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Abstract

Chronic kidney disease (CKD) can be a consequence of diabetes, hypertension, immunologic disorders, and other
exposures, as well as genetic factors that are still largely unknown. Glomerular filtration rate (GFR), which is widely used to
measure kidney function, has a heritability ranging from 25% to 75%, but only 1.5% of this heritability is explained by
genetic loci that have been identified to date. In this study we tested for associations between GFR and 234 SNPs in 26
genes from pathways of blood pressure regulation in 3,025 rural Chinese participants of the ‘‘Genetic Epidemiology
Network of Salt Sensitivity’’ (GenSalt) study. We estimated GFR (eGFR) using baseline serum creatinine measurements
obtained prior to dietary intervention. We identified significant associations between eGFR and 12 SNPs in 6 genes (ACE,
ADD1, AGT, GRK4, HSD11B1, and SCNN1G). The cumulative effect of the protective alleles was an increase in mean eGFR of 4
mL/min per 1.73 m2, while the cumulative effect of the risk alleles was a decrease in mean eGFR of 3 mL/min per 1.73 m2. In
addition, we identified a significant interaction between SNPs in CYP11B1 and ADRB2. We have identified common variants
in genes from pathways that regulate blood pressure and influence kidney function as measured by eGFR, providing new
insights into the genetic determinants of kidney function. Complex genetic effects on kidney function likely involve
interactions among genes as we observed for CYP11B1 and ADRB2.
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Introduction

Chronic kidney disease (CKD) is a major risk factor for

cardiovascular disease and all-cause mortality, placing a huge

burden on the health care system [1,2]. CKD is a complex trait,

regulated by interactions of several environmental and genetic

factors [3]. CKD can arise as a consequence of diabetes,

hypertension, immunologic disorders (such as lupus or primary

glomerulonephritis), and a variety of other exposures. While the

genetic causes of monogenic forms of renal diseases are well

established, those contributing to the common forms of CKD are

still largely unknown [4]. Recent meta analyses of genome wide

association studies (GWAS) identified several loci for kidney

function indices and CKD, collectively explaining a very small

fraction of the variability of these traits, leaving most of their

genetic components undetermined [5]. Earlier linkage analyses

and candidate gene studies also produced inconsistent or

unconfirmed results [6–9]. Most study populations were ascer-

tained on the basis of disease status, resulting in enrichment for

diabetes, obesity, and hypertension, thus complicating genetic

studies of CKD [10,11].

Genetic studies of CKD can benefit from a pathway-based

targeted approach that includes testing for genetics and environ-

mental interactions [12] for an intermediate quantitative trait [13]

such as glomerular filtration rate (GFR) that is widely used to

measure kidney function. GFR is a complex trait with an

estimated heritability of 25–75% [14]. However, only about

1.5% of its variability has been explained by the genetic loci that

have been identified so far [5].

In the current study, we examined the genetic factors that may

influence GFR in rural Chinese participants of the ‘‘Genetic

Epidemiology Network of Salt Sensitivity’’ (GenSalt) study, who

did not have clinical evidence of overt CKD. Estimated GFR

(eGFR) values were calculated from serum creatinine measure-

ments obtained during a three-day observation period preceding

dietary intervention, while the participants consumed their usual
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diet. We tested single nucleotide polymorphisms (SNPs) in 26

genes from pathways of blood pressure regulation for association

with eGFR measures. This genetic study of GFR provides insight

into the genetic determinants of kidney function in a general

population sample of individuals without CKD, and potentially

into the initiation and progression of CKD.

Materials and Methods

Ethics statement
Institutional review boards at Tulane University Health

Sciences Center, Washington University School of Medicine,

University of Texas School of Public Health, Fu Wai Hospital and

Chinese National Human Genome Center at Beijing, Chinese

Academy of Medical Sciences approved the GenSalt study.

Written informed consents for the baseline observation and for

the intervention program were obtained from each participant.

Study population
The GenSalt Study was conducted in Han Chinese families

living in six rural villages in Northern China. Families were

recruited through 18–60 year old probands who were either

prehypertensive or had stage-1 hypertension (SBP 130–160 mm

Hg and/or DBP 85–100 mm Hg), but had never been treated with

antihypertensive medication. Parents, spouses, siblings, and

offspring were invited to participate in the study. Family members

were excluded if they had stage-2 hypertension, a history of CVD,

diabetes, or heavy alcohol consumption, or were pregnant, on a

low sodium diet or taking anti-hypertensive medications. A total of

3,025 individuals in 631 families participated in this study. A large

number of demographic, anthropomorphic, and medical variables

were measured in GenSalt participants. More information

regarding participants recruitment and measurements are avail-

able elsewhere [15]. Institutional Review Board approval for this

study was obtained at all of the participating institutions and all

study participants signed an informed consent document.

Phenotype measurements
Serum creatinine was measured during a 3-day baseline

observation period while the study participants consumed their

usual diet prior to a GenSalt dietary intervention. During this

period, an overnight fasting blood sample was obtained from each

participant by venipuncture. This was used to measure serum

creatinine by the modified kinetic Jaffe reaction method. GFR was

estimated using an amended formulation of the Modification of

Diet in Renal Disease (MDRD) study equation, specifically

designed for use in healthy individuals [16]: eGFR in mL/min

per 1.73 m2 = 2166 (serum creatinine in mg/dL)20.490 6 (age in

years)20.192 6 0.923 (if female).

Gene and SNP selection and genotyping
The GenSalt genotyping effort focused on 26 blood pressure

candidate genes. The genes were selected based on their presumed

role in blood pressure homeostasis and being a part of blood

pressure regulation pathways such as the renin angiotensinsystem

(REN, RENBP, AGT, AT2R1, AT2R2, ACE), the aldosterone system

(CYP11B1, CYP11B2, MLR, HSD11B1, HSD11B2, CYP3A5), the

endothelial system (EDN1, NOS3, SELE), the sympathetic nervous

system (GRK4, ADRB2), alternative renin angiotensinsystem

pathway (ACE2, APLN, AGTRL1), as well as atrial natriuretic

peptide genes (NPR3, NPPA), sodium channels genes (SCNN1B,

SCNN1G), and intracellular messengers genes (GNB3, ADD1). We

selected 234 SNPs within these genes based on linkage disequi-

librium (LD) structure in the Chinese population from the

International HapMap project [17]. SNP genotyping was

performed using the SNPlex platform (Applied Biosystems, Foster

City CA) according to the manufacturer’s protocol [18]. We

excluded 41 SNPs in three genes from the association analysis due

to low call rate (,80%), low minor allele frequency (MAF ,0.05),

or severe deviation from Hardy-Weinberg Equilibrium (HWE)

(p,0.001). Detailed information concerning the remaining 193

SNPs within 24 genes is listed in Table S1.

Statistical analysis
Plink and PedCheck programs were used to assess the

Mendelian consistency of SNP genotype data [19,20]. Programs

from the Affected-Sib-Pair Interval Mapping and Exclusion

package (ASPEX) and the Graphical Representation of Relation-

ships (GRR) package were used to check for potential misreported

relationships within pedigrees [21,22]. Haploview (Broad Institute,

Boston MA) was used for SNP descriptive statistics [23]. The

Generalized Estimation Equation (GEE) method was used to test

for associations between eGFR and the genetic variants, account-

ing for familial correlation [24]. Values for eGFR were adjusted

for significant covariates including age, age2, age3, gender, BMI,

high density lipoprotein cholesterol (HDL-C), hypertension, and

field center. Neither smoking nor alcohol consumption was

significantly associated with eGFR and were not included as

covariates in statistical analysis. GEE analysis was performed with

SAS 9.1 using proc genmod, and exchangeable working correla-

tion matrix. False Discovery Rate (FDR) was used to correct for

the multiple testing in GEE analysis [25]. For interactions among

genes, we used the Generalized Multifactor Dimensionality

Reduction program (GMDR) [26] to determine joint effects of

each pair of SNPs. The best model identified by GMDR for eGFR

was verified using GEE to account for familial correlation. Several

web algorithms and data bases were used for SNP annotation and

bioinformatics analysis including UCSC [27], SNPnexus [28,29],

PolyPhen-2 [30], SIFT [31], and FastSNP [32].

Results

Table 1 presents the basic characteristics of the 3,025 GenSalt

participants who were included in this study. The study sample

consisted of healthy free living members of three-generation

families with an average age of 50 years, and approximately equal

proportions of males and females. Their average values for BMI,

HDL-C, serum creatinine, and eGFR were all within normal

ranges. Table S1 shows characteristics of the 193 SNPs within 26

loci involved in blood pressure regulation that were chosen

according to LD in the Han Chinese population (International

HapMap project).

Table 2 presents results of genetic analysis that identified 12

SNPs in six genes that showed significant associations with eGFR

(p,0.05). The four significant SNPs in ACE were highly correlated

with r2 ranging from 0.78 to 0.96. The three SNPs in the

hydroxysteroid 11-beta dehydrogenase 1 gene (HSD11B1) were

less correlated (r2 from 0.35 to 0.43), and the two significant SNPs

in the alpha-adducin gene (ADD1) were not significantly correlated

(r2 = 0.17). The FDR for all significant p-values was 0.59, which

means that seven of these 12 significant SNPs might have been

false positives. Figure 1 shows the average eGFR values for each

of the three genotypes for nine of the significant SNPs (excluding

three highly correlated ACE SNPs). Three of the significant SNPs

(AGT_rs4762, GRK4_rs2488815, and SCNN1G_rs4299163) can

be considered as risk SNPs where the additive effect of the minor

allele was associated with lower values of eGFR. The other

Genetic Determinant of Glomerular Filtration Rate
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significant SNPs can be considered as protective, where the minor

allele was associated with higher eGFR values.

Figure 2 shows the cumulative effects on mean adjusted eGFR

values for carriers of the minor alleles for all nine significant SNPs

(Panel A) and separately for the six protective alleles (Panel B)

and three risk alleles (Panel C). Carriers with increasing numbers

of the minor protective alleles had up to more than 4 mL/min per

1.73 m2higher mean eGFR values (p = 0.001) (Figure 2, Panel
B). Carriers with increasing numbers of the minor risk alleles had

mean eGFR values that were as much as almost 3 mL/min per

1.73 m2 lower (p = 0.006) (Figure 2, Panel C).

We also tested the SNPs for effects of gene by gene interactions

(GxG) on eGFR. We identified a joint effect on eGFR between a

nonsynonymous SNP in the gene for cytochrome P450, family 11,

subfamily B, polypeptide 1 (CYP11B1_rs4541, Ala386Val) and a

synonymous SNP in the beta-2-adrenergic receptor gene

(ADRB2_rs1042718). Figure 3 shows the joint effects on mean

eGFR values of interactions between CYP11B1_rs4541 and

ADRB2_rs1042718 genotypes. The mean adjusted eGFR value

in homozygotes for the ADRB2_rs1042718 minor allele (AA)

depended on their genotype for CYP11B1_rs4541. Homozygotes

for the minor allele of ADRB2_rs1042718 (AA) who are also

homozygous for the major allele of CYP11B1_rs4541 (CC) had

the lowest mean eGFR values. Homozygotes for the minor allele

of ADRB2_rs1042718 (AA) who are heterozygous for

CYP11B1_rs4541 (CT) had the highest eGFR. The difference

between these two joint genotypes was approximately 5 mL/min

per 1.73 m2.

Discussion

The overall goal of this study was to conduct a comprehensive

examination of the effects of variability in genes from pathways of

blood pressure regulation on renal GFR. The GenSalt study

cohort was comprised of rural Han Chinese villagers to minimize

the genetic heterogeneity that is encountered in most association

studies that are conducted in admixed urban populations. None of

our study participants were taking antihypertensive medication, so

the complexity associated with the antihypertensive drugs is absent

from our study. In addition, we employed an amended version of

the MDRD eGFR equation that was specifically designed for use

in healthy free living individuals and eliminated the underestima-

tion of GFR with the equation that was previously in use [16].

In our analyses of individual SNPs, the Thr207Met polymor-

phism (rs4762) in the angiotensinogen gene (AGT) showed the

strongest association with eGFR (Table 2). AGT plays a role in the

renin-angiotensin system (RAS), a primary pathway in blood

pressure regulation with strong influences on cardiovascular and

renal disease. AGT encodes preangiotensinogen in the liver, which

is subsequently cleaved by renin to generate angiotensin I.

Angiotensin I converting enzyme (ACE), converts angiontensin I

to angiotensin II [33,34], a potent vasoconstrictor that also affects

renal hemodynamics by decreasing renal cortical blood flow, total

renal plasma flow, urinary sodium excretion, and GFR [33,34].

Moreover, angiotensin II increases glomerular capillary pressure,

potentially contributing to glomerulosclerosis [35,36].

AGT_rs4762 (Thr207Met) is a probably damaging SNP [30,31]

as it substitutes a non-polar amino acid (methionine) for a polar

amino acid (threonine). Furthermore, threonine at this position in

AGT is highly conserved among divergent species ranging from

Table 1. Basic characteristics of the study subjects.

Healthy subjects

N 3025

Age 50.06 16.6

Male % 51.3

Hypertension % 17

Smokers % 34.5

Alcohol consumers % 27

Body Mass Index 23.1 6 3.2

HDL (mg/dL) 51.47 6 11.3

Serum creatinine (mg/dL) 0.93 6 0.21

eGFR (mL/min per 1.73 m2) 104.91 6 14.07

HDL: High Density Lipoprotein, eGFR: estimated Glomerular Filtration Rate.
Values are mean 6 standard deviation for Age, Body Mass Index, HDL, serum
creatinine, and eGFR.
doi:10.1371/journal.pone.0092468.t001

Table 2. SNPs that showed significant associations with eGFR in GenSalt participants.

Gene Chr. SNP Region HWpval Call Rate MAF Maj/Min P*

ACE 17 rs4316 exon 0.0917 97.2 0.353 T/C 0.0077

ACE 17 rs4343 exon 0.4012 92.7 0.354 A/G 0.0170

ACE 17 rs4353 intron 0.2622 97.6 0.393 G/A 0.0181

ACE 17 rs4331 exon 0.2927 96.2 0.353 G/A 0.0313

ADD1 4 rs3775067 intron 0.934 97.1 0.34 C/T 0.0061

ADD1 4 rs12503220 utr 0.3043 93.1 0.134 G/A 0.0231

AGT 1 rs4762 exon 0.3746 95.6 0.073 C/T 0.0051

GRK4 4 rs2488815 intron 0.0255 96.7 0.206 C/T 0.0279

HSD11B1 1 rs4844880 utr 0.6649 89.5 0.356 T/A 0.0166

HSD11B1 1 rs2235543 utr 0.0703 92.5 0.35 C/T 0.0308

HSD11B1 1 rs846908 intergenic 0.9629 92.5 0.251 G/A 0.0419

SCNN1G 16 rs4299163 intron 0.8433 96.6 0.103 G/C 0.0247

HWpval: Hardy-Weinberg p value, MAF: minor allele frequency, Maj/Min: Major/Minor allele.
*p values adjusted for age, age2, age3, gender, BMI, high density lipoprotein cholesterol (HDL-C), hypertension, field center, and family structure.
doi:10.1371/journal.pone.0092468.t002
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human to zebrafish [37]. Previous studies in Asians have identified

associations of AGT_rs4762 with diabetic nephropathy in

Taiwanese patients [38] and hypertension in different Asian

populations based on meta-analysis [37].

We also found significant associations with eGFR for four

correlated SNPs in the ACE gene, another key player in the RAS

pathway of blood pressure regulation. Three of these SNPs

(ACE_rs4316, ACE_rs4331, ACE_rs4343) are exonic variants,

but do not cause amino acid substitutions (synonymous SNPs).

ACE_rs4343, was previously reported to be significantly associated

with diabetic nephropathy in an Asian Indian population [39].

Our analysis identified a significant association of eGFR with

two intronic SNPs (rs3775067 and rs12503220) in the adducin 1

gene (ADD1). ADD1 encodes the alpha subunit of the cytoskeleton

protein adducin, which plays an important role in hypertension

and renal function via sodium homeostasis [40]. Many previous

studies have reported associations of ADD1 variants with

hypertension, renal functions and renal diseases, in different

populations including Chinese [40–48].

Another SNP that showed associations in our study was

rs2488815, an intronic SNP in the G protein_coupled receptor

kinase 4 (GRK4) gene, a major player in sodium homeostasis and

blood pressure regulation [49]. GRK4 is expressed in the renal

proximal tubule, where about 70% of renal sodium reabsorption

takes place. Increased GRK4 activity leads to decreased dopamine

signaling and increased AngII receptor expression and function,

both of which increase sodium retention and blood volume which

ultimately leads to hypertension [50,51]. GRK4 variants have been

shown to be associated with hypertension and blood pressure traits

in different populations including Han Chinese [52].

Three SNPs in the hydroxysteroid 11beta dehydrogenase1 gene

(HSD11B1) were associated with eGFR in the current study.

HSD11B1 is a NADP dependent enzyme that functions in the

proximal tubule and medullary interstitial cells of the human

kidney. HSD11B1 plays a role in the metabolism of the

endogenous glucocorticoids, which in turn modulate sodium

homeostasis, renal blood flow, and GFR [53]. HSD11B1

enzymatic activities are thought to be involved in obesity,

hypertension, and other components of the metabolic syndrome.

HSD11B1 overexpression in mice has been associated with dose-

dependent hypertension and AGT expression in liver [54–56].

Our analyses of individual SNPs identified associations of eGFR

with an intronic SNP (rs4299163) in the gene encoding the gamma

subunit of the epithelial sodium channel gene (SCNN1G). Epithelial

sodium channels (ENaC), are the main regulators for sodium

transport in the kidney [57,58], and rare variants in SCNN1G

cause Liddle Syndrome, a monogenic form of hypertension [59].

Other variants in SCNN1G cause pseudohypoaldosteronism type 1,

a rare inherited form of renal tubular acidosis [60,61]. Many

studies have identified linkage of SBP with the region that contains

SCNN1G on chromosome 16 [62]. A fine mapping study of this

region detected associations of SBP with three SCNN1G intronic

SNPs, including rs4299163 [62].

In addition to analyses of individual SNPs, we tested for

interactions among genes (GxG interactions) that influence eGFR.

Our GxG analyses identified a joint effect on eGFR between a

conservative nonsynonymous SNP rs4541 (Ala386Val) in

CYP11B1 and a synonymous SNP rs1042718 in ADRB2. CYP11B1

is one of the cytochrome p450 genes encoding 11b hydroxylase, a

protein involved in the synthesis of cortisol in the adrenal cortex

[63]. Cortisol is associated with Cushing’s syndrome, hypertension

Figure 1. Mean eGFR values and standard errors for genotypes of SNPs that showed significant associations (0, homozygotes for
common alleles; 1, heterozygotes; 2, homozygotes for minor alleles).
doi:10.1371/journal.pone.0092468.g001
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of chronic renal failure, hypertension related to low birth weight,

and essential hypertension [64,65]. Glucocorticoid-Remediable

Aldosteronism, a rare form of hypertension, is caused by a gene

fusion between CYP11B1 and CYP11B2 [66]. ADRB2 encodes the

beta 2 adrenergic receptor, a member of the G-protein superfam-

ily receptors, playing a role in metabolism regulation and also in

blood pressure regulation by mediating vasodilation and vascular

resistance [67,68]. ADRB2 SNPs were previously found to be

associated with hypertension and blood pressure traits in different

populations including Han Chinese but many of the results are

inconsistent [68–70]. ADRB2_rs1042718, the SNP showing

significant GxG interaction, is part of a haplotype recently found

to be associated with weight, insulin, and homeostasis model

assessment (HOMA) score in Korean adolescents [71]. The exact

mechanism of interaction between these two coding region SNPs

in relation to eGFR warrants further investigation.

We compared the results of our association study with a recently

published meta-analysis of kidney function traits in several East

Asian populations, including GenSalt [72]. The SNPs with

significant associations in our study (Table 2) were not significantly

associated with eGFR in the meta-analysis. This discrepancy could

stem from differences in the study populations since we included

only Han Chinese from Northern China, while the meta-analysis

included Japanese, Malay, Indian, Korean, and Chinese. GenSalt

participants were relatively healthy free living individuals from

three-generation families, while the meta-analysis included hospi-

tal and population based cohorts with no exclusion of diseased

individuals. In addition, we employed an equation to calculate

eGFR that was specifically designed for use in healthy individuals

[16], while the meta-analysis used a different equation specific for

Japanese individuals [73].

The genes included in this study were all in pathways known to

be involved in regulation of blood pressure which may play an

important role in regulating kidney function. However, there are

established overlaps, such as the RAS pathway which is involved

in renal function decline since treatment of patients with renin-

angiotensin inhibitors slows the progression of kidney disease [74–

76]. Such protective effect of RAS blocking on kidney function

may be through both blood pressure and non-blood pressure

dependent mechanisms. Our study was not designed to determine

whether these genes impact GFR independent of their effects on

blood pressure, or whether their effects on GFR are linked to the

same pathophysiologic cascades as their involvement in hyperten-

Figure 2. The cumulative effect of the minor alleles in all of the
9 significant SNPs (Panel A), the 6 protective SNPs (Panel B),
and the 3 risk SNPs (Panel C) on the value of the mean
adjusted eGFR. The best fitting trend line and p value from t-tests
between those with no minor allele and those with the largest possible
number of minor alleles in each category are shown.
doi:10.1371/journal.pone.0092468.g002

Figure 3. Mean adjusted eGFR as a result of the genotypic
interaction between CYP11B1_rs4541 and ADRB2_rs1042718.
The data points represent the eGFR for the nine possible combinations
of the three ADRB2 genotypes versus each of the three possible
CYP11B1 genotypes. The number of individuals at each point is
provided.
doi:10.1371/journal.pone.0092468.g003
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sion. However, their significant association with kidney function

remains after adjustment for hypertension.

In conclusion, we have identified common variants in genes

from pathways of blood pressure regulation and their interactions

that influence kidney function, providing new insights into the

genetic determinants of kidney function. A longitudinal association

between these common variants and changes in kidney function

remains to be investigated.

Supporting Information

Table S1 SNP characteristics. Detailed information about

the 193 SNPs used in analysis.

(DOC)
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