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RESEARCH ARTICLE
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Washington University School of Medicine, St Louis, Missouri, United States of America, 5 Department of
Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America,
6 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis,
Missouri, United States of America, 7 Division of Statistical Genomics, Washington University School of
Medicine, St Louis, Missouri, United States of America, 8 Chief Informatics Officer, Pierian DX, St Louis,
Missouri, United States of America

* laura@wustl.edu

Abstract
The American College of Medical Genetics and Genomics (ACMG) recommends that clini-

cal sequencing laboratories return secondary findings in 56 genes associated with medi-

cally actionable conditions. Our goal was to apply a systematic, stringent approach

consistent with clinical standards to estimate the prevalence of pathogenic variants associ-

ated with such conditions using a diverse sequencing reference sample. Candidate variants

in the 56 ACMG genes were selected from Phase 1 of the 1000 Genomes dataset, which

contains sequencing information on 1,092 unrelated individuals from across the world.

These variants were filtered using the Human Gene Mutation Database (HGMD) Profes-

sional version and defined parameters, appraised through literature review, and examined

by a clinical laboratory specialist and expert physician. Over 70,000 genetic variants were

extracted from the 56 genes, and filtering identified 237 variants annotated as disease caus-

ing by HGMD Professional. Literature review and expert evaluation determined that 7 of

these variants were pathogenic or likely pathogenic. Furthermore, 5 additional truncating

variants not listed as disease causing in HGMD Professional were identified as likely patho-

genic. These 12 secondary findings are associated with diseases that could inform medical

follow-up, including cancer predisposition syndromes, cardiac conditions, and familial

hypercholesterolemia. The majority of the identified medically actionable findings were in

individuals from the European (5/379) and Americas (4/181) ancestry groups, with fewer

findings in Asian (2/286) and African (1/246) ancestry groups. Our results suggest that med-

ically relevant secondary findings can be identified in approximately 1% (12/1092) of individ-

uals in a diverse reference sample. As clinical sequencing laboratories continue to

implement the ACMG recommendations, our results highlight that at least a small number

of potentially important secondary findings can be selected for return. Our results also
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confirm that understudied populations will not reap proportionate benefits of genomic medi-

cine, highlighting the need for continued research efforts on genetic diseases in these

populations.

Introduction
The use of exome and genome sequencing is swiftly increasing in medicine. In addition to
identifying specific findings related to the indication for sequencing, these assays that assess a
large portion of our genes may uncover other clinically relevant variants. These variants may
be deliberately searched for (secondary findings) or accidentally discovered (incidental find-
ings) during the course of sequencing [1]. Though the concept of secondary and incidental
findings is not new to medicine [2] or genetics [3], the likelihood of uncovering these findings
has dramatically increased with genomic sequencing [4, 5].

In March 2013, the American College of Medical Genetics and Genomics (ACMG) recom-
mended that clinical sequencing laboratories return pathogenic variants in 56 genes associated
with 24 medically actionable conditions [6, 7]. These recommendations prompted a heated
debate. Critics emphasize the patient’s right to choose to receive these findings and object to a
mandatory duty to assess and report results [8–10]. They highlight that the predictive value of
disease-associated variants in the general population is unknown, and that variants may be
identified at a high frequency, leading to undue anxiety and unnecessary procedures [9, 10].
The ACMG board has subsequently modified its recommendation to include an “opt out”
option. Proponents of the recommendations argue that for well-established pathogenic vari-
ants associated with the proposed conditions, surveillance and intervention may be lifesaving
[11, 12]. Furthermore, similar to other areas of medicine, sequencing laboratories have a
responsibility to comprehensively evaluate test results. The ACMG working group acknowl-
edges that there are limited data to fully support their recommendations and advises regular
review and update of the list [6, 7].

Uniformly, there is a call for more research on the ACMG recommended genes and condi-
tions in the general population [6, 9–11]. This genetic and ethical landscape motivated us to
test a stringent approach for identifying clinically relevant secondary findings associated with
the ACMG list in the 1000 Genomes dataset [13], a diverse sequencing reference sample. Our
goal was to estimate the likelihood of observing secondary findings with substantial evidence
for disease association to provide insight into the potential implications of these controversial
recommendations.

Materials and Methods
Our analysis focused on identifying actionable pathogenic and likely pathogenic variants in the
56 ACMG genes (Table 1). Because prevalence estimates of these conditions range from 1/200
to 1/1,000,000 (S1 Table), the probability of an individual in the 1000 Genomes dataset having
one of these conditions is low. Thus, a threshold with high specificity for identifying secondary
findings is critical to reduce false positive results that may lead to unnecessary procedures and
altered life planning. Our approach emphasizes specificity by integrating informatics filtering,
literature review, and expert evaluation.

Secondary Findings in the 1000 Genomes
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Table 1. Number of candidate variants after different review stages.

Number of Candidate Variants

Diseases MIM
Disorder

Genes MIM
Gene

Extracted from
1000 Genomes

After
Filtering

After
Literature
Screening

After
Specialist
Review

Hereditary breast and ovarian cancer 604370 BRCA1* 113705 879 15

612555 BRCA2* 600185 1093 22 1 1

Li-Fraumeni syndrome 151623 TP53* 191170 331 4 1 1

Peutz-Jeghers syndrome 175200 STK11* 602216 485 .

Lynch syndrome 609310 MLH1* 120436 923 8 1

120435 MSH2* 609309 2649 6

614350 MSH6* 600678 1673 2

614337 PMS2* 600259 459 .

Familial adenomatous polyposis 175100 APC* 611731 2057 11

MYH-associated polyposis; adenomas, multiple
colorectal FAP type 2; colorectal adenomatous
polyposis, autosomal recessive with
pilomatricomas

608456,
132600

MUTYH* 604933 150 5

Von Hippel-Lindau disease 193300 VHL* 608537 189 1

Multiple endocrine neoplasia, type 1 131100 MEN1* 613733 76 1

Multiple endocrine neoplasia, type 2 171400,
162300

RET 164741 734 6

Familial medullary thyroid cancer 1552401 RET 164761 (above)

PTEN hamartoma tumor syndrome 153480 PTEN* 601728 1250 .

Retinoblastoma 180200 RB1* 614041 2127 3

Hereditary paraganglioma- pheochromocytoma
syndrome

168000
(PGL1)

SDHD* 602690 402 .

601650
(PGL2)

SDHAF2 613019 225 .

605373
(PGL3)

SDHC* 602413 753 .

115310
(PGL4)

SDHB* 185470 409 6 1

Tuberous sclerosis complex 191100 TSC1* 605284 680 3

613254 TSC2* 191092 708 3

WT1-related Wilms tumor 194070 WT1* 607102 711 2

Neurofibromatosis type 2 101100 NF2* 607379 1034 2

Ehlers–Danlos syndrome, vascular type 130050 COL3A1* 120180 475 3

Marfan syndrome, Loeys–Dietz syndromes, and
familial thoracic aortic aneurysms and dissections

154700 FBN1* 134797 2999 11

609192 TGFBR1* 190181 629 .

608967 TGFBR2* 190182 1282 1

610168 SMAD3* 603109 1836 .

610380 ACTA2* 102620 728 .

613795 MYLK* 600922 3650 .

611788 MYH11* 160745 2521 2

Hypertrophic cardiomyopathy, dilated
cardiomyopathy

115197 MYBPC3* 600958 219 7

192600 MYH7 160760 343 7 1

601494 TNNT2* 191045 304 .

613690 TNNI3 191044 106 1

(Continued)

Secondary Findings in the 1000 Genomes
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1,000 Genomes Sample
Phase 1 of the 1000 Genomes dataset provides low coverage whole-genome sequencing (aver-
age 5x) and high coverage exome-sequencing (average 80x) on 1,092 unrelated individuals
from 14 different populations in 4 major ancestry groups; Europe, East Asia, Africa, and the
Americas [13]. These populations were selected based on scientific, ethical, and practical con-
siderations with the goal of building a resource illustrating the spectrum of geographic genetic
variation. Our analysis focused on examining the 56 well-established ACMG genes in the 1,092
individuals in Phase 1 of the 1000 Genomes dataset.

Ethics Statement
The 1000 Genomes dataset is coded data, which is publically available and unrestricted online
through an open access policy. The Washington University Human Research Protection Office
determined that this project did not involve activities that were subject to Institutional Review
Board oversight.

Table 1. (Continued)

Number of Candidate Variants

Diseases MIM
Disorder

Genes MIM
Gene

Extracted from
1000 Genomes

After
Filtering

After
Literature
Screening

After
Specialist
Review

115196 TPM1 191010 445 .

608751 MYL3 160790 273 2

612098 ACTC1 102540 128 .

600858 PRKAG2 602743 5343 .

301500 GLA* 300644 94 .

608758 MYL2 160781 148 .

115200 LMNA* 150330 591 2

Catecholaminergic polymorphic ventricular
tachycardia

604772 RYR2 180902 11765 6 1 1

Arrhythmogenic right-ventricular cardiomyopathy 609040 PKP2* 602861 1413 7 1 1

604400 DSP* 125647 637 8

610476 DSC2* 125645 426 3

607450 TMEM43 612048 278 1

610193 DSG2* 125671 660 3

Romano-Ward Long QT Syndromes Types 1,2,
and 3, Brugada Syndrome

192500 KCNQ1* 607542 5974 3

613688 KCNH2* 152427 403 4 1 1

603830,
601144

SCN5A* 600163 1452 18 2

Familial hypercholesterolemia 143890 LDLR* 606945 645 19 5 1

603776 APOB 107730 653 4

PCSK9 607786 446 3

Malignant hyperthermia susceptibility 145600 RYR1 180901 2335 20

CACNA1S 114208 1237 2

Total 70,435 237 15 7

* Genes for which novel, expected pathogenic variants should be returned.

doi:10.1371/journal.pone.0135193.t001
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Filtering of Variants
Informatics filtering strategies similar to those proposed by Berg and colleagues [14] narrowed
down the number of candidate variants (detailed in Fig 1). Briefly, variants in the 56 genes
were downloaded in October 2013 from the 1000 Genomes Browser based on Ensembl version
73 (http://browser.1000genomes.org/index.html). MySQL was used to intersect the down-
loaded variants with the Human Gene Mutation Database (HGMD) Professional (2.2012)
[15]. These variants were filtered by selecting variants labeled disease-causing by HGMD, com-
bining duplicate entries, and eliminating variants retrieved from the 1000 Genomes Browser,
but not occurring in the 1,092 Phase 1 individuals.

Screening of Candidate Variants with Literature Review
Filtered candidate variants were vetted for disease association through critical appraisal of the
literature from HGMD Professional [15], ClinVar [16], Google, PubMed, and other relevant
databases [17–19]. Variant frequency in the 1000 Genomes and the NHLBI Exome Sequencing

Fig 1. Flow of candidate variants through informatics filtering, literature review, and expert evaluation.Candidate variants in 56 genes associated
with 24 actionable conditions from the 1000 Genomes dataset were narrowed down to identify 7 secondary findings that specialists agree are pathogenic or
likely pathogenic.

doi:10.1371/journal.pone.0135193.g001

Secondary Findings in the 1000 Genomes
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Project was also considered with the literature review [20]. Details on all filtered variants along
with notes and references from the review are available in S2 Table.

First, variants with an allele frequency greater than expected for the associated disorder in
either the NHLBI Exome Sequencing Project (ESP) and/or Phase 1 of the 1000 Genomes were
removed. General population disease frequencies were estimated from GeneReviews, the
Genetics Home Reference, and the literature review (S1 Table). Similar to Dorschner et al. [21],
we assumed that if a variant was found more commonly in reference datasets than expected
given the frequency of the associated disease, it is unlikely to cause a high-penetrance pheno-
type. However, because of the possibility of ancestry-specific disease-causing variants, we used
a cautious threshold at this stage. We assumed that the occurrence of multiple variants within
each reference dataset followed a Poisson distribution, and specific variants were excluded if
the number of occurrences exceeded the 95th cumulative probability percentile with an event
rate equal to the expected number of pathogenic variants with the associated disorder (unless
this number was 3 or less and then we used a cut off of 4 variants). Although we sought to
incorporate information on population-specific frequencies of diseases and variants from the
literature, we found that this additional information did not prevent the exclusion of variants
using our cautious threshold.

Second, primary literature was evaluated for several lines of evidence against the pathoge-
nicity of each variant to remove false positive results. Variants with similar frequencies in case-
control studies, those often seen in healthy individuals, those that did not segregate with the
disease in an affected family, those described to coexist with multiple deleterious variants, and
those occurring in trans to a single deleterious variant without the expected phenotypic effects
of biallelic alteration were removed from consideration. Cancer predisposition variants without
loss of heterozygosity in multiple tumors were removed. For BRCA1 and BRCA2, we removed
variants with an odds of neutrality greater than 100:1 based on Myriad Genetic Laboratories
published data [22], however, the vast majority of Myriad data are not publicly available. For
Lynch syndrome variants, we required microsatellite instability within the majority of reported
tumors. For variants inMUTYH associated with recessive polyposis and colorectal cancer, we
excluded those that did not co-occur with another potentially pathogenic mutation as the
ACMG guidelines recommend only searching for individuals with biallelic alteration [6].

Third, as we set the threshold for inclusion, we recognized the potential life-changing impli-
cations of returning secondary findings, and so we required a minimum level of supportive evi-
dence for non-synonymous, splice site, and synonymous variants to be considered an
actionable secondary finding. Similar to the classification system of pathogenic secondary find-
ings employed by Ng et al. [23] and Dorschner et al. [21], we required that the variant was
identified in at least three unrelated affected individuals, exhibited segregation consistent with
a probability�1/16 in at least one family, or occurred in at least one de novo event in a trio.
For truncating mutations identified in HGMD Professional that occurred in genes in which the
ACMG specified that expected pathogenic variants should be returned (starred in Table 1), we
only required a truncating mutation in one unrelated case.

Finally, variants identified in literature focusing on conditions other than the specified
ACMG conditions were removed.

Verification of Pathogenic Variants
Concordance between a clinical laboratory specialist and an expert physician was required to
call variants pathogenic or likely pathogenic. All experts were asked to consider the draft “Stan-
dards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recom-
mendation of the American College of Medical Genetics and Genomics and the Association of

Secondary Findings in the 1000 Genomes
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Molecular Pathology” in their evaluation (https://www.acmg.net/docs/Standards_Guidelines_
for_the_Interpretation_of_Sequence_Variants.pdf). This consensus statement supports a five
tiered variant classification system: 1) pathogenic, 2) likely pathogenic, 3) uncertain signifi-
cance, 4) likely benign, and 5) benign. Specifically, the consensus statement endorses that
“pathogenic” implies causative for disease, and likely pathogenic implies more than 90% cer-
tainty that a variant is disease-causing.

A clinical laboratory specialist with board certification in cytogenetics and molecular genet-
ics (CEC) evaluated all remaining variants after literature screening. The clinical laboratory
specialist employed genomic browsers including UCSC and Ensembl, genetic databases [18,
19, 24], and protein prediction software [25–27]. This methodology is standard for clinical
reporting [28, 29]. Expert physicians with medical specialties relevant to the remaining dis-
ease-associated variants also examined the pathogenicity evidence. Specifically, physicians with
specialties in gastroenterology (NOD), neurology and pediatrics (CG), pathology (JWH), and
cardiovascular medicine (NOS) were provided with the primary literature on variants in their
respective fields and asked whether each variant was “actionable” and “pathogenic.”

Additional Expected Pathogenic Variants
For 45 of the 56 genes (starred in Table 1), the ACMG recommendations suggest that expected
pathogenic variants should also be sought and returned to patients. For these 45 genes, we
additionally examined variants that were predicted to cause a truncation, but were not listed as
disease-causing in HGMD Professional. ANNOVAR was used to examine vcf files, and trun-
cating mutations were identified with refGene and ensGene using Genome Build 19. Identified
mutations were required to cause truncation in all listed Ensembl HGVS isoforms. Predicted
truncating mutations were then evaluated with literature review and ClinVar. We required that
a “pathogenic” truncating mutation had been previously described 3' of the variant under
review in the coding sequence for one of the ACMG conditions in either ClinVar or another
database, as nonsense mediated decay may not be predicted in transcripts with distal alter-
ations. Expected pathogenic variants were reviewed by the clinical laboratory specialist.

Results

Computationally filtered variants
We retrieved 70,435 variants in the 56 disease-associated genes from the 1000 Genomes
Browser. After querying HGMD Professional based on gene and chromosome position for var-
iants labeled disease-causing and restricting to variants that matched the exact base change,
237 variants remained for manual review (Fig 1).

Among the 1,092 Phase 1 genomes, our HGMD filtering strategy yielded 1.48 variants per
person (Table 2). Across the four major ancestry groups, the average number of variants per
person ranged from 1.13 among Asian Americans to 1.67 among the Americas individuals.
These findings underscore that filtering using HGMD Professional dramatically reduced the
number of candidate secondary variants per genome.

Table 2. Distribution of variants per person after filtering, literature screening, and specialist review.

Variants per person African (n = 246) the Americas (n = 181) East Asian (n = 286) European (n = 379) Total (n = 1,092)

After filtering 1.463 1.668 1.133 1.667 1.481

After literature screening 0.012 0.011 0.010 0.021 0.015

After specialist review 0.004 0.006 0.003 0.011 0.006

doi:10.1371/journal.pone.0135193.t002

Secondary Findings in the 1000 Genomes
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Literature screened variants
Literature appraisal further decreased the number of filtered variants by 15 fold (Table 1,
Fig 1). More than one-third of the variants (99/237) were removed because of a higher fre-
quency in reference datasets than expected based on the population prevalence and mode of
inheritance of these conditions (details in S1 Table). Fig 2A illustrates that these 99 variants
accounted for the majority of variants per person among the 237 filtered candidate variants
across the four ancestry groups. Specifically, the number of variants removed per person in this
step of the literature screening was 1.43 (86% of total 1.67) in the Americas, 1.41 (85% of total
1.67) in European, 1.31 (90% of total 1.46) in African, and 0.79 (70% of total 1.13) in East
Asian ancestry groups.

An additional 50 variants were eliminated because the literature evidence undermined the
conclusion of known pathogenicity, including high incidence in healthy individuals, lack of
segregation with disease, and co-occurrence with known deleterious variants (Fig 1). Fig 2B
illustrates that the number of variants per person removed due to evidence against pathogenic-
ity varied across the ancestry groups. Specifically, the number of variants removed per person
in this step of the literature screening was 0.18 (16% of 1.13) in East Asians, 0.12 (7% of 1.67)
in Europeans, 0.12 (7% of 1.67) in the Americas, and 0.05 (4% of 1.46) in Africans.

Fig 2. Results of literature screen of 237 filtered candidate variants. These graphs compare the number of variants per person at different stages of the
literature screen across the four major ancestry groups in the 1000 Genomes dataset. A) Compares the contribution of variants that were removed because
of a high frequency in reference datasets to all of the other filtered variants. B) Compares the contribution to variants per person of all of the filtered variants
that did not have a high frequency in reference datasets. Specifically, it compares the contribution of variants with evidence against a conclusion of
pathogenicity, a lack of supportive evidence, literature on a different disorder, or those that were retained for specialist review.

doi:10.1371/journal.pone.0135193.g002

Secondary Findings in the 1000 Genomes
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We removed 62 variants that lacked a minimum level of supportive evidence in the litera-
ture (Fig 1). Across ancestry groups, the number of variants per person removed due to paucity
of evidence was similar (Fig 2B): 0.13 (11% of 1.13) in East Asians, 0.08 (6% of 1.46) in Afri-
cans, 0.08 (5% of 1.67) in Europeans, and 0.08 (5% of 1.67) in the Americas. Finally, 11 variants
were removed where the literature focused on a different disease phenotype than under study.

Overall, manual literature screening dramatically reduced the number of filtered variants
per person from 1.48 to 0.015 (Table 2). After literature screening, 15 variants remained and
were reviewed by the clinical laboratory specialist and expert physicians (Fig 1). The specialists
independently agreed that 7 of these variants met the high threshold for being pathogenic or
likely pathogenic and actionable (Table 3).

Known pathogenic and likely pathogenic variants identified by clinical
specialists
A BRCA2 truncating variant p.Glu3390� occurred in one individual from the 1000 Genomes
ASW population (Americans of African Ancestry in SW USA). Previously reported in a case of
ovarian cancer, this genetic variant was shown to have a functional effect in a series of bio-
chemical experiments [30]. Based on strong functional support and the nature of the alteration,

Table 3. Pathogenic variants that the clinical laboratory specialist and expert physicians agree should be disclosed as secondary findings.

Gene Genomic change
(protein change)

dbSNP
Identifier

1000
Genomes

Exome
Variant
Server

ClinVar Predictions of
Clinical
Specialist (CEC)

Predictions of Expert Physicians;
Notes (expert initials)

BRCA2 Chr13:
32972575G>T
(p.Glu3309*)

rs80359251 1 (AFRa) 4 (AA) Pathogenic/
Likely
pathogenic

Likely Pathogenic Pathogenic; Exhibits a functional
role in several experiments and
characterized as pathogenic by
multiple databases (JWH)

TP53 Chr17:
7577120G>A
(p.Arg273His)

rs28934576 1 (EURb) 0 Pathogenic Pathogenic Pathogenic; Second most frequently
reported TP53 mutation in COSMIC,
and extensive functional support
(JWH)

SDHB Chr1:
17359573C>T
(p.Arg90*)

rs74315366 1 (EUR) 0 Pathogenic/
Likely
pathogenic

Likely pathogenic Likely pathogenic; Segregates with
disease in three small families (CG)

RYR2 Chr1:
237608788C>T
(p.Arg420Trp)

rs190140598 1 (EUR) 0 Not in database Likely pathogenic Likely pathogenic; Multiple probands
and biochemical evidence that this
is functional; Lacking strong
transmission data (NOS)

PKP2 Chr12:
32949042G>Ae

rs111517471 1 (ASNc) 0 Pathogenic/
Likely
pathogenic

Likely pathogenic Likely pathogenic; Identified in
multiple individuals with some
evidence of segregation (NOS)

KCNH2 Chr7:
150648826T>C
(p.Leu552Ser)

rs199472918 1 (EUR) 0 Pathogenic/
Likely
pathogenic

Likely pathogenic Likely pathogenic; Identified in
multiple families and probands, but
with incomplete penetrance (NOS)

LDLR Chr19:
11200235G>A
(p.Trp4*)

rs201016593 1 (AMRd) 0 Not in database Likely pathogenic Pathogenic; Expected type of
mutation to cause disease,
independent reports and
biochemical support (NOS)

aAFR, African.
bEUR, European.
cASN, East Asian.
dAMR, the Americas.
eSplice variant.

doi:10.1371/journal.pone.0135193.t003

Secondary Findings in the 1000 Genomes

PLOSONE | DOI:10.1371/journal.pone.0135193 September 2, 2015 9 / 18



the clinical laboratory specialist classified this variant as likely pathogenic, and the expert phy-
sician (JKH) independently confirmed that the variant was pathogenic for hereditary breast
and ovarian cancer.

A TP53 nonsynonymous variant p.Arg273His was identified in one individual in the CEU
population (Utah Residents (CEPH) with Northern and Western European ancestry). Malkin
et al. [31] identified this variant in a proband diagnosed with soft-tissue sarcoma and gastric
carcinoma as well as in the proband’s son diagnosed with rhabdomyosarcoma at age 11. Fagin
et al. [32] found this variant in 5 out of 6 anaplastic thyroid carcinomas. Described as a hotspot
mutation, this variant is the second most frequently reported TP53mutation in the catalogue
of somatic mutations in cancer (COSMIC), and several independent groups have provided
functional support. Both the clinical laboratory specialist and expert physician (JKH) thought
this variant was pathogenic for Li-Fraumeni syndrome.

A SDHB truncating variant p.Arg90� occurred in one individual in the GBR population
(British in England and Scotland). Located in a hypermutable CpG dinucleotide, Astuti et al.
[33] showed that this variant segregated in 3 unrelated small families suffering from pheochro-
mocytoma and paragangliomas. Based on the literature review and the nature of the alteration,
both the clinical laboratory specialist and the expert physician (CG) classified this variant as
likely pathogenic.

A RYR2 nonsynonymous variant p.Arg420Trp occurred in one individual in the CEU popu-
lation. Bruce et al. [34] identified this variant in two unrelated families in Italy with several
cases of juvenile onset cardiac death, but with incomplete penetrance. Because this variant was
also identified in several other independent cases and functionally characterized as abnormal,
the clinical laboratory specialist and the expert physician (NOS) classified the variant as likely
pathogenic for catecholaminergic polymorphic ventricular tachycardia.

A PKP2 splice region variant c.2489+1G>A occurred in one individual in the CHB popula-
tion (Han Chinese in Beijing, China). Cox et al. [35] found this variant in 6 unrelated Dutch
cases of right ventricular dysplasia/cardiomyopathy. Given that other studies report additional
independent cases with some limited transmission data, both the clinical laboratory specialist
and the expert physician (NOS) classified the variant as likely pathogenic.

A KCNH2 nonsynonymous variant p.Leu552Ser was found in an individual from the FIN
population (Finnish in Finland). Described as a Finnish founder mutation, this variant was
documented by Piippo et al. [36] in 6 unrelated Long QT syndrome Finnish families. Ten of 35
heterozygous individuals were symptomatic (mean QTc of the 35 individuals was 466 ± 47 ms)
and all 43 non-carrier family members were non-symptomatic (mean QTc 416 ± 23 ms). Fur-
thermore, two homozygous siblings experienced severe symptoms (2:1 AV block immediately
after birth and torsades de pointes at age 2). Computational prediction programs further sup-
ported this variant’s pathogenicity, and the clinical laboratory specialist and expert physician
(NOS) confirmed that it was likely pathogenic.

A LDLR truncating variant p.Trp4� was found in one individual from the CLM population
(Colombians in Medellin, Colombia). Nonsense variants within LDLR codon 4 have been
described in a Spanish family, a Chinese individual, and a Colombian individual with familial
hypercholesterolemia [37, 38]. Based on literature review and the nature of the alteration, the
clinical laboratory specialist classified the variant as likely pathogenic, and the expert physician
(NOS) confirmed that the variant was expected to be pathogenic.

Eight of the fifteen variants retained for literature review were determined to be variants of
unknown significance by the clinical laboratory specialist (CEC). These classifications were
based on several factors, including limited available data, uncertain significance by expert gene
curation, occurrence in patients with complex genotypes, and high frequency in reference
datasets.
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Additional expected pathogenic variants
Five additional expected pathogenic variants were identified that were not listed as disease-
causing in HGMD Professional (Table 4). These truncating variants occur in BRCA2, TGFBR1,
DSP (n = 2), and LDLR, and ClinVar suggests that mutations located 3’ in the coding sequence
of these genes are pathogenic for the ACMG conditions of hereditary breast and ovarian can-
cer, Loeys-Dietz syndrome type 1A, arrhythmogenic right ventricular cardiomyopathy, and
familial hypercholesterolemia, respectively. All of these variants are located within the first
90% of the protein sequence (range of 45%-87%) and therefore are expected to lead to non-
sense mediated decay. Due to the nature of these alterations, these variants represent returnable
secondary findings according to the ACMG recommendations.

Discussion
Our goal was to apply a stringent approach to identify clinically important secondary findings
using a diverse reference sample. We focused on the 56 ACMG genes associated with 24 action-
able conditions [6]. Our results demonstrate that 12 individuals in Phase 1 of the 1000
Genomes dataset (1%) carry a returnable secondary finding using this standard. The patho-
genic and likely pathogenic variants identified here are associated with cancer predisposition
syndromes, cardiac conditions, and familial hypercholesterolemia, which are diseases with
available, potentially life-saving interventions.

Four individuals were identified in the 1000 Genomes dataset with secondary findings asso-
ciated with cancer predisposition syndromes (Tables 3 and 4). Likely pathogenic BRCA2 vari-
ants were found in 2 individuals, which is consistent with the estimated general population
prevalence of 1/400 of hereditary breast and ovarian cancer syndrome [39]. We also identified
one pathogenic variant in TP53 associated with Li-Fraumeni syndrome, which has an esti-
mated prevalence of 1/5,000-1/20,000 and is characterized by several classic tumors, including
soft tissue sarcomas, breast cancer, brain tumors, adrenocortical carcinomas, and leukemias
[40]. Finally, one individual had a likely pathogenic variant for hereditary paraganglioma-

Table 4. Additional expected pathogenic variants that meet criteria for disclosure as secondary findings.

Gene Genomic change
(protein change)

dbSNP
Identifier

1000
Genomes

Exome
Variant
Server

Notes from database examination

BRCA2 Chr13: 32929053G>T
(p.Glu2355*)

rs200078639 1 (AMRa) 0 ClinVar: variants later in protein sequence are pathogenic for
hereditary breast and ovarian cancer

TGFBR1 Chr9: 101900238G>A
(p.Trp224*)

rs201021249 1 (EURb) 0 ClinVar: variants later in protein sequence are pathogenic for
Loeys-Dietz syndrome type 1A

DSP Chr6: 7583372G>A
(p.Trp1959*)

rs201774541 1(ASNc) 0 ClinVar: variants later in protein sequence are pathogenic for
cardiomyopathy dilated with woolly hair and keraderma or
arrhythmogenic right ventricular cardiomyopathy

DSP Chr6: 7584224T>A
(p.Tyr2243*)

rs188533371 1 (AMR) 0 ClinVar: variants later in protein sequence are pathogenic for
cardiomyopathy dilated with woolly hair and keraderma or
arrhythmogenic right ventricular cardiomyopathy

LDLR Chr19: 11233939C>T
(p.Arg744*)

rs200793488 1 (AMR) 0 ClinVar: variants later in protein sequence are pathogenic for
familial hypercholesterolemia

aAMR, the Americas.
bEUR, European.
cASN, East Asian.

doi:10.1371/journal.pone.0135193.t004
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pheochromocytoma syndrome, a very rare condition, for which early detection through sur-
veillance and removal of tumors may minimize complications related to mass effects, catechol-
amine hypersecretion, and malignant transformation [41].

Beyond cancer predisposition syndromes, we identified 6 individuals with secondary find-
ings associated with cardiac conditions. Given that these diseases may first present with sudden
death, early surveillance and intervention are critical. First, one individual in the 1000
Genomes possessed a truncating variant predicted to cause Loeys-Dietz syndrome type 1A, a
connective tissue disorder associated with vascular abnormalities (increased risk of arterial
aneurysms and dissections) along with skeletal manifestations [42]. Second, three individuals
in the 1000 Genomes had likely pathogenic variants associated with Arrhythmogenic Right-
Ventricular Cardiomyopathy (ARVC). Although ARVC has an estimated prevalence of 1/
1,000-1/1,500, it often exhibits reduced penetrance (with estimates as low as 20–30%), possibly
explaining our recognition of 3 disease-associated variants in the 1000 Genomes dataset [43,
44]. Characterized by progressive fibrofatty replacement of the myocardium, ARVC predis-
poses individuals to ventricular tachycardia and sudden death. Third, one individual in the
1000 Genomes had a likely pathogenic variant associated with catecholaminergic polymorphic
ventricular tachycardia (CPVT), which has an estimated prevalence of 1/10,000 and is charac-
terized by episodes of ventricular tachycardia often triggered by exercise, possibly leading to
ventricular fibrillation and sudden-death [45]. Finally, we identified one individual with a sec-
ondary finding for long QT syndrome, which has an estimated prevalence of 1/2,500 among
whites [46] and is characterized by QT prolongation and T-wave abnormalities on ECG with
risk of torsades de pointes [47].

Lastly, two individuals had likely pathogenic truncating variants in LDLR associated with
heterozygous familial hypercholesterolemia, which is consistent with the estimated population
prevalence of 1/200-1/500 [48]. Characterized by elevated LDL cholesterol levels from birth,
this condition increases risk of premature coronary heart disease. Early diagnosis and treat-
ment with statins can decrease coronary heart disease events and mortality [49, 50].

Overall, this study identifies 12 pathogenic and likely pathogenic variants in the 1000
Genomes dataset, which if recognized and returned could guide medical follow-up for individ-
uals and their families. This confirms that medically relevant secondary findings can be identi-
fied in an unselected cohort.

Beyond assessing the general frequency of secondary findings, this study provides insight
into the frequency of candidate variants in a range of populations. After computational filter-
ing, the average number of variants per person ranged from 1.67 among Europeans to 1.13
among East Asians (Table 2). After literature and expert review, 4 of the 7 identified known
secondary findings were observed in individuals of European ancestry, and 1 was found in
each of the other ethnic groups (African, the Americas, and East Asian) (Table 3). Examination
of secondary findings in the Exome Sequencing Project also identified these findings in Euro-
pean Americans at over three times the rate as African Americans [21, 51]. These observations
reflect the historical focus of clinical genetic research on individuals of European descent. We
found that a disproportionately low number of individuals of East Asian ancestry had variants
that were ruled out due to high frequency in reference datasets, reflecting the fact that one of
the two reference datasets was the Exome Sequencing Project, which only contains European
and African Americans. Because African Americans have not been well-studied in the litera-
ture, we also observed that a lower number of individuals in this group had variants that were
ruled out because of evidence against pathogenicity. As return of secondary and incidental
findings expands in response to the recent ACMG recommendations [6], understudied popula-
tions will not reap proportionate benefits and disparities can increase, highlighting the need for
research on genetic diseases in these populations.
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Previous reports have predicted substantially higher frequencies of pathogenic variants in
the 1000 Genomes dataset. Surveys based on the pilot of the 1000 Genomes project found that
each genome typically contains 100 loss-of-function variants [52] and 40–110 variants classi-
fied by HGMD Professional as disease-causing (of which 0–8 are predicted to be highly damag-
ing) [53]. A study of the 1,092 Phase 1 genomes found on average 294 previously identified
pathogenic variants in the homozygous state in each individual using HGMD [54]. More
recently, Daneshjou et al. [55] examined the 1,092 Phase 1 genomes along with 178 additional
genomes and found that, after excluding the most common variant, 20% of all analyzed
genomes possessed designated ClinVar pathogenic variants in the ACMG genes. Our estimate
is considerably lower because we employed a purposefully stringent approach for prioritizing
clinically meaningful findings that involved manual curation.

Studies that employ informatics filtering and strict manual review support our observation
that a small number of variants for actionable conditions can be prioritized. Johnston et al. [56]
employed filtering and manual review to assess 37 genes associated with cancer predisposition
syndromes in 572 predominantly white ClinSeq research participants, identifying 8 individuals
with pathogenic variants that warranted follow-up. Ng et al. [23] examined 870 ClinSeq
research participants for 63 genes associated with cardiomyopathies and arrhythmias and iden-
tified 6 individuals with pathogenic variants. More recently, Amendola et al. [51] examined
112 actionable genes in the 6,503 participants enrolled in the National Heart, Lung, and Blood
Institute Sequencing Project, identifying 113 individuals with pathogenic, likely pathogenic, or
expected pathogenic variants. Proportionate to the number of genes studied, these estimates of
0.014 [56], 0.007 [23], and 0.017 [21] secondary findings per person are on the same order of
magnitude as our estimate of 0.011. These estimates from independent samples indicate that a
small number of disease-associated variants can be selected from sequence data.

An important limitation of this study is that the informed consent process for the 1000
Genomes project prevents the return of individual research results [57]. This inability to return
results with potentially lifesaving interventions underscores a drawback of studies that stress
collection of de-identified samples. In designing future genetic studies, including the recent
Precision Medicine Initiative [58], investigators need to consider offering a path for returning
medically important results identified through the research process to participants. In many
surveys, the public strongly favors opportunities to receive individual genetic research results
[59, 60]. In addition, return of results is necessary to understand the penetrance and expressiv-
ity of the identified secondary findings through medical follow-up. As emphasized by the
ACMG [6] and others [9, 10], more research on the long term phenotypic effects of presumed
pathogenic variants identified in the general population is needed to fully understand the costs
and benefits of returning secondary findings.

There are also several limitations to our method of variant prioritization that may miss
pathogenic variants. First, the limited set of 56 ACMG genes was assessed. Inclusion of addi-
tional conditions will increase the frequency of actionable secondary findings. Second, filtering
based on HGMD Professional entries may exclude expected pathogenic variants that have not
been annotated as disease-causing in this database. A third limitation is the reliance on sup-
porting publications to assess pathogenicity given that publications have predominantly
focused on European ancestry populations. Efforts to share information in the genetics com-
munity through centralized databases [61] will improve the fund of knowledge on genetic vari-
ants and provide additional information needed to assess very rare variants. All of these
limitations underestimate the frequency of secondary findings, consistent with our stringent
approach for variant prioritization. This study is a systematic attempt to combine available
information to identify clinically relevant secondary findings, and this framework can be
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modified as knowledge of genetic diseases increases and guidelines regarding return of second-
ary and incidental findings continue to evolve.

Our experience of evaluating secondary findings highlights some of the current challenges
faced by clinical laboratories in implementing the ACMG recommendations. Although
HGMD Professional [15] is useful for filtering candidate variants (Fig 1), our results confirm
previous reports that it contains variants designated as disease-causing that upon further
review have uncertain pathogenicity for the purposes of secondary finding identification [14,
21, 56]. Our process of secondary finding evaluation required several steps of time-consuming
manual review. Informatics filtering led to 237 HGMD disease-causing variants, which each
underwent literature screening, requiring approximately 1.5 hours per variant (range of 0.5 to
3 hours). Fifteen candidate variants passed literature review and were evaluated by both a clini-
cal laboratory specialist and an expert physician. Expert review took approximately 1 hour per
variant for each specialist (range of 20 minutes to 4 hours). From the time that this project was
initiated in 2013, the speed of variant review has dramatically improved with the development
of new appraisal resources and additional experience of the authors in variant evaluation.
Future efforts to develop standardized resources with well-curated variants to facilitate the
fast and accurate identification of pathogenic secondary findings that meet current standards
for return in clinical settings will make the implementation of precision medicine more
efficient.

Variant appraisal is also complicated by the different thresholds specialists have for identify-
ing pathogenic variants. Our method used a conservative clinical approach by requiring that
both a clinical laboratory specialist and expert physician independently agreed that the second-
ary findings were pathogenic/likely pathogenic. Although initially there was some discordance
in classification between the experts, further discussion with the expert reviewers led to agree-
ment for all candidate variants that passed the literature screen. The ACMG [28] and others
[29] have released standardized guidelines for variant evaluation that will aid specialists in
assessing pathogenic variants (see https://www.acmg.net/ACMG/Publications/Laboratory_
Standards___Guidelines/ACMG/Publications/Laboratory_Standards___Guidelines.aspx?
hkey=8d2a38c5-97f9-4c3e-9f41-38ee683bcc84). Our experience illustrates that differences in
manual curators can lead to differences in variant categorization, highlighting the importance
of continued efforts to specify how specialists should combine data from multiple sources to
accurately and reliably identify secondary findings.

Conclusions
In summary, this study of the 1000 Genomes, a diverse cohort of unselected individuals, dem-
onstrates that a stringent approach can prioritize a small number of secondary findings for
which the potential clinical benefits of return are great. This work suggests that following
ACMG recommendations using a high threshold for pathogenicity will yield at least a small
number of clinically relevant findings. This work has implications for future research studies,
including the newly proposed Precision Medicine Initiative that is projected to have over 1 mil-
lion participants [58]. An extrapolation of our findings indicates that at least 1,000 participants
in the Precision Medicine Initiative will have a clinically important secondary finding. Genetic
research studies will need to address the ethical and practical issues regarding the return of
these medically actionable results. Future efforts to improve methods for the fast and accurate
identification of secondary findings are needed to speed the translation of genomics into clini-
cal care.
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opment of frequency thresholds in reference datasets. Population prevalence estimates of the
ACMG conditions were taken from several datasets, including GeneReviews and the Genetics
Home Reference. Based on the lowest estimated general population disease prevalence and the
mode of inheritance, we calculated the maximum estimated pathogenic variants per person for
each disease. From this “pathogenic variants per person” estimate, we were able to calculate an
expected number of pathogenic variants for each disease in the NHLBI Exome Sequencing
Project and the 1000 Genomes. Assuming that the occurrence of multiple variants within each
reference dataset followed a Poisson distribution, we calculated a threshold number of variants
that exceeds the 95th cumulative probability percentile with an event rate equal to the expected
number of pathogenic variants in that dataset. Keeping with our cautious approach, we
removed variants associated with each disease that occurred more frequently than this upper
bound 95th percentile in each dataset. Details on all filtered variants along with notes and refer-
ences of the literature review are available in S2 Table. �When the number of expected people
exceeding the 95th cumulative probability percentile was small (3 or less), we used a minimum
cut off of 4 individuals to prevent the removal of possible population specific variants.
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