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Neurobiology of Disease

Defective cAMP Generation Underlies the Sensitivity of
CNS Neurons to Neurofibromatosis-1 Heterozygosity

Jacquelyn A. Brown, Scott M. Gianino, and David H. Gutmann
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110

Individuals with the neurofibromatosis type 1 (NF1) inherited cancer syndrome exhibit neuronal dysfunction that predominantly affects
the CNS. In this report, we demonstrate a unique vulnerability of CNS neurons, but not peripheral nervous system (PNS) neurons, to
reduced Nf1 gene expression. Unlike dorsal root ganglion neurons, Nf1 heterozygous (Nf1�/�) hippocampal and retinal ganglion cell
(RGC) neurons have decreased growth cone areas and neurite lengths, and increased apoptosis compared to their wild-type counterparts.
These abnormal Nf1�/� CNS neuronal phenotypes do not reflect Ras pathway hyperactivation, but rather result from impaired
neurofibromin-mediated cAMP generation. In this regard, elevating cAMP levels with forskolin or rolipram treatment, but not MEK
(MAP kinase kinase) or PI3-K (phosphatidylinositol 3-kinase) inhibition, reverses these abnormalities to wild-type levels in vitro. In
addition, Nf1�/� CNS, but not PNS, neurons exhibit increased apoptosis in response to excitotoxic or oxidative stress in vitro. Since
children with NF1-associated optic gliomas often develop visual loss and Nf1 genetically engineered mice with optic glioma exhibit RGC
neuronal apoptosis in vivo, we further demonstrate that RGC apoptosis resulting from optic glioma in Nf1 genetically engineered mice is
attenuated by rolipram treatment in vivo. Similar to optic glioma-induced RGC apoptosis, the increased RGC neuronal death in Nf1�/�
mice after optic nerve crush injury is also attenuated by rolipram treatment in vivo. Together, these findings establish a distinctive role for
neurofibromin in CNS neurons with respect to vulnerability to injury, define a CNS-specific neurofibromin intracellular signaling
pathway responsible for neuronal survival, and lay the foundation for future neuroprotective glioma treatment approaches.

Introduction
Neurofibromatosis type 1 (NF1) is one of the most common
inherited cancer syndromes affecting the nervous system. Chil-
dren with NF1 are born with one mutated (nonfunctional) and
one functional copy of the NF1 gene in every cell in their body
(NF1 heterozygosity), but develop low-grade central and periph-
eral nervous system (PNS) tumors after somatic inactivation of
the remaining functional NF1 allele in specific cells (e.g., glial
cells). Within the CNS, glial neoplasms affecting the optic nerve
(ON)/chiasm (optic glioma) arise in 15% of children with NF1
(Listernick et al., 1997). Nearly half of children with NF1-
associated optic gliomas have visual impairment (Listernick et al.,
1997), and few regain vision after treatment (Dalla Via et al.,
2007). Additionally, 50 –70% of children with NF1 exhibit learn-
ing disabilities that limit scholastic performance (Eliason, 1986;
North et al., 1995, 1997; Ozonoff, 1999; Hyman et al., 2005). To
model these learning disabilities, previous studies used Nf1 ge-
netically engineered mice (GEMs) to demonstrate that the learn-
ing and memory abnormalities seen in Nf1�/� mice result from

Nf1 heterozygosity in neurons, not glial cells (Costa et al., 2002;
Cui Y. et al., 2008).

The role of the NF1 protein, neurofibromin, in neuronal func-
tion has been primarily studied in PNS neurons. Pioneering stud-
ies by Parada and associates first demonstrated that complete Nf1
inactivation in peripheral ganglion cells resulted in relative neu-
rotrophin independence, leading to inappropriate (increased)
neuronal survival (Vogel et al., 1995). In contrast, previous studies
by our laboratory focusing on neuronal and glial differentiation
from neural stem cells (NSCs) in vitro and in vivo demonstrated
that Nf1�/� neurons exhibited decreased neurite lengths, re-
sulting in reduced secondary somatosensory cortical thickness
(Hegedus et al., 2007). However, unlike PNS neurons whose rel-
ative neurotrophin independence results from Ras hyperactiva-
tion, NSCs expressing an activated Ras allele form neurons with
normal neurite lengths in vitro and in vivo, suggesting that Ras
hyperactivation was not responsible for this abnormal neuronal
phenotype in Nf1-deficient cells.

The purpose of the current study was to resolve the apparent
differences between central and peripheral system neuronal vul-
nerability to changes in Nf1 gene dose, and to define the molec-
ular mechanism underlying these differences. Herein, we show
that PNS neurons are not significantly affected by Nf1 heterozy-
gosity in vitro, whereas Nf1�/� neurons from either the hip-
pocampus or retina have dramatically shorter neurite lengths and
growth cone areas, as well as increased apoptosis in vitro. We
further demonstrate that these phenotypes in CNS neurons result
from impaired neurofibromin regulation of cAMP. Finally, we
use the Nf1�/�GFAPCKO (conditional knock-out) optic glioma
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GEM strain to show that correcting the cAMP signaling defect
resulting from reduced neurofibromin function in retinal neu-
rons ameliorates the retinal ganglion cell (RGC) apoptosis asso-
ciated with tumor formation in vivo. Together, these findings
demonstrate that CNS and PNS neurons are differentially sensi-
tive to the effects of Nf1 heterozygosity, and establish cAMP as an
important target for future therapeutic drug design aimed at re-
ducing CNS neuronal dysfunction in individuals with NF1.

Materials and Methods
Chemicals, reagents, and antibodies. All chemicals were purchased from
Sigma unless otherwise indicated: class III �-tubulin (Tuj-1; 1:1000 dilution;
Covance), CD90.2 (1:250 dilution; eBioscience), forskolin (0.01 mM), rolip-
ram(200�M),1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)-
butadiene (U0126; 10 �M), 2�,5�-dideoxyadenosine (DDA; 100 �M), and
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002; 30 �M).
All drug treatments in vitro were performed for the entire culture period,
with the exception of LY294002, which was added only during the final 3 d of
the experiment.

Cell culture. Hippocampal cultures were prepared as described previ-
ously (Clarris et al. 1994) with Hibernate-E used for dissection medium.
Hippocampi were dissociated in HBSS containing 1% papain (Worth-
ington Biochemicals) and 5 U/ml DNase (Invitrogen), transferred to a
solution containing 1% ovomucoid (Worthington Biochemicals), and
plated in DMEM plus 10% fetal calf serum for 4 h before medium was
switched to neural basal medium plus B27 and 2 mM L-glutamine for 3 d.

Dorsal root ganglion (DRG) cultures were obtained and cultured as
reported previously (Brown et al. 2009). Dissociated cultures dissociated
in 0.02% trypsin/EDTA were grown in C10-2 medium for 48 h. For the
oxidative stress experiments, DRG neurons were grown in neural basal
medium containing B27, 50 ng/ml nerve growth factor (NGF), and 2 mM

L-glutamine for 3 d.
Wild-type (WT) or Nf1 heterozygous (Nf1�/�) RGCs were generated

from postnatal day 4 (P4)–P5 mice according to established protocols,
and were cultured for 6 d before fixation (Barres et al. 1988; Shoge et al.
1999).

Primary astrocyte cultures were prepared as described previously for
mixed glial-RGC culture experiments, and cultured for 3 d before fixa-
tion (Dugan et al., 1999; Sandsmark et al., 2007).

Retinal explant cultures were prepared with the RGC layer facing
down and contacting the substrate (Hansen et al. 2004). Magnetic cell
sorting was used to isolate RGCs (�94% purity) using established pro-
tocols (Kerrison and Zack, 2007): retinal tissues were dissected in Mg 2�/
Ca 2�-free HBSS and dissociated in HBSS containing 1% papain
(Worthington Biochemicals) and 5 U/ml DNase (Invitrogen), transferred to
a solution containing 1% ovomucoid (Worthington Biochemicals), and trit-
urated before magnetic capture affinity separation. Dissociated cells were
then magnetically depleted of non-RGCs using a CD11b/c antibody, fol-
lowed by immunoenrichment of CD90.2-positive RGCs. After centrifuga-
tion, purified RGCs were resuspended in neural basal culture medium and
plated on poly-D-lysine- (10 �g/ml) and laminin-coated (9.6 �g/ml) glass
coverslips (22 mm; Fisher Scientific) in 35 mm dishes at a density of 15,000
cells per coverslip. RGCs were cultured in neurobasal medium and supple-
mented with B27, selenium, putrescine, triiodothyronine, transferrin, pro-
gesterone, pyruvate (1 mM), glutamine (2 mM), ciliary neurotrophic factor
(10 ng/ml), brain-derived neurotrophic factor (BDNF; 50 ng/ml), and insu-
lin (5 �g/ml) at 37°C and 10% CO2.

Excitotoxic death and oxidative stress experiments. CNS (hippocampal
and forebrain) and PNS (DRG) neuronal cultures were prepared as de-
scribed above. After day in vitro (DIV) 10 for CNS neurons and DIV 3 for
PNS neurons, the culture medium was replaced with medium lacking
phenol red. Excitotoxic cell death was assessed after exposure to medium
containing 50 �M glutamate for 24 h. Death from oxidative stress was
assessed after exposure to medium containing 100 �M H2O2 (CNS neu-
rons) or 60 �M H2O2 (PNS neurons) for 24 h. At the end of the incuba-
tion period, the medium was collected for lactate dehydrogenase (LDH)
measurements, and the cells were fixed in 4% paraformaldehyde for

terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling (TUNEL) staining (apoptosis).

LDH measurements. Media removed from the CNS and PNS cultures
were analyzed in triplicate using a commercial LDH cytotoxicity assay kit
(Promega). Fresh medium was used as a negative control, whereas LDH
(1:5000 dilution) served as a positive control. LDH levels were quanti-
tated using the �Quant plate reader at an absorbance of 490 nm (Bio-Tek
Instruments).

Immunofluorescence. Cells were prepared as described previously
(Brown and Bridgman, 2009) using PBS instead of cacodylate buffer.
Images were taken using an Olympus confocal or an inverted microscope
equipped with a Cooke Sensicam. TUNEL was accomplished according
to the manufacturer’s instructions (Roche Diagnostics). Fixed cultures
were imaged using phase confocal microscopy and then scored for
growth cone area, neurite length, or TUNEL staining using ImageJ.

cAMP measurements. Dissected whole retinas snap frozen in liquid
nitrogen were triturated in ice-cold 5% trichloroacetic acid (10 �l per mg
tissue) and centrifuged at 1000 � g for 10 min at 4°C. Supernatants
supplemented with equal volume of 0.1 M HCl were extracted with water-
saturated ether thrice before desiccation in a vacuum centrifuge. cAMP
levels were determined using a cAMP enzyme immunoassay kit (Assay
Designs).

Optic nerve crush injury. Surgeries were conducted on 3-month-old
mice. All surgeries were performed on the left eye, leaving the right eye as
a control. Animals were anesthetized with ketamine (80 mg/kg) and
xylazine (8 mg/kg) intraperitoneally. The conjunctiva was then incised at
the limbus, and the subtenon space was bluntly dissected posteriorly.
Next, the muscle cone was entered and the optic nerve was exposed. The
axons of the optic nerve were crushed with fine forceps for 10 s, 1 mm
posterior to the globe under direct visualization. Retinal ganglion cell
axon crush resulted in a separation of the proximal and distal optic nerve
end within an intact meningeal sheath. This procedure spares the men-
ingeal vessels that carry arterial circulation to the retina. Any animal in
which the meningeal vessels were compromised was killed immediately.
Ophthalmic ointment with neomycin-polymyxin-hydrocortisone was
applied to the wound for postsurgical pain management.

Eye injections. Eye injections were preformed as described previously
(Jaubert-Miazza et al., 2005). Briefly, 3-month-old mice received either
drug or control solution injected into their left eye 3 d after ON crush
injury on the same day. A Hamilton syringe, filled with 5 �l of solution
containing either Rolipram (272 �M) or DMSO (Sigma), was inserted
into the hole made by the first pipette. Three days later, mice were deeply
anesthetized (isofluorane vapor or Nembutal, i.p.), transcardially per-
fused with heparinized Ringer’s solution (30 ml) followed by 4% para-
formaldehyde in 0.1 M PBS, pH 7.4 (40 ml), and tissues processed for
analysis.

Rolipram treatment. Nf1�/� GFAPCKO mice were treated at 2 months
of age with rolipram (5 mg/kg/d in the drinking water) for 30 d. After
perfusion, the eyeballs were placed in 1% agar in PBS and oriented with
the retro-orbital optic nerve horizontal to the cutting surface. Five mi-
crometer paraffin sections were generated for TUNEL labeling using a
Roche Diagnostics kit. The number of TUNEL� cells in the retinal gan-
glion cell layer was determined as a percentage of DAPI� cells for at least
four mice per group. This experiment was performed twice on indepen-
dent cohorts of mice with identical results.

Structural analysis of growth cone areas and neurite lengths. Growth
cone areas were measured using ImageJ, starting at the neck and tracing
around the growth cone. The mean, standard error, and p value were
calculated from at least 40 randomly selected growth cones per condi-
tion. The investigators were always blinded to the genotype of the growth
cones. Neurite lengths were also measured using ImageJ, and only neu-
rons with intact growth cones were included. Neurites were traced start-
ing at the outer edge of the cell body so that the cell body size would not
skew measurements. As before, at least 40 randomly selected neurites per
condition were used to calculate the mean, standard error, and p value.

Statistical analyses. Student’s t tests were used to determine significant
changes in growth cone area and neurite length. A 2 � 2 contingency
table analysis with Fisher’s exact test was used to compare cell death
frequencies. Mean and SEM were used for all graphs. All in vitro experi-
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ments were performed in a blinded fashion at least three times with
identical results.

Results
Nf1 heterozygosity results in impaired hippocampal neuron
morphology and survival
To determine the effect of reduced Nf1 expression on CNS neu-
rons, we used dissociate cultures of hippocampal neurons from
approximately embryonic day 13.5 (E13.5) mouse embryos. Each
culture plate was derived from a single embryo, and the investi-
gator was blinded to the genotype until after the scoring was
complete. After 3 d in culture, cells were fixed and labeled with
the Tuj-1 neuronal marker and TUNEL to measure apoptotic cell
death. Cultures were then scored for growth cone area, neurite
length, and cell death. Surprisingly, the growth cone areas from
Nf1�/� hippocampal neurons were �40% smaller than their
WT counterparts ( p � 0.0001; N � 40) (Fig. 1A). Given the
importance of growth cones in neuronal target finding during
development and regeneration (Lankford et al., 1990), neurons
with reduced growth cone spreading may also have attenuated
neuronal processes. As predicted, Nf1�/� hippocampal neurite
lengths were 25% shorter than their WT counterparts ( p � 0.02;
N � 47) (Fig. 1B). Moreover, Nf1�/� hippocampal neurons
also exhibited increased cell death in vitro compared to WT neu-
rons ( p � 0.05) (Fig. 1C). Collectively, these findings demon-
strate that reduced neurofibromin expression results in impaired
hippocampal neuron function in vitro.

Nf1 heterozygosity has minimal effects on PNS
neuronal function
Previous research has shown that complete Nf1 inactivation con-
fers relative trophic factor-independent survival on DRG neu-
rons and that heterozygosity has no effect on the survival of DRG
neurons, with or without NGF (Vogel et al., 1995). In light of the
effects of Nf1 heterozygosity on CNS neurons, we sought to de-
termine whether the observed growth and survival deficits re-
flected differences in sensitivities to Nf1 gene dose in CNS versus
PNS neurons. DRG neurons were prepared from the same
�E13.5 mouse embryos used to generate the above hippocampal
neuron cultures. As before, the investigator was blinded to the
genotypes until all data were compiled. In contrast to hippocam-
pal neurons, there was a small increase in growth cone areas in
Nf1�/� DRG neurons compared to their WT counterparts,
which was the opposite of what we observed with hippocampal
neurons ( p � 0.05; N � 40) (Fig. 2A). Similar to previous re-
ports, there were no differences in neurite lengths or apoptosis
between Nf1�/� and WT DRG neurons (Fig. 2B,C). These find-
ings confirm earlier studies, and demonstrate striking differences
in sensitivity to Nf1 heterozygosity in CNS and PNS neuronal
populations.

Nf1 heterozygosity results in impaired RGC neuron
morphology and survival
To strengthen our observation that Nf1 heterozygosity in CNS
neurons results in abnormal neuronal phenotypes, we next chose
to examine another population of CNS neurons relevant to chil-
dren with NF1. We elected to study RGC neurons based on our
finding of retinal layer neuronal death in a genetically engineered
mouse model of NF1-associated optic glioma (Hegedus et al., 2009).
For these studies, we used both dissociate RGC cultures and retinal
explants with identical results. Retinal explant cultures from P5 mice
contained a near-pure (�98%) population of RGC neurons, as
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demonstrated using the CD90.2 RGC marker (supplemental Fig.
1A, available at www.jneurosci.org as supplemental material). Cells
were fixed and stained after 6 d in culture, and growth cone spread-
ing was assessed in a blinded fashion as before.

As seen with the hippocampal neurons, Nf1�/� RGC neu-
rons had 57% smaller growth cones compared to their WT coun-
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terparts ( p � 0.0001; N � 40) (Fig. 3A). Neurite length was
assessed in Thy1.2-magnetic bead affinity-purified dissociate cul-
tures: as before, Nf1�/� RGC neurite lengths were 35% shorter
than their WT counterparts ( p � 0.0001; N � 40) (Fig. 3B). To
assess apoptotic cell death, retinal explants were grown on a bed
of astrocytes, to facilitate RGC migration from the explant. The
percent of TUNEL�, CD90.2� cells was 9% higher in Nf1�/�
compared to WT RGC neurons, independent of the Nf1 status of
the astrocytes ( p � 0.05) (Fig. 3C). In combination with the
results obtained with hippocampal and DRG neurons, these data
confirm that CNS neurons are uniquely sensitive to reduced Nf1
gene expression.

To extend our findings to other conditions that result in neu-
ronal death, we also examined the impact of Nf1 heterozygosity
on apoptosis resulting from excitotoxicity (CNS neurons) and
oxidative stress (CNS and PNS neurons). Using glutamate-
induced excitotoxicity, we found that Nf1�/� forebrain neurons
exhibit increased LDH release and apoptosis (28% increase rela-
tive to untreated cultures) compared with their WT counterparts
(12% increase relative to untreated cultures) (Fig. 4A). Similarly,

Nf1�/� forebrain neurons exhibit increased LDH release and
apoptosis in response to H2O2-induced oxidative stress (21%
increase relative to untreated cultures) compared to WT neurons
(8% increase relative to untreated cultures) (Fig. 4B). However,
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in contrast, Nf1�/� DRG neurons exhibited levels of LDH re-
lease and apoptosis indistinguishable from WT neurons in re-
sponse to H2O2-induced oxidative stress (both exhibited a 30%
increase relative to untreated cultures) (Fig. 4C). These results,
coupled with our finding that Nf1�/� CNS, but not PNS, neu-
rons have reduced neurite lengths, growth cone areas, and sur-
vival, demonstrate that Nf1 heterozygosity confers a vulnerability
to cell death in the CNS.

cAMP levels, not Ras hyperactivation, are responsible for the
neuronal dysfunction seen in Nf1�/� RGCs in vitro
Whereas previous studies have demonstrated that Nf1�/� PNS
neurons exhibit increased cell survival resulting from impaired
neurofibromin Ras regulation, we have shown that reduced Nf1-
deficient CNS neuronal neurite lengths are the consequence of
neurofibromin control of cAMP levels and not Ras regulation. To
determine whether cAMP or Ras deregulation was primarily re-
sponsible for the neuronal abnormalities seen in Nf1�/� CNS
neurons, we initially examined activated mitogen-activated protein
kinase (MAPK; phospho-MAPK) (Fig. 5A) and Akt (phospho-
Akt) (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material) expression by double-labeling immuno-
fluorescence, and found no differences in Ras pathway activation
between WT and Nf1�/� retinal ganglion layer neurons in situ.
Furthermore, reducing MAPK activation with the U0126 MAP
kinase kinase (MEK) inhibitor did not restore growth cone
spreading in Nf1�/� RGC neurons (Fig. 5B). The concentra-
tion of U0126 used in these experiments was sufficient to
reduce, but not eliminate, MAPK activation in the retina (Fig.

5C). Similarly, pharmacologic inhibition of phosphatidylino-
sitol 3-kinase (PI3-K; LY294002) activation in Nf1�/� RGC
neurons did not restore growth cone spreading in Nf1�/� RGC
neurons (Fig. 6A). Finally, to directly evaluate the impact of
activated Ras in RGC neurons, we used a mouse strain [brain
lipid-binding protein (BLBP)-Cre] to drive constitutively ac-
tive KRas G12D in neurons (Hegedus et al., 2007, 2009). Al-
though neurons from BLBP-Cre; KRasG12D mice exhibit high
levels of Ras and Ras pathway activity (Hegedus et al., 2007,
2008), RGC neurons from these mice had growth cone areas
indistinguishable from WT mice (Fig. 6B). Together, these data
indicate that the Ras pathway, although important for Nf1�/�
PNS neuronal function, is not primarily responsible for the ab-
normalities observed in Nf1�/� CNS neurons.

To determine whether cAMP might be responsible for the
neuronal abnormalities observed in Nf1�/� RGC neurons, we
first measured cAMP levels in whole retina preparations. We
found that cAMP levels were significantly lower in Nf1�/�
RGCs than in their WT counterparts ( p � 0.02; N � 8) (Fig. 7A).
Second, we restored cAMP levels using two methods: adenylyl
cyclase activation (forskolin) (Fig. 7B, supplemental Fig. 1B,
available at www.jneurosci.org as supplemental material) and
phosphodiesterase-4 inhibition (rolipram) (Fig. 7C). After either
forskolin or rolipram treatment, Nf1�/� RGC neuronal growth
cone areas and neurite lengths were restored to WT levels.
Identical effects were observed using embryonic RGC neurons
(supplemental Fig. 1C, available at www.jneurosci.org as supple-
mental material) and hippocampal neurons (supplemental Fig.
3A,B, available at www.jneurosci.org as supplemental material).
Third, lowering cAMP levels in WT RGC neurons using DDA
(adenylyl cyclase inhibitor) resulted in reduced growth cone areas
(Fig. 7D), similar to what we observed in Nf1�/� RGC neurons.

Next, to relate neurite length to apoptosis, we assayed cell
survival after rolipram or forskolin treatment. Since neurite number
has previously been correlated with cell survival (Oshitari et al.,
2002), we examined the impact of cAMP-elevating treatments on
RGC explant neurite number. As before, rolipram restored neu-
rite numbers to WT levels (Fig. 8A). We then quantified the
number of caspase-3-immunoreactive RGC neurons with one or
more neurites to determine whether restoration of cAMP levels
in Nf1�/� RGC neurons would increase the number of neurons
early during the process of programmed cell death. Similarly,
rolipram or forskolin treatment reduced the number of caspase-
3-immunoreactive RGC neurons with one or more neurites to
levels observed in WT RGC neurons (supplemental Fig. 1D,E,
available at www.jneurosci.org as supplemental material). Fi-
nally, we directly assayed apoptosis using the TUNEL method.
After treatment with either rolipram or forskolin, RGC neuronal
death was reduced to WT levels ( p � 0.0001) (Fig. 8B). Together,
these data show that reduced cAMP levels are responsible for the
abnormal phenotypes observed in Nf1�/� RGC neurons.

Nf1 heterozygosity predisposes to increased RGC apoptosis
after optic nerve crush and optic glioma formation in vivo
We performed two experimental paradigms to examine the im-
pact of Nf1 heterozygosity on RGC neuronal survival in the intact
animal. First, we used a standard optic nerve crush injury model
to determine whether Nf1 heterozygosity leads to increased RGC
apoptosis. Three days after optic nerve crush, we determined the
number of apoptotic cells in the retinal ganglion layer. Compared
to WT mice, apoptotic RGC neuronal death in Nf1�/� mice was
increased by 15% ( p � 0.01) (Fig. 9A).
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Second, we used a novel GEM model of NF1-associated
optic glioma (Bajenaru et al. 2003; Zhu et al. 2005): nearly
100% of these Nf1�/� mice lacking neurofibromin expres-
sion in GFAP� cells (Nf1�/� GFAPCKO mice) develop glio-
mas affecting the prechiasmatic optic nerves and chiasm by 3
months of age. Moreover, Nf1�/� GFAPCKO mice exhibit ax-
onal damage in the retro-orbital optic nerve proximal to the site

of glioma formation and demonstrate
RGC death (Hegedus et al. 2009) (Fig.
9B). No RGC neuronal apoptosis was ob-
served in Nf1�/� mice or mice lacking
Nf1 expression in GFAP� cells (Hegedus
et al. 2009).

Restoration of cAMP reverses Nf1�/�
RGC neuronal apoptosis after optic
glioma formation and optic nerve
crush in vivo
Given the increased susceptibility of
Nf1�/� RGCs to cell death in vitro and in
vivo, we next sought to determine whether
elevating cAMP levels in Nf1�/
�GFAPCKO mice might reduce the RGC
neuronal death resulting from optic gli-
oma. After 30 d of rolipram treatment be-
ginning at 2 months of age, RGC apoptosis
was significantly attenuated ( p � 0.0001)
(Fig. 9B). No significant change in the to-
tal number of cells was seen (data not
shown). These results demonstrate that
RGC death in the setting of an optic gli-
oma can be reduced by raising cAMP lev-
els in vivo.

To extend these findings to another
paradigm of neuronal injury, we treated
Nf1�/� and WT mice with ether 200 �M

rolipram or DMSO (vehicle) after optic
nerve crush injury. Similar to Nf1�/�GFAP

CKO mice with optic glioma, rolipram
treatment reduced RGC neuronal apo-
ptosis in Nf1�/� mice by 32% compared
to vehicle-treated controls ( p � 0.006) (Fig.
9C). Collectively, these results support a
model in which Nf1�/� CNS neurons are
susceptible to injury in a cAMP-dependent
manner.

Discussion
Children with NF1 have neuronal abnor-
malities that primarily affect the CNS, in-
cluding learning, memory, and behavioral
problems as well as optic nerve dysfunc-
tion resulting from optic glioma forma-
tion. The predominance of symptoms
within the CNS of children with NF1 sug-
gests that neurofibromin is a critical regu-
lator of CNS neuron function, and that
CNS neurons might be uniquely sensitive
to changes in NF1 gene expression. In this
study, we use a combination of in vitro
and in vivo experimental paradigms to
demonstrate that CNS neuronal popula-
tions (hippocampal and retinal ganglion
neurons), but not PNS dorsal root gan-

glion neurons, are dramatically affected by reduced Nf1 gene
expression (Nf1 heterozygosity). Moreover, we show that the se-
lective vulnerability of CNS neurons to Nf1 heterozygosity re-
flects impaired neurofibromin regulation of cAMP levels. These
findings highlight the dramatic differences in cellular responses
to Nf1 gene dosage and neurofibromin-regulated intracellular
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signaling, and provide new mechanistic
insights into the selective vulnerability of
CNS neurons to injury.

Whereas previous studies have shown
that Nf1 heterozygosity can increase pro-
liferation, motility, angiogenic properties,
and differentiation in numerous nervous
(Daginakatte and Gutmann, 2007; Kim et
al., 1997; Bennett et al., 2003) and nonn-
ervous (McDaniel et al., 2008; Ingram et
al., 2000; Atit et al., 1999) system cell
types, there is comparatively little infor-
mation about the impact of reduced neu-
rofibromin expression on neuronal
function. This is particularly germane to
children and adults with NF1 whose
brains are composed of NF1�/� neu-
rons. Previous investigations focused on
PNS neurons as a model system and
found no effect of Nf1 heterozygosity on
DRG, nodose, trigeminal, or superior cer-
vical ganglion neurons (Vogel et al.,
1995). In contrast, unlike their PNS neu-
ronal counterparts, we show that Nf1�/�
hippocampal and retinal ganglion neu-
rons have reduced neurite lengths, growth
cone areas, and survival. Consistent with
our finding that Nf1 heterozygosity in
CNS neurons results in altered neuronal
function, mice heterozygous for an inac-
tivating Nf1 mutation in synapsin-I-
expressing neurons in the brain exhibit
learning and memory deficits (Cui et al.,
2008).

In addition to the differences we
found in sensitivity to Nf1 gene dosage,
CNS and PNS neurons demonstrate di-
ametrically opposed responses to com-
plete Nf1 inactivation: Nf1-deficient
DRG neurons survived in short-term cul-
ture without exogenous NGF, whereas
WT and Nf1�/� DRG neurons died.
Similarly, sensory neurons isolated from
Nf1�/� embryos survived and extended
neurites in the absence of neurotrophins,
whereas wild-type or Nf1�/� neurons
died rapidly unless NGF or BDNF was
supplied in vitro (Vogel et al., 1995, 2000).
In addition, Nf1�/� neurons in Nf1
conditional knock-out mice have in-
creased neurite outgrowth and collat-
eral branching after dorsal root injury in
vivo (Romero et al., 2007). Moreover, in
the present study, we showed that DRG
neuronal apoptosis induced by oxidat-
ive stress was increased equivalently in
Nf1�/� and WT neurons. In striking
contrast to these findings in PNS neu-
rons, we demonstrated in this report that
Nf1�/� hippocampal and retinal gan-
glion neurons have reduced neurite ex-
tension, growth cone areas, and survival
in response to several distinct injury con-
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ditions in vitro (oxidative and excitotoxic
stress) and in vivo (optic glioma forma-
tion and optic nerve crush). These new
observations are consistent with our
earlier findings that Nf1-deficient neu-
rons differentiated from neural stem
cells have shorter neurites than their
wild-type counterparts in vitro and in vivo
(Hegedus et al., 2007).

Previous studies have shown that PNS
neurite extension and survival is regulated
by the Ras signaling pathway (Vogel et al.,
2000; Aletsee et al., 2001). Neurofibromin
functions in many cell types as a negative
regulator of Ras activity (Basu et al., 1992;
DeClue et al., 1992; Bollag et al., 1996; Hiatt
et al., 2001; Dasgupta et al., 2005; Xu et al.,
2007): Nf1 inactivation leads to increased
Ras activity and deregulated signaling
through the Ras-mediated Akt and MAPK
effector proteins. In this regard, the in-
creased neurite extension and survival ob-
served in Nf1�/� PNS neurons could be
reversed with neutralizing Ras antibodies
(Vogel et al. 2000), consistent with earlier
reports demonstrating that BDNF-
induced nodose ganglion and NGF-
induced DRG neuronal survival are
blocked by Ras neutralizing antibodies
(Borasio et al., 1993). Further examina-
tion of the responsible Ras effector path-
ways revealed that PI3-K, rather than
ERK, activation was required for NGF-
induced embryonic sensory neuron survival
(Klesse and Parada, 1998). Similar depen-
dence on PI3-K activation was also observed
in mouse DRG neurons, such that inhibi-
tion with LY294002 blocked normal axonal
growth cone morphology, neurite out-
growth, and survival (Edström and Ek-
ström, 2003).

In CNS neurons, we found no in-
creased Akt activation in Nf1�/� RGC
neurons and no effect of MEK or PI3-K
inhibition on RGC neurite outgrowth or
survival. Similarly, RGC neurons express-
ing an activated KRas allele had normal
growth cone areas. These findings agree
with previous reports demonstrating that
while Nf1 loss in brain neurons is associ-
ated with increased MAPK activation in
vivo (Zhu et al., 2001; Hegedus et al.,
2007), Ras pathway hyperactivation is
not responsible for the reduced neurite
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4

optic glioma formation in Nf1�/�GFAPCKO mice (white arrows)
is reducedbytreatmentwithrolipram in vivo ( p�0.0001). C,The
increased retinal ganglion layer neuronal apoptosis associated
with optic nerve crush injury 6 d after injury in Nf1�/� mice
(white arrows) is reduced by treatment with rolipram in vivo
( p � 0.006). Error bars indicate SEM. Asterisks denote statis-
tically significant differences (**p � 0.01).
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lengths seen in Nf1�/� neurons. In a previous study, we dem-
onstrated that expression of either an activated KRas
(KRas G12D) or Akt (myr-Akt1) allele had no effect on neurite
length in vitro or in vivo (Hegedus et al., 2007). Rather, the re-
duced neurite lengths observed in vitro and in vivo were reversed
by agents that elevate intracellular cAMP levels (forskolin, rolip-
ram), consistent with the role of neurofibromin as a positive regula-
tor of cAMP in the brain (Tong et al., 2002; Dasgupta et al., 2003). In
addition, replacement of the neurofibromin Ras-GAP domain in
Nf1 mutant mice resulted in restoration of MAPK activity levels,
but had no effect on the hypothalamic neuron dysfunction seen
in these mice (Hegedus et al., 2008). Collectively, these findings
further support our current observations in Nf1�/� RGC and
hippocampal neurons that neurofibromin regulates CNS neu-
rite lengths in a cAMP-dependent manner.

In contrast to our results demonstrating that cAMP is respon-
sible for abnormal CNS neuronal function, a previous study
showed that 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase inhibitor treatment corrected the learning defi-
cits and long-term potentiation abnormalities in Nf1�/� mice
(Li et al., 2005). However, HMG-CoA reductase inhibitors affect
secondary lipid modifications on numerous other proteins in
addition to Ras. Although one target of isoprenylation is monomeric
G-proteins (e.g., Ras), heterotrimeric G-proteins can also undergo
isoprenylation. In this regard, atorvastatin can modulate
�-adrenergic cAMP generation and signaling by isoprenylation of
G-protein � subunits (Mühlhäuser et al., 2006). In keeping with
these findings, lovastatin has been shown to inhibit cAMP-
stimulated chloride secretion (Ecay and Valentich 1993) and prolac-
tin/growth hormone gene expression through a cAMP-dependent
mechanism (Lasa et al., 1997). Similarly, simvastatin increases
cAMP levels in a dose-dependent fashion, which can be abolished
using the mevalonate metabolite geranylgeranyl pyrophosphate or
the H-89 protein kinase A inhibitor (Maeda and Horiuchi 2009).
Finally, atorvastatin and simvastatin can induce cerebellar granule
cell death without affecting Akt or MAPK signaling (März et al.,
2007). In light of these previous results and our current findings, it is
possible that the observed effect of lovastatin on Nf1�/� mouse
learning and memory reflects modulation of cAMP levels, rather
than Ras activity, in CNS neurons.

One of the clinically important implications of the present
report is the ability to significantly attenuate the Nf1�/� RGC
neuronal death associated with optic glioma formation and optic
nerve crush injury with rolipram. The sensitivity of RGC neurons
to cAMP is underscored by numerous previous studies: RGC
neuronal death caused by tetradotoxin can be reversed by elevat-
ing cAMP levels in vitro (Kaiser and Lipton 1990), whereas RGC
neuronal survival and axonal regeneration after axotomy or optic
nerve crush can be increased by the introduction of nonhydro-
lyzable cAMP analogs (Cui et al., 2003; Monsul et al., 2004). Our
finding that Nf1�/� RGC neuron survival reflects deregulated
cAMP signaling is intriguing in light of previous studies from our
laboratory showing that Nf1 loss in astrocytes leads to inappro-
priate cell survival as a consequence of impaired cAMP genera-
tion (Warrington et al., 2007). In contrast to neurons, increased
cAMP levels are associated with reduced astrocyte survival (Dugan et
al., 1999; Warrington et al., 2007). After treatment with rolipram or
forskolin, Nf1�/� astrocyte survival is reduced to wild-type levels in
vitro. Moreover, rolipram treatment in vivo similarly results in re-
duced optic glioma proliferation (N. Warrington, S. Gianino, D. H.
Gutmann, and J. B. Rubin, unpublished observation). The observa-
tion that cAMP-elevating drugs not only reduce optic glioma growth
but also attenuate RGC neuronal apoptosis raises the exciting possi-

bility that this therapeutic strategy may have both anticancer and
neuroprotective effects in the management of children with NF1-
associated optic glioma.
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