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To determine the eucaryotic diversity of the hypersaline Guerrero Negro microbial mat, we amplified 18S
rRNA genes from DNA extracted from this mat and constructed and analyzed clone libraries. The extent of
eucaryotic diversity detected was remarkably low, only 15 species among 890 clones analyzed. Six eucaryotic
kingdoms were represented, as well as a novel cluster of sequences. Nematode sequences dominated the clone
libraries.

Biologically rich, laminated, photosynthetic microbial mats
flourish on the floors of evaporating ponds at the Exportadora
de Sal saltworks in Guerrero Negro, Mexico. This industrial
operation pumps seawater out of the Laguna Ojo de Liebre, on
the west coast of Baja California; the water is then gravity fed
through �185 km2 of evaporative basins of increasing salinity.
Microbial mats, 6 to 8 cm thick with a tofu-like consistency,
have developed on the bottom of these �1-m-deep ponds. The
mats at Guerrero Negro have received considerable attention
with regard to biogeochemistry and microbiology (1, 10, 13,
17). Photosynthetic microbiota dominate the top few millime-
ters of the mat complex and produce oxygen during the day
(10). The mat is permanently severely anoxic in the deeper
layers, and throughout the mat at night, with high sulfide levels
from metabolic sulfate reduction (15). Recent, small subunit
rRNA gene sequence surveys have identified in the mat a
spectacular diversity of bacterial species (10). Although a few
eucaryotic rRNA gene sequences were detected, they were
rare, amounting to �0.5% of the total rRNA genes detected
using universal PCR primers.

Most eucaryotic phylogenetic diversity is microbial in na-
ture. Yet, the environmental diversity and distribution of mi-
crobial eucaryotes remain poorly understood and difficult to
observe with the classical methods of microscopy and culture.
Recent culture-independent molecular studies have expanded
the known extent of eucaryotic phylogenetic diversity, includ-
ing unique microbes from environments considered “extreme,”
such as anoxic deep sea trenches (19), the McMurdo Dry
Valleys of Antarctica (7), the endolithic environments of Yel-
lowstone (20), anoxic sediments (2, 6), and others (11, 16). In
considering that the chemical and bacterial complexity of the
Guerrero Negro mat might also indicate high eucaryotic diver-

sity, we undertook to determine the eucaryotic complexity of
mat samples. Analyses were conducted through sequence-
based identification of microbial eucaryotes based on PCR
amplification and sequence analysis of small subunit rRNA
genes.

In brief (detailed methods can be found in the supplemental
material online and as described previously in references 10
and 20), DNA was purified from 10 vertical sections of �6-cm
cores (the top 6 mm was in millimeter-sized sections; below
that were four sections of 1 cm each) from the well-studied site
Pond Four (near Pond Five) at the saltworks site and used as
the template for eucaryote-specific PCR amplification of the
small-subunit rRNA gene. PCR products were cloned, and
�2,000 randomly selected clones were screened by restriction
fragment length polymorphisms (RFLP). Approximately 300
representative RFLP types were sequenced, and the results
were compared to database sequences. About 50% of the
sequences were representative of eucaryotes (many archaea
were detected). Overall, this survey of eucaryotic diversity in
the Guerrero Negro mat is based on 890 RFLP-type clones.
This is a relatively limited sampling, but it is sufficient, from
a population statistical point of view, to gain some insight
into the local eucaryotic diversity in the context of high
bacterial diversity (10).

Phylogenetic analyses of the sequences were conducted to
identify the resident eucaryotes. The overall census is summa-
rized in Fig. 1, and the distribution of sequences is given in
Table 1. In light of the high bacterial diversity, the eucaryotic
diversity detected was surprisingly low, only �15 species-level
groups representing six eucaryotic kingdom-level phyla were
identified. Diversity estimates were utilized and they predicted
16 eucaryotic “species” in this sample (see methods described
in the supplemental material). All sequences, with the excep-
tion of one cluster, were closely related to those of organisms
previously described or to environmental sequences previously
encountered. The novel sequences that had no kingdom-level
affiliation with known sequences we termed Guerrero Negro
Eucaryal Group 1 (GNEG1). GNEG1 sequences are all closely
related, �99% identity in rRNA sequence, and possibly allelic.
This indicates that the same or highly similar organisms occur

* Corresponding author. Mailing address: Department of Molecu-
lar, Cellular and Developmental Biology, University of Colorado,
Boulder, CO 90309-0347. Phone: (303) 735-1864. Fax: (303) 492-7744.
E-mail: nrpace@colorado.edu.
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throughout the mat. Phylogenetic analyses of these sequences
indicate a deeply branching eucaryotic lineage that is not “fast
clock” and has no specific affiliation with any other clusters
within the eucaryotic domain. Attempts to visualize the corre-
sponding organism by fluorescence in situ hybridization were
unsuccessful due to the overwhelming autofluorescence ob-
served in these mats.

The most abundant eucaryal sequences detected, approxi-

mately half, were those of nematodes. In order to resolve the
relationships of the sequences, we conducted an all-nematode
phylogenetic analysis, which was largely congruent with that of
Meldal and colleagues (11; see Fig. S1 in the supplemental
material). Figure 2 shows the local grouping of the Monhys-
teridae and Rhabdolaimidae families, with which the Guerrero
Negro sequences are affiliated. The limited variation in both
groups of sequences (Table 1) is potentially allelic and in any
case indicates that only two kinds of nematodes dominate the
eucaryotic diversity of the mat at the site sampled.

The unusual properties of these nematodes, including their
anaerobic lifestyle, their resistance to sulfide poisoning, and
their persistence in the hypersaline state, encouraged efforts to
cultivate them. A representative of the Monhysteridae family, a
Diplolaimelloides sp. (Fig. 2), was cultured on 1.5% agar con-
taining 1% NaCl and spread lightly with an autoclaved emul-
sion of the mat (see materials and methods described in the
supplemental material). Microscopic examination (see Fig. S2
in the supplemental material) showed a pharynx typical of
bacterivorous, free-living nematodes, sexual dimorphism of the
tails, and anterodorsal ocelli that are red pigmented with a
small white spot at the anterior tip (3, 4, 9).

Other conspicuous sequences in the mat include those of an
insect and a crustacean, both of which are closely related to the
rRNA sequences of named organisms (Table 1). The se-
quences are found mainly in the upper portion of the mat and
presumably represent grazers of the mat. The only conspicuous
photosynthetic organism detected by sequence (99% identity),
the stramenopile Nannochloropsis gaditana, was located mainly
at mid-depth in the mat. Presuming that the organism repre-
sented by the sequence conducts oxygenic photosynthesis, this
may indicate that oxygen production occurs more deeply in the
mat than generally considered.

This survey of the mat eucaryotes clearly is not comprehen-

FIG. 1. Guerrero Negro eucaryotic diversity. This pie chart shows
the relative diversity of each of the eucaryotic species detected in the
mat, based on the 890 clones screened.

TABLE 1. Overall eucaryotic diversitya

Affiliation

No. of clones
identified
(total n �

890)b

No. of clones identified per layer
% Identity to the nearest

organism by BLAST comparison

Intragroup
sequence

divergence
Top (1–2 mm)

(n � 335)
Middle (3–6 mm)

(n � 250)
Bottom (0.7–3.7 cm)

(n � 185)

Monhysteridae (nematode) 257 142 60 55 95% to Diplolaimelloides meyli 0.07d

GNEG1 209 52 58 99 Unaffiliatedc 0.02
Stramenopila spp. 121 1 101 19 99% to Nannochloropsis

gaditana
0.06e

Rhabdolaimidae (nematode) 120 34 76 10 96% to Rhabdolaimus cf.
terrestris 1Z

0.05f

Insecta (arthropod) 90 87 3 0 98% to Berosus luridus 0.04
Crustacea (arthropod) 71 52 19 0 97% to Bryocamptus pygmaeus 0.01
Alveolata 17 0 5 17 98% to Gymnodinium beii 0.03
Ascomycota (fungi) 3 1 2 0 99% to Metschnikowia

bicuspidata
N/Ag

Chlorophyta 1 0 1 0 97% to Picochlorum sp. strain
UTEX 2491

N/A

Stramenopila 1 0 1 0 95% to Aplanochytrium
kerguelense

N/A

a The frequency of each eucaryotic species is shown both overall and in three chemically distinct layers of the mat. Also shown are the nearest relatives, found by
BLAST, and the intragroup sequence divergence.

b n, number of clones analyzed.
c Unaffiliated, �87% sequence identity to any previously sequenced rRNA gene.
d Based on 16 clones with sequences from nucleotide positions 3253 to 7823.
e Based on 22 clones with sequences from nucleotide positions 3259 to 7817.
f Based on 10 clones with sequences from nucleotide positions 3253 to 7823.
g N/A, not applicable. Only one clone was sequenced, so no divergence can be calculated.
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sive; most of the sequences derive from a limited diversity of
organisms, and sequences representative of some groups were
detected only once (Table 1). Nonetheless, and with acknowl-
edgment of the caveats of molecular technology (e.g., PCR
bias, variability in rRNA gene dosage [14], etc.), based on our
study of multiple environments (6, 10, 17, 20), we believe the
frequency with which rRNA genes are detected probably is a
rough measure of the corresponding biomass.

The eucaryotic diversity of the Guerrero Negro mat is sur-
prisingly sparse considering the vast bacterial diversity in the
same setting. What might account for this disparity in species
richness of bacteria and eucaryotes? The answer may lie in the
differences in intrinsic metabolic capabilities of bacteria and
eucaryotes. Bacteria collectively exhibit broad metabolic capa-
bilities and can occupy the many chemical niches that are
generated during the physiological function of the mat com-
munity. In contrast, the metabolic versatility of eucaryotes
seems more limited, basically fermentative in the absence of
bacterial symbionts, though capable of survival under high
sulfide, fermentative, anaerobic conditions. The dominant or-
ganisms in the mat, the nematodes, evidently are bacterivo-
rous. The Monhysteridae nematodes are commonly found in
marine sediments and are prevalent at the oxic-anoxic bound-
ary (18). Although such organisms comprise only a small frac-
tion of the total Guerrero Negro mat biomass, they are con-
spicuous and possibly play an important role in the community,
for instance by imparting churning action and microbial/chem-
ical transport within the mat (8). The diverse organisms de-
tected provide good subjects for study of the ways in which
eucaryotes adapt to environmental stresses such as extreme
anoxia and drastic diel sulfide fluctuations.

Nucleotide sequence accession numbers. Eucaryotic sequences
were submitted to GenBank with accession numbers EF659781 to
EF659934.
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