
 
1 

 

ADDITIONAL FILE 1 FOR 

Transcriptomic Profiles of Aging in Purified Human Immune Cells 

 

Lindsay M. Reynolds
1
, Jingzhong Ding

2
, Jackson R. Taylor

3
, Kurt Lohman

1
, Nicola 

Soranzo
4
, Alberto de la Fuente

5
, Tie Fu Liu

2
, Craig Johnson

6
, R. Graham Barr

7
, Thomas 

C. Register
8
, Kathleen M. Donohue

7
, Monica V. Talor

9
, Daniela Cihakova

9
, Charles Gu

10
, 

Jasmin Divers
1
, David Siscovick

11
, Gregory Burke

1
, Wendy Post

9
, Steven Shea

7
, David R. 

Jacobs, Jr.
12

, Ina Hoeschele
13

, Charles E. McCall
2,14

, Stephen B. Kritchevsky
2,3

, David 

Herrington
2
, Russell P. Tracy

15
, Yongmei Liu

1*
 

 

Table of Contents (page 1 – 2)                          

 

Supplementary Figures in Additional File 1: 

Figure S1.  Age-associations with the monocyte transcriptome (page 3) 

Figure S2.  Correlation between co-expression network modules (page 4) 

Figure S3.  Scatterplot of gene expression and age for genes in the ‘black’ co-expression 

network module (page 5)  

Figure S4.  Correlation between MCL1 expression measured by microarray and RNA-

sequencing (page 6) 

Figure S5.  MCL1 expression measured using Western Blot (page 7) 

Figure S6.  MRPS12 expression measured using Western Blot (page 8) 

Figure S7.  Comparison of the effect of age on gene expression in 1,264 monocyte samples 

compared to results from a subset of 423 samples (page 9)   

Supplementary Tables in Additional File 1: 

 

Table S1.  Population characteristics (page 10) 

Table S3.  Gene set enrichment analysis for age-associated genes in monocytes from 1,264 

MESA participants (page 11) 



 
2 

 

Table S4.  Co-expression network modules associated with age (page 12) 

Table S14.  Gene set enrichment analysis for age-associated genes in CD4+ T cells and 

CD14+ monocytes from 423 MESA participants (page 13) 

Supplementary Methods in Additional File 1:       

mRNA quantification using RNA seq (page 14 – 15)  

Supplementary References (page 16) 

 

 

  



 
3 

 

a 

 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

Figure S1. Age-associations with the monocyte transcriptome.  A) Histogram of the 

significance (p-value) of gene expression associations with age in 1,264 CD14+ monocyte 

samples, including mRNA transcripts from 10,898 genes, measured using the Illumina 

HumanHT-12 v4 Expression BeadChip14, and B) the significance of expression associations 

with age (-log
10

 P-values, y-axis) vs. fold change of expression per 10 years (x-axis); the black 

line represents mRNA expression and age association significance FDR ≤ 0.001; the fold change 

is derived from linear modeling of gene expression changes (log2 expression = a + beta X age 

(per ten year increments); fold change = 2
beta*10
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Figure S2.  Correlation between co-expression network modules.  Pairwise Pearson 

correlation of six age-associated module eigengenes (MEs) in 1,264 CD14+ monocyte samples; 

modules detected using a weighted gene co-expression network analysis (WGCNA) including 

genes with age-associated expression (FDR≤0.01); positive correlations shown in red, negative 

correlations shown in blue  
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Figure S3.  Scatterplot of gene expression and age for genes in the ‘black’ co-expression 

network module.  Normalized gene expression from 1,264 CD14+ monocyte samples is plotted 

on the y axis vs. normalized age on the x axis for the ‘black’ co-expression network module 

genes: A) MCL1 (myeloid cell leukemia sequence 1; transcript ID: ILMN_1803988; age beta 

(SE): 0.0065 (0.0007); p: 7.27x10
-19

; FDR: 7.60x10
-16

), B) TSC22D3 (TSC22 domain family, 

member 3; transcript ID: ILMN_2376403; age beta (SE): 0.012 (0.001); p: 2.56x10
-27

; FDR: 

6.69x10
-24

), and C) CEBPD (CCAAT/enhancer binding protein, delta; transcript ID: 

ILMN_1782050; age beta (SE): 0.0070 (0.0008); p: 5.11x10
-18

; FDR: 3.82x10
-15

)  
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Figure S4.  Correlation between MCL1 expression measured by microarray and RNA-

sequencing.  Gene expression profiles for MCL1 (myeloid cell leukemia sequence 1) measured 

by the Illumina HumanHT-12 v4 Expression microarray (transcript ID: ILMN_1803988; y-axis) 

are correlated (r = 0.64; p-value = 5.33x10
-45

) with MCL1 expression levels measured by RNA 

sequencing technology (Ensembl ID: ENSG00000143384; x-axis) in 373 CD14+ monocyte 

samples.    
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Figure S5.  MCL1 expression measured using Western Blot.  MCL1 protein expression  a) 

measured using Western Blot in 30 MESA CD14+ monocyte samples; b) MCL1 protein 

expression (x-axis) was correlated (0.42, p = 0.02) with MCL1 gene expression (y-axis, 

measured by microarray, Illumina ID: ILMN_1803988).  Target protein content was corrected 

for the content of GAPDH in samples.  
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Figure S6.  MRPS12 expression measured using Western Blot.  MRPS12 (mitochondrial 

ribosomal protein S12) protein expression a) measured using Western Blot in 28 samples; b) 

MRPS12 protein expression (y-axis) tended to be correlated (0.29, p = 0.14) with MRPS12 gene 

expression (x-axis; measured by microarray, Illumina ID: ILMN_1714515).  Target protein 

content was corrected for the content of GAPDH in samples.  
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Figure S7.  Comparison of the effect of age on gene expression in 1,264 monocyte samples 

compared to results from a subset of 423 samples.  The effect size (beta) associated with age 

for all 413 genes with expression associated with age (FDR<0.01) in 423 monocyte samples 

(shown on the x-axis) compared to the effect detected in an expanded sample size of 1,264.  Blue 

circles represent 386 genes that replicated (FDR≤0.001, 93% of genes) in the larger sample size; 

red circles represent 27 genes that did not replicate (FDR>0.001, 7% of genes) in 1,264 

monocyte samples; association analyses adjusted for race, sex, study site, and residual cell 

contamination with non-target cells 
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Table S1:  Population characteristics  

Variable 
All  

(N = 1,264) 

Caucasian  

(N = 590) 

Hispanic  

(N = 402) 

African-American 

 (N = 272) 

Age (years)  60 ± 10 60 ± 10 59 ± 9 61 ± 9 

Women 650 (51%) 285 (48%) 202 (50%) 163 (60%) 

Former smoker 358 (50%) 183 (53%) 104 (49%) 71 (44%) 

Current smoker 69 (10%) 31 (9%) 18 (8%) 20 (12%) 

BMI (kg/m2)  30 ± 6 29 ± 5 30 ± 5 31 ± 6 

Pulse pressure (mmHg) 58 ± 18 56 ± 17 57 ± 18 62 ± 18 

Hypertension 596 (61%) 278 (55%) 163 (58%) 155 (78%) 

Diabetic 289 (23%) 81 (14%) 106 (26%) 102 (38%) 

Mean ± standard deviation provided for continuous variables; count (percentage) provided for 

discrete variables for all participants included in analysis, and by race  
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Table S3.  Gene set enrichment analysis for age-associated genes in monocytes from 1,264 

MESA participants  

a) Down-regulated  

Gene ontology pathway 
Gene Ontology 

ID 

Gene 

count 

Fold 

enrichment 

Nominal  

P-value 
FDR 

Structural constituent of ribosome GO:0003735 79 4.8 3.88E-36 6.00E-33 

Mitochondrion GO:0005739 228 2.1 3.90E-34 5.57E-31 

Ribosome GO:0005840 94 3.7 1.83E-33 2.61E-30 

Ribonucleoprotein complex GO:0030529 150 2.6 7.96E-31 1.14E-27 

Translation GO:0006412 97 2.8 7.42E-23 1.30E-19 

Mitochondrial ribosome GO:0005761 35 5.6 2.67E-20 3.81E-17 

RNA processing GO:0006396 102 1.9 1.31E-10 2.31E-07 

Oxidative phosphorylation GO:0006119 29 3.4 5.04E-09 8.85E-06 

 

b) Up-regulated 

Gene ontology pathway 
Gene Ontology 

ID 

Gene 

count 

Fold 

enrichment 

Nominal  

P-value 
FDR 

Transcription regulator activity GO:0030528 188 1.5 1.08E-10 1.69E-07 

Protein amino acid phosphorylation GO:0006468 96 1.8 1.42E-08 2.57E-05 

Cytoskeleton GO:0005856 137 1.6 3.50E-08 5.06E-05 

Intracellular signaling cascade GO:0007242 152 1.5 5.39E-08 9.75E-05 

Regulation of small GTPase mediated signal transduction 
(Ras/Rho) 

GO:0051056 46 2.2 1.44E-07 2.60E-04 

GTPase regulator activity GO:0030695 64 1.8 1.90E-06 2.97E-03 

Nuclear lumen GO:0031981 188 1.3 9.55E-06 1.38E-02 

Response to insulin stimulus GO:0032868 22 2.8 1.29E-05 2.32E-02 

 

Enrichment analysis included 1,330 genes with expression negatively associated with age (down-

regulated; FDR≤0.001), and 1,374 genes with expression positively associated with age (up-

regulated; FDR≤0.001); relative to a background of 10,898 genes with expression detected in 

1,264 CD14+ monocyte samples
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Table S4. Co-expression network modules of age-associated genes associated with 

chronological age  

Co-expression network modules Age 

Module  

(gene count) 

Pairwise 

correlation: 

 absolute median 

[range] Cor 

Percent 

variance P-value 

Black (3) 0.62 [0.45, 0.90] 0.31 9.7 1.8E-30 

Blue (217)  0.42 [-0.69, 0.93] -0.18 3.1 2.1E-10 

Turquoise (1,466) 0.44 [-0.80,0.96] 0.17 2.7 2.6E-09 

Brown (42) 0.42 [-0.60,0.89] 0.14 2.0 4.1E-07 

Yellow (42) 0.41 [-0.54,0.94] 0.14 1.9 6.9E-07 

Green (42) 0.45 [-0.65,0.95] 0.14 1.8 1.3E-06 

Mutually exclusive gene modules with coordinate expression profiles associated with 

chronological age were identified using weighted gene co-expression network analysis 

(WGCNA), including all genes with age-associated expression (FDR ≤ 0.01) in 1,264 CD14+ 

monocyte samples.  For each module, the number of genes assigned to that module is reported, 

along with the absolute median pairwise correlation (and range) between genes within each 

module.  The partial correlation (cor), percent variance, and significance (P-value) are reported 

for each module from the association of the module eigengene and age; covariates included: 

race, sex, site of data collection, and residual sample contamination with non-targeted cells (see 

Methods)  
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Table S14.  Gene set enrichment analysis for age-associated genes in CD4+ T cells and 

CD14+ monocytes from 423 MESA participants  

a) Down-regulated  

Enriched pathway Term ID Gene count 
Fold 

enrichment 

Nominal  

P-value 
FDR Genes 

CD4+ T cells  

ribonucleoprotein 
SP_PIR_KEYWO

RDS 
11 3.1 2.99E-03 3.6 

MRPL10, MRPS34, DKC1, RPL3, MRPL47, 
MRPL39, SRPRB, RPS4X, SNRPF, NHP2, FBL 

CD14+ Monocytes 

ribonucleoprotein 
complex 

GO:0030529 30 3.0 1.07E-07 1.34E-04 

MRPS35, RPL14, NHP2L1, MRPS12, PPIL1, 
MRPS11, IMP3, UTP11L, MRPL17, 

MRPL36, WDR12, TAF9, MRPL39, IMP4, 
MRPL33, APEX1, MRPL35, MRPL51, 
MRPS23, EMG1, SRPRB, SLBP, PPIH, 

EIF2S1, RPS13, LSM10, MRPL45, SIP1, 
MRPL46, NHP2 

mitochondrion GO:0005739 39 2.2 2.58E-06 3.26E-03 

MRPS35, ATP5E, MRPS12, PNKD, MRPS11, 
UROS, RG9MTD1, STOML2, MPV17, 
PMAIP1, ATP5G1, CCDC56, ATP5G3, 
SDHAF1, TRIAP1, NDUFS5, MRPL17, 

ATP5S, MCEE, SLC25A46, MRPL36, TFB2M, 
MRPL39, NDUFS3, ATP5I, MRPL33, 
MRPL35, ABCE1, MRPL51, MRPS23, 

C14ORF156, AK2, TMEM126A, TST, COQ3, 
ISCA2, SLC25A19, MRPL45, MRPL46 

 

b) Up-regulated 

Enriched pathway Term ID Gene count 
Fold 

enrichment 

Nominal  

P-value 
FDR Genes 

CD4+ T cells  

immune response GO:0006955 12 3.7 2.90E-04 0.45 
LILRB2, CYBB, CD86, KYNU, C5AR1, RGS1, 
AQP9, LYN, LTB4R, TAP2, CXCL16, LILRA5 

CD14+ Monocytes 

positive regulation 
of cellular 

biosynthetic 
process 

GO:0031328 21 2.9 2.81E-05 0.045 

KLF6, IRS2, FOXO1, CREB5, AFF1, FOXO3, 
FOXO4, AHR, STAT3, NRIP1, CITED2, 

CHD8, MTF1, ETS2, HIPK2, SMARCD1, 
USP21, MKL1, THBS1, AKIRIN2, SERTAD2 

 

Results from enrichment analysis of age-associated expression in T cells and monocytes (using 

DAVID, FDR<0.05); analysis in T cells included 137 genes with expression negatively 

associated with age (down-regulated, (FDR<0.01), and 81 with expression positively associated 

with age (up-regulated, FDR<0.01); analysis in monocytes included 221 down-regulated 

(FDR<0.01), and 192 up-regulated genes (FDR<0.01); background gene list included all 10,322 

genes detected in both CD4+ T cells and CD14+ monocytes from the same 423 MESA 

participants. 

 

 



 
14 

 

Supplementary Methods in Additional File 1: 

mRNA quantification using RNA seq 

Total RNA samples were enriched for mRNA, by depleting rRNA using the 

MICROBExpress kit from Ambion and following the manufacturer’s instructions.  Poly(A) 

mRNA was enriched, and Illumina compatible, strand-specific libraries were constructed using 

Illumina’s TruSeq Stranded mRNA HT Sample Prep Kit (Illumina, RS-122-2103). 1 ug of total 

RNA with RIN ≥ 8.0 was converted into a library of stranded template molecules suitable for 

subsequent cluster generation and sequencing by Illumina HiSeq. The libraries generated were 

validated using Agilent 2100 Bioanalyzer and quantitated using Quant-iT dsDNA HS Kit 

(Invitrogen) and qPCR. Six individually indexed cDNA libraries were pooled and sequenced on 

Illumina HiSeq, resulting in an average of close to 30 million reads per sample. Libraries were 

clustered onto flow cells using Illumina’s TruSeq PE Cluster Kit v3 (PE-401-3001) and 

sequenced 2X100 cycles using TruSeq SBS Kit -HS (FC-401-3001) on an Illumina HiSeqTM 

2500. A total of 64 lanes were run to generate approximately 30 million 2 x 101 Paired End 

reads per sample. The Illumina HiSeq Control Software (HCS v2.0.12) with Real Time Analysis 

(RTA v1.3.61) was used to provide the management and execution of the HiSeq 2500.   

Illumina sequencing runs were processed to de-multiplex samples and generate FastQ files using 

the Illumina provided configureBclToFastq.pl script to automate running CASAVA 1.8.4 using 

default parameters for removal of sequencing reads failing the chastity filter (yes) and 

mismatches in the barcode read (0). Following generation of FastQ files, reads were trimmed to 

remove poor quality reads (or read tails) using Btrim (5 base sliding window average with Q > 

15) [1] and then trimmed to remove any adaptor sequence present in the reads using custom perl 

scripts (trim sequences containing 11 base tag of adaptor, final length >40 bases).  The Ensembl 

GRCh37 Homo Sapiens reference file, annotations and Bowtie2 indexes were downloaded from 

the igenomes.com website (10-Apr-2013) for mapping of the sequencing reads to the genome 

and read counting.   Bowtie2 (2.1.0) and TopHat2 (2.0.8) were used to map the sequencing reads 

to the genome using a mate-inner-distance of 100 bp and ‘firststrand’ options [2, 3] .  Following 

alignment, bam files were merged using the samtools (0.1.19) merge function [4], and read 

counts per gene were obtained using HTSeq (0.5.4p3) (http://www-

huber.embl.de/users/anders/HTSeq /doc/ overview.html). The ‘intersection-strict’ overlap 

resolution mode and ‘stranded reverse’ options were used in HTSeq.  

http://www-huber.embl.de/users/anders/HTSeq%20/doc/%20overview.html
http://www-huber.embl.de/users/anders/HTSeq%20/doc/%20overview.html
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Data pre-processing and QC analyses were performed in R (http://www.r-project.org/) 

using Bioconductor (http://www.bioconductor.org/) packages. The transcript-based raw count 

data files for each sample from TopHat2 were combined into a count matrix with 56,303 features 

(rows) and 374 MESA samples (columns). The median total count per sample was 28.8 million. 

Reads denoted by TopHat2 as "no_feature","ambiguous", "too_low_aQual", "not_aligned", 

"alignment_not_unique" were removed. Counts were converted to Counts Per Million (CPM) 

using the cpm function of the edgeR package [5] , and all features with CPM ≤ 0.25 in ≥90% of 

the 374 MESA samples were removed. Features assigned to the mitochondrial genome were 

removed as well. Using the biomaRt package and querying the Ensembl BioMart database, 

Entrez Gene IDs, Gene Symbols, genome coordinates, gene length and percent GC content were 

obtained for 12,585 features which had a corresponding Entrez ID or Illumina HumanHT-12 v4 

probe ID. To be able to continue to use the flexible and computationally efficient linear modeling 

functions in R, we transformed the raw count data to log counts per million (y = logCPM) as 

recommended by Law et al (2013) [6]: 

𝑦𝑔𝑠 = 𝑙𝑜𝑔2 (
𝑐𝑔𝑠 + 0.5

𝑇𝑠 + 1
106)    

where cgs is the raw count of gene transcript g in sample s, and Ts is the normalized total count of 

sample s, using the Trimmed Mean of M-values (TMM) normalization method [7] as 

implemented in the calcNormFactors function in the edgeR Bioconductor package [5]. We either 

performed only this TMM normalization, or we applied quantile normalization (QN) to the 

logCPM values. Because the logCPM values’ variance tends to decrease with increasing count 

for smaller counts, we used the voom function of the limma package [8] to estimate the mean-

variance trend non-parametrically and to predict the residual variance of each individual 

observation for each gene. Then we incorporated the inverse residual variances into the linear 

modeling (lm) as weights in a standard manner. For the logCPM data, we imposed the same low 

variance filter that we had used for the microarray data, removing another 192 features with the 

lowest variance and retaining 12,380 features for analysis. We then performed weighted linear 

model analyses with the otherwise exact same models as for the microarray data.   

  

http://www.r-project.org/
http://www.bioconductor.org/
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