55,021,362 mapped reads), we
obtained 73,500 clusters defining transcription initiation regions
(TICs). For analyses where a single TSS position was required, we
considered the distribution of cap 59 ends within the TIC, and se-
lected the position with the most tags (the mode). In the case of a tie
(two or more positions with the same number of tags), we selected the
mode closest to the median of the TIC. TIC shape score was calculated
as the fraction of total tags in the cluster present at the mode position
(the ‘‘mode weight’’). Only TICs with at least 10 tags were used for the
shape analysis. To monitor elongation, long cap RNA reads were
mapped as read pairs using BWA 0.5.9 and filled in. For browser

analyses of RNA-seq data, 36-bp long cap RNA sequence reads were
mapped using BWA 0.5.9 in single-end mode.

TSS assignments

TICs were assigned to WormBase TSSs (via the Ensembl release 61/
WS220 gene set) using a stepwise approach. In all cases, assign-
ments were strand-specific (i.e., forward-strand TICs could only be
assigned to forward-strand genes). First, any TIC overlapping a
window from �199:+100 relative to a WormBase TSS was assigned
(type ‘‘wormbase_tss’’) to the gene associated with that TSS. Sec-
ond, the remaining TICs were assigned (type ‘‘transcript_body’’) to
a gene if they lie anywhere within its body. Third, long-cap RNA
mappings were assembled into continuous ‘‘rafts’’ of overlapping
tags from the same strand. Rafts that overlap the TSS of exactly
one gene (on the correct strand) were associated with that gene.
The remaining (intergenetic) TICs were assigned (type ‘‘raft_to_
wormbase_tss’’) if they overlap a window from �199:+100 relative
to the 59 end of a transcript raft on the appropriate strand. All
remaining TICs were left unassigned. Supplemental Table S2 gives
the list of TICs and associated information.

Motif plots

Motif plots were performed on a subset of TICs made non-
redundant by randomly selecting one representative from any set
of TICs lying within 250 bp (taking both strands into account).
The following position weight matrices (PWMs) were used: Inr
(Chalkley and Verrijzer 1999), TATA (V$TATA_01 from TRANSFAC
[Wingender 2008]), and Sp1 (V$SP1_Q6 from TRANSFAC [Wingender
2008]). We plotted the fraction of sequences with a match for the
motif at base-pair resolution (for TATA and Inr) and at 20-bp res-
olution for the much-more-sparsely distributed Sp1. For TATA and
Sp1, we consider the first position in the PWM to be the position
of the motif match. For Inr, we follow convention in taking the
strongly constrained A (third position in the PWM) as the location
of the motif match.

Defining enhancers

Intergenic regions bound by one to four transcription factors were
selected from Niu et al. (2011), discarding those lying within 500
bp of the TSS of a protein-coding gene (n = 4914). Regions over-
lapping at least one TIC (excluding TICs assigned to the TSSs of
protein-coding genes) were identified (n = 3137). The Cistrome
k-means clustering tool (Liu et al. 2011a) was used to generate eight
groups of H3K4me3 and H3K4me1 histone modification signals
to identify and discard likely unannotated promoters (clusters 1–4
in Fig 5). The remaining 2361 regions were defined as enhancers
(Supplemental Table S3; clusters 5–8 in Fig 5).

Each enhancer was associated with its two neighboring pro-
tein-coding genes. If both these genes are in the same orientation
(tandem genes), the enhancer was assigned to the downstream
gene. Enhancers lying between transcribed genes were associated
with the nearest downstream gene. Enhancers lying between
convergently transcribed genes were left unassigned. Assignments
are given in Supplemental Table S3.

To assess the directionality of transcription across enhancers
assigned to tandem genes, we counted the number of long-cap
fragments mapping in each direction over each enhancer, then
calculated the moderated log ratio of forward vs. reverse reads, i.e.,
log10(f+1/r+1), where f is the number of forward-strand reads and
r is the number of reverse-strand reads. Moderated log-ratios were
used because there is a substantial number of enhancers with zero
reads on one or the other strand. We then plotted forward/reverse
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ratios for enhancers between tandem forward-strand genes and
enhancers between tandem reverse-strand genes.

Data sets, processing, and visualization

MNase-digested mononucleosome data for embryos (GSM514735)
(Ooi et al. 2010) and adults (GSM777719) (Steiner et al. 2012) were
downloaded from Gene Expression Omnibus. Transcription factor
ChIP binding region data sets are from Niu et al. (2011). The following
embryo ChIP-seq data were obtained from modENCODE (http://
www.modencode.org/), with the following accession numbers:
H3K4me3 (modENCODE_5166), H3K4me1 (modENCODE_5158),
H3K36me3 (modENCODE_5165), H3K27ac (modENCODE_5159),
H3K27me3 (modENCODE_5163), and HTZ-1 (modENCODE_6218).
ChIP-chip RNA Pol II 4H8 data is from modENCODE_4148. Data
are available from http://submit.modencode.org/submit/public/
download/accession_number (e.g., for H3K4me3 data: submit.
modencode.org/submit/public/download/5166).

Raw ChIP-seq data sets obtained from modENCODE were
aligned using BWA with default settings (Li and Durbin 2009),
normalized using BEADS (Cheung et al. 2011), then converted to
log2 ratios of BEADS scores (enrichment relative to input), stan-
dardized so the mean of the autosomal signal was 0 and the stan-
dard deviation 1, and then z-scored. For RNA Pol II 4H8 ChIP-chip
data, log2 ratios of IP/Input were obtained and standardized so the
signal had mean 0 and standard deviation 1.

The heat map analyses were performed using the heat map
analysis function in Cistrome (Liu et al. 2011a). The IGV Genome
Browser was used for visualization (Robinson et al. 2011).

Nuclear protein-coding gene expression levels were calculated
using the method of Hiller et al. (2009), calculating depth of cov-
erage per million reads (dcpm) on the appropriate strand from the
long cap RNA sequence data.

The GO term analysis was performed on tandem genes associ-
ated with enhancers at http:// http://gostat.wehi.edu.au/) (Beissbarth
and Speed 2004) and GO terms summarized using REVIGO (http://
revigo.irb.hr/) (Supek et al. 2011).

To generate graphical representations of multiple sequence
alignments at TSSs, extracted sequence data were uploaded to
WebLogo (Crooks et al. 2004), a web-based application for se-
quence logos (http://weblogo.threeplusone.com/). The plots were
generated using the default settings with adjustment of 36% GC
composition for the C. elegans genome.

Data access
The RNA-seq data from this study have been deposited in the NCBI
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE42819.
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