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Abstract 
 
 
Tourette Syndrome (ts) is a developmental neuropsychiatric disorder of the central nervous 

system defined by the presence of chronic tics. While investigations of the underlying brain 

mechanisms have provided valuable information, a complete understanding of the 

pathophysiology of ts remains elusive. Neuroimaging methods provide remarkable tools for 

examining the human brain, and have been used to study brain structure and function in ts. In 

this article, we review ts neuroimaging studies published in 2014-2015. We highlight a number 

of noteworthy studies due to their innovative methods and interesting findings. Yet, we note that 

many of the recent studies share common concerns, specifically susceptibility to motion artifacts 

and modest sample sizes. Thus, we encourage future work to carefully address potential 

methodological confounds and to study larger samples to increase the potential for replicable 

results. 

Keywords: Tourette Syndrome; Tic Disorders; Neuroimaging; MRI; fMRI; Diffusion; 

Tractography; Functional Connectivity; Spectroscopy. 

 
 
 
 
 
 
INTRODUCTION 

 
Tourette’s Disorder and Persistent Tic Disorder, collectively referred to here as Tourette 

 
syndrome (TS), are complex developmental neuropsychiatric disorders defined by the presence 

 
of chronic motor and/or vocal tics. Understanding the neurobiological basis of TS would help the 

advancement of improved treatment and clinical care for the 1-6% of the population who 

experience chronic tics. Neuroimaging methods, including functional and structural MRI, 

positron emission tomography (PET), diffusion tensor imaging, and spectroscopy, have been 



used to study the brain in vivo in TS. In conjunction with post mortem studies and animal models, 

neuroimaging findings broadly support a hypothesis of dysfunction in cortico-striato-thalamo- 

cortical networks in TS [1]. However, there are still many inconsistencies across studies [2], and 

a comprehensive understanding of the specific mechanisms underlying TS remains incomplete. 

Neuroimaging methods also continue to develop and mature. Thus, neuroimaging research on TS 

is an active field, and by applying recent advances in neuroimaging methods, we can better 

interrogate the living TS brain. 

Neuroimaging studies published during approximately the past year (2014-2015) reflect 

the state of the neuroimaging field in TS. Several new methodological approaches have been 

applied to groups of patients with TS in addition to more conventional neuroimaging methods. 

Yet, finding convergence among studies that pushes our knowledge forward remains a challenge. 

In part, the discordance reflects limited sample size and other methodological concerns that are 

common with newly developing methods. Here we highlight several papers from 2014-2015 that 

are particularly noteworthy. For a comprehensive summary of the recent neuroimaging papers in 

TS, see Table 1. A more general review of neuroimaging in TS can be found in Greene et al., [2]. 

 
 
 
A FOCUS ON ANATOMY 

 
Some of the first neuroimaging papers on TS examined anatomical measures, primarily 

focusing on subcortical and cortical regional volumes [3-5]. Since then, a number of studies have 

investigated anatomical structure in TS, implementing structural brain measures such as 

volumetry, cortical thickness, and diffusion (fractional anisotropy, mean diffusivity, etc.). This 

line of research has continued in the past year, finding differences between TS and control 



groups in cortical gray matter volume [6], subcortical gray matter volume [7], and diffusivity of 

cortical and subcortical regions [7, 8]. 

We highlight one study that investigated anatomy in TS using novel structural methods 

that have not been applied to TS before. Muellner et al. [9] applied advanced techniques to 

cortical sulci, providing measures of cortical thickness within a sulcus, mean sulcal depth, sulcal 

length, and cortical fold opening. They studied a commendably large sample of 52 adults with 

TS and 52 age-, education-, and sex-matched controls. Results demonstrated diminished sulcal 

depth and reduced sulcal cortical thickness in TS in pre- and post-central sulci and superior, 

inferior, and internal frontal sulci. These findings are consistent with previous reports of cortical 

thinning in frontal and sensorimotor cortical regions [10, 11], yet extend the results to more 

specific measures of cortical morphology. The authors also separately tested those TS patients 

with comorbid obsessive-compulsive symptoms, finding diminished cortical thickness and larger 

sulcal openings in the superior temporal and insular sulci. Furthermore, cortical sulci measures 

correlated with tic severity as well as with obsessive-compulsive symptom severity. Thus, these 

results provide additional support for structural abnormalities in prefrontal, premotor, and motor 

cortical regions, and the authors discuss the potential involvement of atypical cortical 

development mechanisms in TS. This study is highlighted here due to several laudable 

methodological choices: (1) the large sample size, (2) the novel sulcal morphological measures 

examined, and (3) the inclusion and subsequent study of symptoms other than tics. It is important 

to note that there is recent evidence that small movements during MRI data acquisition can affect 

structural measures, including cortical thickness [12]. Thus, it is possible that motion artifact 

could bias the sulcal measurements used by Muellner et al. In fact, subject motion in the scanner 



can cause artifactual results for several neuroimaging techniques, and we discuss this problem 

and potential solutions below in the Conclusion. 

 

STRUCTURAL CONNECTIVITY 
 

While structural neuroimaging methods have typically focused on regional measures, 

there has been a recent shift to methods that study the connectivity between regions. As brain 

regions are not isolated structures and the connectivity between regions is crucial for normal 

brain function, investigations of connectivity are of great interest. White matter fiber tracts can 

be interrogated using diffusion tensor imaging (DTI) analyzed in terms of diffusivity (e.g., 

fractional anisotropy, mean diffusivity, etc.) and probabilistic tractography. Several recent 

studies in TS have examined diffusivity measures to investigate microstructural alterations in 

white matter [8, 13, 14] and probabilistic tractography to study the integrity of connections 

between regions [13, 15]. 

Here, we highlight a study that examined both probabilistic tractography and diffusivity 

measures in cortico-striato-pallido-thalamic tracts. Worbe et al. [13] collected diffusion-weighted 

imaging data from 49 adults with TS and 28 controls and specifically investigated direct 

connections between the striatum, thalamus, and cortex. Results demonstrated enhanced 

structural connectivity with the striatum and thalamus in motor (primary motor cortex and 

supplementary motor area), frontal (inferior frontal cortex, orbitofrontal cortex), parietal (inferior 

parietal lobule), and temporal (medial temporal cortex, temporo-parietal junction) cortical 

regions. Furthermore, several of these tracts also demonstrated elevated fractional anisotropy and 

reduced radial diffusivity in the TS group. Interestingly, enhanced connectivity within motor 

pathways positively correlated with tic severity, while enhanced connectivity with orbitofrontal 

pathways positively correlated with obsessive-compulsive symptom severity. The authors further 



examined the influence of age, sex, and medication status, finding more pronounced effects within 

cortico-striatal and thalamo-cortical pathways in females compared to males. Thus, this study 

included complementary analytic techniques (probabilistic tractography and diffusivity measures) 

in a large sample, and examined relationships with symptoms (tics and obsessive- compulsive 

symptoms), age, sex, and medication use. By implementing an inclusive approach (i.e., including 

subjects with and without comorbid symptoms, and those on and off medications), this study was 

able to interrogate the imaging results that relate to particular symptoms. The correlations with 

different symptoms (tics vs. obsessions and compulsions) provide clues as to how symptoms 

manifest differently across patients. Furthermore, by not excluding those patients who are most 

typical of TS (as only ~10% of TS patients have no comorbid conditions [16]), the results are 

more generalizable to real world patients [17]. We favor such an inclusive approach 

for neuroimaging studies in TS and developmental neuropsychiatric disorders in general [18]. 
 
 
FUNCTIONAL ACTIVITY AND CONNECTIVITY 

 
Functional neuroimaging has seen a similar shift in focus from independently activated 

brain regions to functional connectivity. Conventional fMRI studies examine task activation, that 

is, changes in brain activity while subjects perform cognitive or motor tasks (or change state, e.g. 

sleep, or are given a drug). This method identifies brain regions that show modulated activity in 

response to certain cognitive demands or states. Task fMRI continues to provide insight into 

cognitive processes in TS, and recent studies have shown atypical activation in motor and 

premotor regions in TS during tasks of inhibitory control [19, 20]. 

In contrast to task fMRI, functional connectivity MRI examines the temporal correlation 
 
between different brain regions’ activity. To study functional connectivity, many investigators 

 
use resting state fMRI. Resting state fMRI measures spontaneous, low frequency brain activity in 



the absence of a task (i.e., subjects “rest” while awake in the scanner). The use of this technique 

has increased exponentially in recent years [21], and has demonstrated that fMRI activity is 

highly correlated between functionally related brain regions, allowing for the study of functional 

brain networks [22]. A number of neuroimaging papers in TS during 2014-2015 used resting 

state fMRI. Some found differences between TS and controls using regional measures derived 

from resting state fMRI, including amplitude of low frequency fluctuations [23] and regional 

homogeneity [24]. However, these measures do not directly measure functional connectivity 

between brain regions, and biological interpretation of these particular measures is obscure. 

Other recent studies have implemented a network science approach, directly examining 

functional connectivity (i.e., correlations) between brain regions in order to interrogate functional 

brain networks in TS [25-27]. Unfortunately, the sample sizes in these reports were relatively 

small and in-scanner movement confounds were not adequately addressed (as discussed in the 

Conclusion, below). In addition, while we commend the application of network science to study 

functional connectivity in TS, researchers must keep in mind the inherent problems with 

applying certain analytic tools to the correlation networks used in functional connectivity studies. 

In particular, graph theory is often used to interrogate networks; a network is composed of nodes 

(here, brain regions) and edges (the correlations between brain regions), allowing information 

about the network to be measured, including node degree (number of connections) and path 

length (number of edges between two given nodes). Unfortunately, graph theory metrics based 
 
on node degree or path length, such as global efficiency (a measure of functional integration) and 

betweenness centrality (a measure of a node’s centrality within a network) must be viewed with 

caution, as such metrics are much less interpretable for a correlation-based network than for 

traditional networks such as social or airport networks [28, 29]. 



A common approach used in functional connectivity studies is to narrow the search space, 

focusing on a subset of a priori brain regions or selecting particular networks to include in 

analyses. Several TS studies of functional connectivity have taken this approach [26, 27, 30, 31]. 

However, investigating many brain regions or networks at the same time may provide a more 

comprehensive understanding of how the brain functions in any particular neuropsychiatric 

disorder. Our laboratory recently used such an approach to study functional connectivity in 42 

children with TS and 42 controls [32], while applying the strictest methods in the field to 

minimize potential motion artifacts [33]. We investigated all ~34,000 pairwise correlations 

among 264 functionally defined regions that constitute many well-described functional networks 

[34]. Traditional univariate methods – namely independent samples t-tests for each correlation 

pair, with proper multiple comparisons correction – did not detect significant differences 

between children with and without TS, whereas a multivariate approach – namely, support vector 

machine classification – was able to significantly discriminate the groups based on whole-brain 

functional connectivity patterns. Functional connections within and between motor networks and 

executive control networks were able to account for most of the discriminability between groups. 

Thus, taking a multi-network approach is useful, but can suffer from problems of multiple 

comparisons when using traditional univariate analyses. Fortunately, with continuing advances in 

multivariate methods, researchers will be able to study whole-brain connectivity more readily in 

TS, and continued application of these methods will lead to a more comprehensive understanding 

of the underlying mechanisms. 

 

TREATMENT EFFECTS 
 

Understanding the mechanisms of treatments is a fruitful avenue of study and can lead to 

treatment advances and a better understanding of the underlying disorder. TS is most commonly 



treated with psychoactive medications, including antipsychotics and centrally acting adrenergic 

agents. However, medications are not effective for all patients and have the potential for adverse 

effects [35]. Therefore, non-pharmacological therapies are desirable. This year, two studies used 

neuroimaging to investigate the brain mechanisms underlying some of these treatments. One 

small study in 10-22 year olds with TS investigated fMRI activity during a motor task before and 

after transcranial magnetic stimulation (TMS) over the supplementary motor area (SMA) [36]. 

While previous studies have suggested that TMS over the SMA may be an effective treatment 

for TS [37, 38], Wu et al. did not find differences in tic severity improvement between the active 

TMS group and a sham control group, as half of the subjects in both groups improved. Thus, 

although they found reduced fMRI activity in motor regions in the active TMS group compared 

to the sham control group, it is difficult to attribute these changes  to the treatment. 

Another recent study that examined brain activity before and after treatment investigated 

comprehensive behavioral intervention for tics (CBIT). CBIT is an extension of habit reversal 

therapy and involves training in tic urge awareness, executing competing responses, relaxation, 

identification of tic-inducing situations and settings, and tic disorder knowledge [39]. The 

evidence for CBIT’s efficacy in treating tics is stronger than for any class of medications other 

than dopamine antagonists [40], and its effect size is similar to that of risperidone [41, 42]. Given 

its efficacy and its demonstrated absence of side effects, CBIT has become a promising 

alternative to medications. The same group that conducted the randomized trials recently 

investigated the brain mechanisms underlying CBIT, publishing the first study to examine 

functional activity in the brain before and after CBIT [43]. In a small group of adults with and 

without TS, they demonstrated group differences in putamen fMRI activity during a visuospatial 

priming task both before and after the TS group underwent CBIT. Specifically, at baseline 



(before CBIT), the TS group demonstrated greater putamen activation during this response 

inhibition task compared to controls, but reduced putamen activation compared to controls after 

CBIT. The authors suggest that CBIT may normalize aberrant putamen activity in patients with 

TS, providing a clue into the mechanisms underlying this treatment. While the sample size was 

small, the results hold promise for future larger studies and represent a significant step in 

understanding the effects of behavioral treatment of tics. 

 

CONVERGING IMAGING METHODS 
 

Applying multiple neuroimaging methods to the same subjects can identify converging 

findings and can help construct a multi-level understanding of the research question under study. 

Two studies from 2014-2015 investigated GABA concentration using magnetic resonance 

spectroscopy (MRS) in addition to several other structural and functional MRI measures, 

targeting specific regions of interest [44, 45]. Tinaz et al. [44] measured GABA, cortical volume 

and thickness, seed-based resting state functional connectivity MRI, and beta band power (using 

magnetoencephalography: MEG). Focusing on sensorimotor regions, they found no group 

differences in volume, thickness, GABA, or beta band power, yet the relationship between 

GABA and beta band power differed between groups. Thus, studies using single methods would 

find no difference between groups, yet by using multiple methods, the authors were able to 

identify group differences in the relationship between measures. Draper et al. [45] investigated 

GABA, regional volume, fMRI activity during finger tapping, cortical-spinal excitability (using 

TMS), and fractional anisotropy, targeting left primary motor cortex (M1), SMA, and primary 

visual cortex (V1; as a control region). Results demonstrated elevated GABA concentration in 

the SMA, but not in M1 or V1, in TS. Further, increased GABA in the SMA was associated with 

decreased fMRI activity and cortical excitability in the same regions. By contrast, increased 



GABA in the SMA was associated with increased motor tic severity and FA within a region of 

the corpus callosum that projects to the SMA. The authors discuss their findings in the context of 

tonic inhibition in TS (related to enhanced control), positing that increased extracellular GABA 

in the SMA leads to tonic inhibition. These findings underscore that the complex pathobiology of 
 
TS may best be identified through a methodology that embraces such complexity. 

 
 
CONCLUSION AND COMMENTS 

 
In this brief review, we discuss and highlight several TS neuroimaging studies published 

during 2014-2015. For a more complete list of studies, see Table 1. While this recent research 

has provided some interesting findings, some concerns are common to many of these studies, 

namely motion confounds and modest sample sizes. 

Subject movement in the scanner is a known problem for neuroimaging. Thus, motion 

correction steps are universal to analyses of structural MRI, fMRI, and diffusion weighted MRI 

data. However, during the past several years, neuroimaging researchers have discovered 

lingering effects of motion, despite such correction, that can induce apparent group differences. 

In 2012, several groups reported on a motion artifact present in functional connectivity data even 

after standard motion correction procedures [46-48]. Specifically, small-amplitude (sub- 

millimeter) head movements induce a distance-dependent artifact, such that functional 

correlations between nearby brain regions are inflated compared to functional correlations 

between spatially distant brain regions. At the time, several prominent developmental and aging 

neuroimaging studies showed that children and older adults had stronger short-distance 

correlations and weaker long-distance correlations compared to young adults, suggesting 

increased local connectivity during childhood and during aging [49, 50]. Further, groups 

studying clinical populations (including our own) found similar distance dependent effects when 



comparing patient and control groups [e.g., 30, 51, 52]. Specific to TS, results were then 

interpreted as reflecting immature functional connectivity [30, 31]. Unfortunately, children and 

older adults move more than young adults, and patients often move more than controls. Thus, 

these findings of local hyperconnectivity and long-distance underconnectivity were likely driven, 

at least in part, by motion artifacts not accounted for by standard motion correction procedures 

nor by matching groups on average motion estimates. 

Recent and future functional connectivity studies in TS should therefore pay increased 

attention to motion confounds and should implement processing steps that minimize artifactual 

results. Results that demonstrate increased local connectivity in subjects with TS, who likely 

have greater in-scanner motion than controls, should be viewed with caution and should warrant 

further investigation of the effects of motion (for a review of methods to reduce motion effects, 

see [53]). In our recent functional connectivity study in children with TS [32], we implemented 

strict processing methods to minimize motion artifact. Interestingly, we did not find evidence for 

immature functional connectivity in TS (i.e., machine learning tools predicted chronological age 

comparably for children with and without TS based on patterns of functional connectivity), 

suggesting strongly that group differences reflect atypicality, not immaturity. In addition to 

functional connectivity, recent work has shown that subject movement also can affect measures 

of structural MRI volume and cortical thickness [12] and diffusion-weighted imaging measures 

[54, 55]. Further, Yendiki et al. [55] demonstrated that certain white matter tracts are more prone 

to motion artifacts than others. Thus, the neuroimaging studies discussed in this review should be 

considered in light of the potential for motion artifacts, and future studies in TS should better 

address issues of motion. 



Another common limitation in many of the recent studies is that they examined modest 

sample sizes. Low power from small samples is a natural and perhaps even appropriate early step 

in developing new methods for studying TS. However, this limitation makes it difficult to 

determine whether a negative finding reflects a true null result or an underpowered study. In 

addition, small sample sizes are more likely to lead to inconsistent results across studies [56]. 

Larger samples not only reduce Type I and Type II error, but also can allow for subgroup 

analyses and for more reliable examination of relationships between neuroimaging measures and 

continuous measures of symptoms or behavior. Thus, we encourage future studies to increase 

sample sizes, as studies with 10-15 subjects per group are likely underpowered. 

Overall, the TS neuroimaging studies published in 2014-2015 provide interesting 

preliminary results. In the future, some of these findings certainly will be replicated and push our 

knowledge forward, and neuroimaging methods will continue to be developed and applied to the 

study of TS. We look forward to further novel studies in addition to larger, more definitive 

studies. [57, 58] 
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Table 1. Published TS neuroimaging studies in 2014-2015 
 

 Subjects Method Findings 
Muellner et al. 
[9] 

52 adults with TS 
52 adult controls 

T1-weighted MRI 
 

Measures: sulcal cortical 
thickness, mean depth, 
length, cortical fold 
opening 

Diminished sulcal depth and sulcal 
cortical thickness in frontal and pre- 
and post-central sulci in TS 

Ganos et al. [6] 14 adults with TS 
15 adults controls 

T1-weighted MRI 
 

Measures: VBM gray 
matter and white matter 
volume 

Reduced gray matter volume in 
prefrontal regions in TS. 
No differences in white matter 
volume and no significant 
correlations with clinical scores. 

Debes et al. [7] 22 adolescents 
and young adults 
with TS 
21 adolescent 
and young adult 
controls 

T1-weighted MRI and 
Diffusion-weighted 
imaging 

 

Measures: VBM gray 
matter density, FA, mean 
diffusivity, parallel and 
perpendicular diffusivity 

 

Longitudinal study 

Decreased gray matter volume in 
putamen over time in controls, but 
no such change in TS. 
Parallel and perpendicular diffusivity 
increased over time in controls, but 
decreased over time in TS. 
Decrease in mean diffusivity in right 
striatum, right thalamus, and right 
frontal lobe more pronounced in TS. 

Jeppesen et al. 
[8] 

24 children with 
TS 
18 child controls 

T1-weighted MRI and 
Diffusion-weighted 
imaging 

 

Measures: VBM gray 
matter density, FA, ADC, 
parallel and perpendicular 
diffusivity 

No differences found in the seven 
regions of interest: cingulate, corpus 
callosum, optic radiation, forcep 
minor, thalamus, striatum, middle 
cerebral peduncle 

Muller-Vahl et 
al. [14] 

19 adults with TS 
20 adult controls 

Diffusion-weighted 
imaging 

 

Measures: FA, ADC 

Microstructural alterations in white 
matter in frontal regions, corpus 
callosum, cingulate, thalamus, and 
putamen in TS 

Cheng et al. 
[15] 

15 adults with TS 
15 adult controls 

Diffusion-weighted 
imaging 

 

Measures: probabilistic 
tractography 

Reduced connectivity between 
cortical and subcortical motor control 
regions in TS 

Worbe et al. 
[13] 

49 adults with TS 
28 adult controls 

Diffusion-weighted 
imaging 

 

Measures: probabilistic 
tractography 

Atypical connectivity between 
striatum/thalamus and cortical 
regions in TS, primarily enhanced 
connectivity. 

Ganos et al. 
[18] 

14 adults with TS 
15 adult controls 

fMRI during a stop signal 
task 

 

Measures: task 
performance, fMRI activity 
during task conditions 

Behavioral performance did not differ 
between TS and controls, but activity 
in dorsal premotor cortex differed; 
stronger activity for successful stop 
than successful go trials in controls, 
while stronger activity for successful 
go than successful stop trials in TS. 

Thomalla et al. 
[19] 

15 adults with TS 
15 adult controls 

fMRI during a Go/NoGo 
task 

Slower RT on Go trials accompanied 
by reduced activity in motor regions 
(M1, SMA, dorsal premotor cortex) in 



 

 

  Measures: task 
performance, fMRI activity 
during task conditions 

TS 

Ganos et al. 
[23] 

14 adults with TS fMRI during tic inhibition 
and free ticcing 

 

Measures: resting state 
fMRI regional homogeneity 

Increased regional homogeneity in 
left inferior frontal gyrus during tic 
inhibition vs. free ticcing 

Cui et al. [22] 17 children with 
TS 
15 child controls 

Resting state fMRI 
 

Measures: amplitude of 
low-frequency fluctuations 
(ALFF) and fractional 
ALFF (fALFF) 

Decreased ALFF and fALFF in 
frontal and parietal regions; 
increased fALFF in subcortical 
regions (correlated with tic severity 
in thalamus) 

Neuner et al. 
[24] 

16 adults with TS 
(subset of 10 
used for tic- 
related fMRI 
analysis) 

fMRI 
 

Measures: tic-related fMRI 
activity 2 sec before a tic, 
1 sec before a tic, and at 
tic onset, resting state 
networks (RSN) analysis 

Cortical regions were active before 
subcortical regions during tics. 
Tic severity correlated with RSN 
network integrity in SMA regions 

Shprecher et al. 
[25] 

9 adults with TS 
10 adult controls 

Resting state fMRI 
 

Measures: functional 
connectivity in 116 regions 
from the AAL atlas 

Increased short distance connectivity 
and decreased long distance 
connectivity in TS (note that this 
result is consistent with motion 
artifacts) 

Tinaz et al. [26] 13 adults with TS 
13 adult controls 

Resting state fMRI 
 

Measures: functional 
connectivity in 35 nodes 
constituting a “urge-tic 
network”, graph theory 
metrics 

Functional connectivity reduced in 
dorsomedial frontal regions, but 
increased in thalamus, putamen, 
insula and between dorsomedial 
frontal regions and dorsal anterior 
insula 

Deckersbach et 
al. [41] 

8 adults with TS 
8 adult controls 

fMRI during a visuospatial 
priming task 

 

Measures: task activity pre 
and post CBIT 

Greater activity in putamen in TS pre 
CBIT. 
Reduced activity in putamen in TS 
post CBIT. 

Wu et al. [35] 12 children to 
young adults (10- 
22 years); 
half in active 
group, half in 
sham control 
group 

fMRI during finger tapping 
task 

 

Measures: task activity pre 
and post TMS over the 
SMA, tic severity pre and 
post TMS 

Improvement in tic severity in both 
active and sham groups. 
Reduced fMRI activity in motor 
regions in active group vs. sham 
group 

Abi-Jaoude et 
al. [55] 

11 adults with TS 
11 adult controls 

[11C]raclopride PET and 
[11C]-(+)-PHNO PET 

 

Measures: striatal binding 
potential 

No group differences in striatal 
binding potential, and no significant 
correlations with symptom severity. 

Kumar et al. 
[56] 

12 children with 
TS 
17 children with 
PANDAS 
15 adult controls 

11C-[R]-PK11195 PET 
 

Measures: ligand TSPO 
receptor binding in basal 

Increased binding potential in the 
caudate in TS, and increased 
binding potential in the caudate and 
lentiform in PANDAS, compared to 
controls. 



 

 

  ganglia and thalamus  
Black et al. [57] 5 adults with TS 

5 adult controls 
(pilot study) 

[11C]raclopride PET 
 

Measures: synaptic 
dopamine release before 
and during levodopa or 
placebo infusion, 
[11C]raclopride (RAC*) 
binding potential 

In the midbrain, levodopa displaced 
RAC* by 59% in controls, but 
increased RAC* binding potential by 
74% in TS. 
No differences in the striatum. 

Draper et al. 
[43] 

15 adolescents 
with TS 
15 adolescent 
controls 

Multimodal: GABA MRS, 
T1-weighted MRI, fMRI 
during finger tapping, 
TMS, diffusion-weighted 
imaging 

 

Measures: GABA 
concentration, CSF, gray 
matter, and white matter 
volume, finger tapping 
activity, cortical-spinal 
excitability, FA 

 

Focus on M1, SMA, 
primary visual cortex 

Elevated GABA in SMA, but not in 
M1 or visual cortex, in TS. Increased 
GABA in SMA related to decreased 
fMRI activity in SMA and cortical 
excitability. 
Increased GABA in SMA related to 
increased motor tic severity and FA 
within a region of the corpus 
callosum that projects to the SMA. 

Tinaz et al. [42] 15 adults with TS 
15 adult controls 

Multimodal: T1-weighted 
MRI, resting state fMRI, 
GABA MRS, MEG 

 

Measures: cortical volume 
and thickness, seed-based 
functional connectivity, 
GABA concentration(?), 
beta band power 

 

Focus on sensorimotor 
cortex 

In the sensorimotor cortex, no 
significant group differences in GABA 
or beta band power, but the 
relationship between was opposite in 
TS. 
Trend for increase functional 
connectivity between the insula and 
sensorimotor cortex in TS. 

Subject numbers refer to those subjects included in final analyses; ADC = apparent diffusion coefficient, 
CBIT = comprehensive behavioral intervention for tics, FA = fractional anisotropy, M1 = primary motor 
cortex, MEG = magnetoencephalography, MRS = magnetic resonance spectroscopy, PET = Positron 
emission tomorgraphy, SMA = supplementary motor cortex, TMS = transcranial magnetic stimulation, 
VBM = voxel-based morphometry 
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