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RESEARCH ARTICLE
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Abstract
One strategy in cancer immunotherapy is to capitalize on the key immunoregulatory and an-

tigen presenting capabilities of dendritic cells (DCs). This approach is dependent on effi-

cient delivery of tumor specific antigens to DCs, which subsequently induce an anti-tumor

T-cell mediated immune response. Human adenovirus serotype 5 (HAdV5) has been used

in human studies for gene delivery, but has limited infection in DCs, which lack the proper

receptors. Addition of the porcine fiber knob (PK) from porcine adenovirus type 4 to HAdV5

allows the virus to deliver genetic material via binding to glycosylated surface proteins and

bypasses the coxsackie-and-adenovirus receptor required by wild-type HAdV5. In this

study we explored the potential therapeutic applications of an adenovirus with PK-based

tropism against cancers expressing mesothelin. Infectivity and gene transfer assays were

used to compare Ad5-PK to wild-type HAdV5. Mouse models were used to demonstrate

peptide specificity and T-cell responses. We show that the PK modification highly augment-

ed infection of DCs, including the CD141+ DC subset, a key subset for activation of naïve

CD8+ T-cells. We also show that Ad5-PK increases DC infectivity and tumor specific anti-

gen expression. Finally, vaccination of mice with the Ad5-PK vector resulted in enhanced T-

cell-mediated interferon gamma (IFN-γ) release in response to both mesothelin peptide and

a tumor line expressing mesothelin. Ad5-PK is a promising tool for cancer immunotherapy

as it improves infectivity, gene transfer, protein expression, and subsequent T-cell activa-

tion in DCs compared to wild-type HAdV5 viruses.
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Introduction
Dendritic cells (DCs) can be engineered to yield a clinical benefit when an antigen is delivered
directly to DCs for presentation and immune stimulation [1–4]. For instance, DCs loaded with
tumor associated antigens can prime and activate T-cells to mount an anti-tumor immune re-
sponse. One potential pitfall of DC mediated immunotherapy is inadequate antigen loading as
well as antigen expression by regulatory DC subsets, which can lead to immune tolerance [5].
Antigen delivery systems must result in high levels of expression by the proper DC subsets to
avoid tolerance. Recent studies have shown that the CD141+ (or BDCA3+) DC subset in hu-
mans, which is equivalent to the CD8α+ subset in mice, is the most efficient at cross-presenting
antigens on MHC I to naïve CD8+ T-cells, which is essential for cytotoxic T lymphocytes
(CTL)—mediated immune responses to viruses and tumor antigens [2,4,6]. Practical exploita-
tion of DCs involves extra-corporeal antigen delivery as a peptide, or genetically via vector-me-
diated infection [1,7,8]. Currently, DC manipulation is under investigation for a variety of
cancers and represents a promising vehicle for cancer immunotherapy [1–4,7,9,10].

Adenoviruses such as human adenovirus serotype 5 (HAdV5) are commonly used for gene
and immunotherapy because of their ability to deliver genetic material to non-dividing cells
such as DCs [11–15]. The clinical application of HAdV5 is limited by the relative paucity of its
receptor, the coxsackie-and-adenovirus receptor (CAR), on dendritic cells [11–13]. We and
others have shown that the CAR binding domain of HAdV5 can be replaced with knobs of dif-
ferent serotypes allowing for CAR-independent binding as well as receptor targeting [14,15].
The porcine knob mediates adenoviral infection through glycosylated cell surface proteins
which are expressed by DCs and is CAR independent [16–19]. Preliminary studies of Ad5PK
have shown that incorporation of the fiber knob does not alter the viral growth kinetics, ther-
mostability, or increase clearance in vivo [18]. In this paper, we explore the incorporation of
the fiber knob from porcine adenovirus type 4 (PAdV4).

The ability of DCs to induce an anti tumor immune response is dependent both on the
method of antigen delivery to the DC and the properties of the antigen itself [3]. Mesothelin is
a membrane-bound glycoprotein expressed by mesothelial cells in the lung pleura, pericardi-
um, and peritoneum of healthy individuals and overexpressed in pancreatic and epithelial
ovarian cancers making it a potential immune target [20]-[21,22]. Mesothelin is essential to in-
vasion and metastasis of cancer cells and the side effects of destroying normal mesothelin pro-
ducing cells is minimal [23–25]. In vivomurine and early phase human trials using
mesothelin-targeted therapies have shown mesothelin specific CTLs and improved survival
[9,26,27]. In this study we used a mesothelin peptide incorporated into a single chain trimer
(SCT) construct encoding peptide and HLA-2.1 to overcome issues of processing and presenta-
tion associated with tumor antigens [28,29].

The goal of this study was to explore the potential applications of ex vivo DC antigen load-
ing by Ad5-PK for the treatment of mesothelin expressing cancers. By including the mesothelin
SCT into the Ad5 and Ad5-PK constructs, we were able to compare expression of a clinically
meaningful tumor antigen on DCs and the subsequent T-cell response. This work is significant
because the ability to infect immunostimulatory DCs and enhance expression of target antigens
are important steps towards effective cancer immunotherapy.

Materials and Methods

Cell Lines
Human embryonic kidney (HEK) 293 and SKOV3 cell lines were purchased from the Ameri-
can Type Culture Collection (ATCC; Manassas, VA), cultured in media containing 10% fetal
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bovine serum, (FBS; Hyclone; Logan, UT), 2mM L-glutamine, 100 U/ml penicillin, and 100
mg/ml streptomycin (Mediatech, Inc., Herndon, VA). SKOV3-HLA-A2 (SKOV3A2) cells
were kindly gifted from Dr. Timothy Eberlein.

To generate murine DCs, bone marrow from C57BL/6 or HHDII mice was harvested from
tibias and femurs. Red blood cells (RBC) were lysed with RBC lysis buffer (Sigma Aldrich,
Saint Louis, MO). Cells were plated in 6 well plates at 1-3×105 cells/ml in complete medium
containing RPMI 1640, 10% fetal calf serum, 1% glutamax, 1% kanamycin sulfate, 1% sodium
pyruvate, and 1% nonessential amino acids (all from Life Technologies, Grand Island, NY).
Medium was supplemented with murine GM-CSF (Miltenyi, Auburn, CA) and cells were cul-
tured for 6 days to obtain immature dendritic cells. This study was approved and carried out in
accordance with Washington University School of Medicine Division of Comparative Medi-
cine guidelines for care and use of laboratory animals (protocol 20130036).

To generate human DCs, peripheral blood mononuclear cells (PBMCs) were isolated from
leukocyte reduction filters from anonymous healthy platelet donors. PBMCs were cultured in
RPMI with 2mM glutamine (Gibco, Grand Island NY), 1% non-essential amino acids, 1%
HEPES buffer (Mediatech Inc, Manassas, VA), 2% pooled human AB serum, 100 U/ml penicil-
lin (Gibco), and 100μg/mL streptomycin (Gibco). After 2 hours non-adherent cells were col-
lected and cryopreserved. Adherent cells were cultured in DC media with 100ng/mL GM-CSF
(Miltenyi, Auburn, CA) and 20ng/mL IL-4 (Miltenyi). GM-CSF and IL-4 was replaced every 3
days. All cells were incubated at 37°C in 5% CO2 in humidified conditions. The Washington
University School of Medicine Human Research Protection Office Review Board (protocol
201108117) approved this protocol. No consent was required by the Human Research Protec-
tion Office Review Board for anonymous healthy donors.

Plasmid construction
Mesothelin containing plasmid pMH103 was gifted by Dr. Ira Pastan [30]. Full length
mesothelin (FLM) was amplified from pMH103 by using following primers: Meso-F-HindIII:
5’- ACTTAAGCTTtgccaggctctccACCCCA-3’ and Meso-R-EcoRV: 5’-ATCTGATA
TCTCAGGCCAGGGTGGAGGCT-3.’ Amplified mesothelin and pShuttle CMV were digested
with HindIII and EcoRV. Following gel purification, double digested mesothelin was ligated
into linearized pShuttle-CMV, generating pShuttle-CMV-Meso

A nine amino acid mesothelin peptide (VLPLTVAEV, 9mer) has previously been shown to
be immunogenic and HLA-A2-restricted according to the BIMAS database [31,32]. MHC
Class-I restricted peptides are only capable of activating CD8+ T cells thus enabling the use of
unselected lymphocytes for activation detection assays such as IFN-γ ELISpot. The SCT con-
struct including a mammaglobin peptide (pING.PADRE-mamA2.1dtSCT) has been previously
described and was gifted to our lab from Drs. Ted Hansen andWilliam Gillanders [33]. The
nucleotide sequences for mamA2.1 was excised with NheI and AgeI, and replaced with the nu-
cleotide sequences corresponding to 9mer (5’-CCGGTTTGTAT GCTGTGCTGCCGCTGACCGT
GGCGGAAGTGGGATGCGGTG-3’, purchased from IDT, Coralville, IA), generating pING.
PADRE-9merstSCT. pShutte-CMV-9SCT was generated by ligating XbaI digested pShuttle-
CMV and pING.PADRE-9merstSCT. Sequencing analysis was performed at each step to en-
sure integrity of the construct.

Generation of recombinant adenovirus
The recombinant plasmid DNA of Ad5-9SCT (or Meso, GFP1, or Luc1) was generated by ho-
mologous recombination in E.coli BJ5183 with PmeI-linearized pShuttle CMV-9SCT (or
Meso, GFP1, or Luc-1) and Ad5 backbone [34]. After confirming correct recombination by
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sequencing analysis, the viruses were rescued and propagated in HEK293 cells. Virus was puri-
fied by two rounds of CsCl gradient ultracentrifugation. Viral particle (VP) concentration was
determined at 260 nm by using a conversion factor of 1.1x1012 viral particles per absorbance
unit [35]. The Ad5PK-9SCT (or GFP1 or Luc1) was generated in the same way except
pVK500-PK which contains the Ad5 backbone underwent replacement of the Ad5 knob for
the Porcine knob as a backbone, as previously described [16]. Construction of Ad5/3Luc1 and
Ad5Luc.FF/CD40L has been previously described [36–38]. Viruses with different backbones
and plasmids were constructed separately and represent different batches of virus.

Virus infection and gene transfer assay
DCs were incubated overnight in 24 well plates with 3-5×105 cells/well. Three hundred to 500
VP/cell were used for infection based on viral titration assays (Fig 1). After 2 hours of coincu-
bation with the virus, cells were washed, and incubated for 24–48 hours prior to analysis. For
gene transfer assays, cells were harvested in passive lysis buffer (Promega, Madison, WI) and
luciferase activity was determined following the manufacturer’s instruction (Promega). Lucifer-
ase activity is reported as relative light units (RLU). To assess rates of viral infection and gene
expression, DCs were infected with Ad5-GFP1 or Ad5-GFP1-PK and analyzed via FACS as de-
scribed below. Luciferase assays in conjunction with GFP FACS assays demonstrates the num-
ber of cells infected, the rate of gene transfer, and the rate of gene expression. For inhibition of
O-linked glycosylation, DCs were incubated with α-benzyl-O-GalNAc (1μg/ml) (Sigma-Al-
drich) overnight before infection.

FACS analysis
Virus infected or uninfected (control) cell lines were blocked with Human TruStain FcX (Biole-
gend, San Diego, CA). For PBMC staining and CD141 detection, anti-human CD141 (Biole-
gend), anti-human CD11c (Biolegend), and anti-human lineage cocktail 1 (Lin1) (Biolegend)
were used. For SCT detection DCs were stained with anti-human HLA-A2 (BD Pharmigen)
antibody. Mouse DCs were identified using anti-mouse CD11c antibody (Biolegend). All
FACS data was acquired on FACSCalibur (BD Biosciences, San Jose, CA) and analyzed with
FlowJo software (FlowJo, Ashland, OR).

Fig 1. Titration of Ad5-GFP1 and Ad5-GFP1-PK. Human DCs were infected with Ad5-GFP1 or
Ad5-GFP1-PK at 0, 25, 125, 250, 500, and 1000 MOI. After 24 hours, the percent GFP-positive DCs was
determined by FACS analysis to establish the MOI range for comparative assays. Cells with DCmorphology
based on forward and side scatter plots were isolated. Ad5-GFP1-PK showed higher GFP expression at
every MOI value, with MOI�500 within the linear range of gene expression.

doi:10.1371/journal.pone.0125851.g001
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Mouse models and T-cell assays
HHDII transgenic (B6; Cg-B2Mtm1Unc H2-D1tm1BpeTg (HLA-A2/H2-D/B2M)1Bpe) mice that
express the transgene, Tg (HLA-A2/H2-D/B2M) 1Bpe, in a mixed background involving
B2Mtm1Unc/tm1Unc and H2-D1tm1Bpe/tm1Bpe[39] were gifted by Dr. F. Lemonnier. These mice
are designated HHDII. For peptide specificity assays, eight week old HHDII mice were primed
with 5X1010 viral particles (VP) intramuscularly with either Ad5-9SCT or Ad5-9SCT-PK.
Mice were boosted in vivo with 1X1010 VP/mouse two weeks after priming and splenocytes
were harvested nine days after boost injections. For the ex vivo boost experiments, all mice
were primed with intramuscular Ad5-Meso (an adenovirus expressing full length mesothelin)
and harvested nine days after priming. Prior studies have shown that murine intramuscular
vaccination with adenovirus leads to migration of infected DCs to local lymph nodes followed
by activation and dissemination of T-cells [40,41]. Mouse splenocytes were boosted ex vivo
with a 1:10 ratio of DCs infected with Ad5-9SCT or Ad5-9SCT-PK (500 MOI) to splenocytes
for five days in the presence of 50 units/mL of murine IL-2 (Miltenyi Auburn, CA). ELISpot
was performed per kit protocol (Mabtech, Mariemont, OH). After blocking the ELISpot plate,
splenocytes were plated at 2.5X105 cells/well. For peptide specificity studies 20μg/mL of the rel-
evant (9mer) or irrelevant peptide were used. The irrelevant peptide is a ten amino acid se-
quence (KLLGPHVEGL) from a different portion of the mesothelin protein, but with high
HLA-A2 binding. For tumor studies, 5X104 SKOV3 wild-type (SKOV3wt) control cells or
SKOV3A2 cells were plated in each well and incubated overnight at 37°C. Spots were detected
with R4-6A2-biotin antibody, Streptavidin-ALP, and BCIP/NBT substrate per kit protocol.
Each cell combination was run in triplicate. ELISpot plates were analyzed on CTL-Immuno-
Spot S6 Micro Analyzer (CTL, Shaker Heights, OH).

Statistical Method
All assays were run in triplicate and the results are expressed as a mean of the triplicate and
standard deviation. Assays were carried out at least twice to verify results. FACS plots shown in
the figures are representative, with the triplicate data combined and expressed graphically.
Data generated with human dendritic cells was tested in at least two donors. GraphPad Prism 6
(La Jolla, CA) was used to generate graphs and perform statistical analysis. P-values were gen-
erated using Student’s t-test.

Results

Ad5-PK increases infection efficiency over tropism modified Ad5 on
iDCs
To investigate infection efficiency of Ad5-PK in immature dendritic cells (iDCs), the gene
transfer assay was performed with a panel of genetically modified adenoviruses that are cur-
rently undergoing study for clinical application: Ad5Luc1 (wild type), DC infectivity enhanced
Ad5/3Luc1, DC targeted Ad5Luc.FF/CD40L, and Ad5Luc1-PK. All viral vectors contain a lu-
ciferase reporter gene under the CMV promoter. As expected, all modified Ad5 vectors showed
statistically significant infectivity enhancement of human iDCs over wild type Ad5 (Fig 2A,
p<.003 for all comparisons). Infection efficiency of glyco-targeted Ad5Luc1-PK was superior
to that of Ad5/3Luc1. Based on the significant increase in gene infection observed with
Ad5-PK, this viral vector was selected for further analysis.

In order to establish the efficacy of Ad5-PK in animal models, we evaluated gene transfer ef-
ficiency in mouse DCs via luciferase expression. Ad5Luc1-PK shows superior infection effi-
ciency over Ad5Luc1 in murine iDCs (mean 472 v. 2087) (Fig 2B, p<0.003).
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Ad5-PK increases infection frequency of iDCs
To determine the percentage iDCs infected by virus, Ad5 and Ad5-PK encoding enhanced
GFP (GFP1) were generated [16]. Ad5GFP1-PK was analyzed for its ability to infect human
and mouse iDCs compared to Ad5GFP1. Infection of Ad5GFP1-PK resulted in an almost
5-fold enhancement of the efficiency of human iDCs and an over 9-fold enhancement in mu-
rine iDCs compared to Ad5GFP1 (Fig 3A). This assay was performed in four different human
donors with a range of 3.4–5.7-fold increase in GFP expression with the Ad5GFP1-PK vector.
Data from a single human donor and a single mouse are shown in fig 3A. It has previously
been shown that the knob domain on fibers of Ad5-PK preferentially utilizes cell surface O-
linked glycoproteins for cell entry [16]. The infectivity of Ad5GFP1-PK decreased 25% after
treating cells with α-benzyl-O-GalNAc (1μg/ml), an inhibitor of O-linked glycosylation (Fig
3B, p = 0.02). Ad5-PK shows enhanced infectivity and efficient gene transfer in human iDCs,
partially through a binding preference for O-linked surface glycoproteins. In combination with
our previous results, this confirms that Ad5-PK vectors have superior gene transfer ability and
infectivity compared to wild type Ad5.

Ad5-PK demonstrates increased infection of DC subsets specialized in
activation of naïve CTL
Recent studies have demonstrated the superior ability of CD141+ dendritic cells to cross prime
naïve CD8+ T cells [42,43]. In order to assess the infection frequency among this subpopulation,
PBMCs were infected with either Ad5GFP1 or Ad5GFP1-PK. Uninfected PBMCs were used as
negative control. Twenty-four hours after infection cells were stained with CD11c, Lin1, and
CD141 and assessed via FACS analysis for expression of GFP. There was no difference in percent
of CD141+ DCs between groups prior to infection (p = .15, Fig 4). After 24 hours, 69% of all
DCs infected with Ad5GFP1-PK were GFP positive and 82% of the CD141+ population express-
ed GFP. This was significantly more than the 10% of CD141+ cells infected with Ad5GFP1 (Fig
5, p<.0001). Consistent with other DC infections, only 6% of all DCs infected with Ad5GFP1 ex-
pressed GFP. These results show that the infectivity of Ad5-PK is more effective than that of
Ad5 at infecting the subpopulation of DCs, best suited for CTL activation.

Fig 2. A. Ad5PK enhances DC gene transfer compared to previously reported Ad5 constructs. Human
immature DCs were infected with Ad5Luc1, Ad5Luc.FF/CD40L, Ad5/3Luc1 or Ad5Luc1-PK at an MOI of 300
VP/cell. Luciferase activity (relative light unit, RLU) was determined in 48hr post infection. All fiber modified
Ad5 vectors showed infectivity enhancement in iDC. *, +, and # indicate p = 0.02, p = 0.0005 and p<0.0001,
respectively. B. Murine iDC were plated in triplicate and infected with Ad5Luc1-PK and Ad5Luc1 (control) at
an MOI of 300 VP/cell. Luciferase activities were measured after 48 hrs. Ad5Luc1-PK showed a 4-fold
increase in murine iDCs of gene transfer activity (“#” indicates p<.003).

doi:10.1371/journal.pone.0125851.g002
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DC infection with Ad5-PK leads to increased expression of tumor
specific antigens
The Ad5-PK has not been assessed for delivery of clinically relevant tumor antigens to DCs.
We investigated the potential application of Ad5-PK for ex vivo iDC antigen loading for pan-
creatic and ovarian cancer immune therapy. The HLA-A2.1-binding mesothelin peptide,
p530–538 was incorporated into the HLA-A2 single chain trimer construct (9SCT) and en-
coded in the E1 region of Ad5-PK under the CMV promoter to generate Ad5-9SCT-PK.
Human iDCs negative for HLA-A2 were infected with Ad5-9SCT-PK or Ad5-9SCT and ana-
lyzed via FACS analysis after 24 and 48 hours for expression of cell surface HLA-A2. Ad5-
9SCT-PK infected DCs showed superior expression of HLA-A2 compared to Ad5-9SCT in-
fected DCs (Fig 6, p<.0001). After 24 hours there was a 15-fold increase in HLA-A2 expression
on Ad5-9SCT-PK infected DCs compared to Ad5-9SCT infected DCs and after 48 hours the
expression improved to an almost 20-fold increase in HLA-A2 expression (Fig 7). Thus, the en-
hanced infectivity and transduction efficiency seen with Ad5-PK compared to Ad5 leads to in-
creased expression of clinically relevant tumor antigens in DCs.

Ad5-PK vaccination leads to T-cell specificity and enhances response to
tumor cells expressing mesothelin
In order for vaccination to be effective, infected DCs must elicit a T-cell response against cells
expressing the relevant antigen (mesothelin 9mer in this case). HHDII mice expressing the
transgene, HLA-A2 were vaccinated with either Ad5-9SCT or Ad5-9SCT-PK, and were

Fig 3. Ad5GFP1-PK infection induces higher levels of GFP in iDC compared to wild-type Ad5GFP1 (A)
Human andmouse iDCs were infected with 500 MOI Ad5GFP1-PK or Ad5GFP1. After 24 hrs, FACS
analysis was performed to determine GFP positive cells in CD11c+ DCs. In both human and murine DCs,
infection with Ad5GFP1-PK lead to a higher percentage of GFP-expressing DCs than infection with
Ad5GFP1. (B) O-linked glycoprotein synthesis was blocked overnight with benzy-α-benzyl-GaINAc. After
infection with Ad5GFP1-PK, the expression of GFP in DCs was reduced by 25% (p = .02).

doi:10.1371/journal.pone.0125851.g003
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Fig 4. Ad5GFP-PK infects both CD141+ and CD141- DCs.Human PBMCs were infected with either
Ad5GFP1 or Ad5GFP1-PK and analyzed by flow cytometry for expression of GFP in CD141+ and CD141-

DCs after 24 hours. The DC population was identified by first selecting the CD11c+/Lin1- population of live
PBMCs (top and middle panel). CD141+ DCs were then selected from the CD11c+/Lin1- cohort and are
outlined in red in the gating schema (bottom panel). All CD11c+/Lin1- cells that express GFP are outlined in
black in the bottom panel. There was no significant difference in percent DCs or percent CD141+ cells
between groups (p = .15).

doi:10.1371/journal.pone.0125851.g004

Fig 5. Bar graph showing percent GFP in various DC subsets based on the data from Fig 4.
Ad5GFP1-PK infected about 8-times more DCs (including the CD141+ subset of DCs) than Ad5GFP1
(p<.0001). This is consistent with our results of cultured DCs.

doi:10.1371/journal.pone.0125851.g005
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sacrificed 9 days following boost injections. Splenocytes were isolated and analyzed for antigen
specificity using an IFN-γ ELISpot assay. Both A5-9SCT and Ad5-9SCT-PK induced a pep-
tide-specific T cell response. However, mice vaccinated with Ad5-9SCT-PK had twice the re-
sponse to the 9mer peptide than mice injected with Ad5-9SCT (Fig 8A, p = .001).

To model ex vivo vaccination, mice exposed to mesothelin through vaccination with
HAdV5 containing full length mesothelin were sacrificed and splenocytes were boosted with
Ad5-9SCT or Ad5-9SCT-PK infected murine DCs in vitro. Splenocytes were subsequently

Fig 6. Ad5-9SCT-PK induces efficient expression of antigen in DCs. iDCs were infected at 500 MOI with
Ad5-9SCT, or Ad5-9SCT-PK and analyzed for expression of cell surface expression of HLA-A2 (SCT) via
FACS analysis after 24 and 48 hours.

doi:10.1371/journal.pone.0125851.g006

Fig 7. iDCs infected with Ad5-9SCT-PK had a higher expression of the tumor related mesothelin
peptide (9mer) SCT at 24 (15-fold increase) and 48 hours (20-fold increase) than cells infected with
Ad5-9SCT.

doi:10.1371/journal.pone.0125851.g007
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tested for recognition of the mesothelin-expressing ovarian cancer cell line, SKOV3 and
SKOV3 expressing HLA-A2 using an IFNγ ELISpot assay. Splenocytes stimulated with Ad5-
9SCT-PK infected DCs contained more HLA-A2-restricted, mesothelin specific T cells than
splenocytes stimulated with Ad5-9SCT infected DCs. This was evidenced by a significantly
higher frequency of IFN-γ producing cells in response to SKOV3-A2 compared to SKOV3.
(Fig 8B, p<0.05). Based on our T-cell experiments, the enhanced infectivity and gene transfer
rate of Ad5-PK in DCs leads to more peptide specific T-cells and an increased anti-tumor T-
cell response compared to T-cells sensitized or boosted with wild-type HAdV5.

Discussion
The tumor microenvironment is well adapted to escape immune surveillance. Effective antigen
presentation remains one of the many challenges to generating cancer immune therapies. Fail-
ure to present the antigen of interest in adequate concentrations by immune stimulatory DCs
can lead to tolerance instead of CTL activation. Ad5-PK is a vehicle that can potentially im-
prove anti-cancer CTL activation by increasing the expression of the protein of interest on
DCs. We showed that Ad5-PK infects CD141+ DCs, a key DC subset relevant to activation of
naïve T-cells. We also observed that tumor specific antigen loading via Ad5-PK into iDCs in-
duced superior antigen-specific T-cell responses. Our data indicate that Ad5-PK is a promising

Fig 8. Ad5-9SCT-PK confers specific T cell reactivity. A. Splenocytes frommice vaccinated with Ad5-
9SCT or Ad5-9SCT-PK were tested for reactivity against the SCT-encoded 9mer peptide, an irrelevant
peptide, or no peptide. Splenocytes frommice injected with Ad5-9SCT-PK had a two-fold increase in the
number of IFN-γ-producing cells compared to splenocytes frommice injected with Ad5-9SCT (p = .001)
based on ELISpot. B. Mice were primed in vivowith HAd5V-containing full length mesothelin. Splenocytes
were boosted ex vivowith either Ad5-9SCT or Ad5-9SCT-PK infected DCs. Cells boosted with Ad5-9SCT-PK
had a 1.5-fold greater IFN-γ response to HLA-A2+, mesothelin expressing ovarian cancer cells than Ad5-
9SCT (p = .0005).

doi:10.1371/journal.pone.0125851.g008
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therapeutic gene delivery system that may help overcome the hurdles of DC antigen loading
and DC-based cancer therapy.

Several strategies have been used to enhance the utility of adenoviruses in cancer therapy by
circumventing the CAR receptor. Pereboev et al showed increased gene expression in DCs as
well as DC activation and enhanced T-cell specificity using CD40 ligand targeted adenovirus in
mouse models [44]. CD40 targeted viruses have subsequently been used in pre-clinical studies
for the treatment of prostate and cervix cancer as well as melanoma [10,45,46]. A chimeric
virus of HAdV5 with the human adenovirus serotype 3 fiber knob (Ad5/3) increases gene up-
take in dendritic cells, ovarian cancer, and malignant glioma cells via binding to CD80 and
CD86 [36,47,48]. Intraperitoneal administration of Ad5/3 vaccine was well tolerated in a recent
phase I trial in ovarian cancer patients [49]. Tumor antigen loading onto DCs via Ad5/3 has
not yet been studied in pre-clinical models. Finally, HAdV5 with the fiber knob from canine
adenovirus serotype 1 increases infectivity in CAR deficient cells, but has not yet been tested
on dendritic cells [50]. In this study, replacement of the HAdV5 fiber knob with the fiber knob
from PAdV4 enhanced gene transfer and gene expression compared with CD40 targeted and
Ad5/3 adenoviruses.

Ad5-PK enables highly efficient tumor antigen loading in DCs, but we do not believe it is
suitable for in vivo use in its current form. In order to adapt Ad5PK for in vivo use alterations
to decrease infectivity of cells that are not professional antigen presenting cells and additional
strategies increase immune stimulation will likely be necessary. The necessary modifications
are dependent on the mode of delivery of the virus. Prior animal and human studies have used
intramuscular, intraperitoneal, mucosal, subcutaneous, and intravascular delivery systems for
adenovirus vaccination. If delivered systemically, HAdV5 can cause liver toxicity via its natural
liver tropism. Blocking the interaction between coagulation factor X (FX) and hexon proteins
of HAdV5 can minimize the liver tropism. Exchange of the hexon gene of Ad5-PK to Adenovi-
rus serotype 3, which has shown lower FX binding affinity, will decrease liver tropism and may
reduce vector-related toxicities. It is likely that Ad5-PK targets cell populations other than DCs
in vivo. DC specific promoters (e.g.CD11c) can control antigen expression at a transcriptional
level thus limiting gene expression to DCs. In vivo use of wild-type and modified HAdV5 has
thus far had an acceptable toxicity profile; testing of the PK modified adenovirus in an immu-
nocompetent animal model will be necessary to fully elucidate side effects and toxicities prior
to in vivo use in humans [14, 49]. Additional benefit may be gained with use of immune modu-
lating adjuvants such as anti-PDL-1, anti-CTLA-4, GM-CSF, or IL-2 to overcome tolerance
and optimize anti-tumor immunity. Vectors using murine mesothelin in an immune compe-
tent mouse model with a native ovarian cancer are under development and will allow in vivo
testing of the vaccine with these immune modulators.

Adenoviral cancer therapy requires overcoming both cancer-induced immune inhibition,
and innate immune regulation systems to mount a CTL response to cancer antigens. The PK
tropism leads to increased DC antigen loading, which is necessary to avoid tolerance and drive
T-cell activation. Ad5-PK is a promising advancement in tumor antigen delivery systems that
in addition to viral targeting and adjuvant immune therapy may improve efficacy of immune
based cancer therapies.
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