Washington University School of Medicine Digital Commons@Becker

Presentations

2004: Alcoholism and the Latest Genetics and Neuroscience Findings

2004

Progress toward identification of alcoholism susceptibility genes on chromosome 7 in the COGA dataset

Alison M. Goate Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/guzepresentation2004 Part of the <u>Medicine and Health Sciences Commons</u>

Recommended Citation

Goate, Alison M., "Progress toward identification of alcoholism susceptibility genes on chromosome 7 in the COGA dataset" (2004). *Presentations*. Paper 1 Samuel B. Guze Symposium on Alcoholism. http://digitalcommons.wustl.edu/guzepresentation2004/1

This Presentation is brought to you for free and open access by the 2004: Alcoholism and the Latest Genetics and Neuroscience Findings at Digital Commons@Becker. It has been accepted for inclusion in Presentations by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Progress Toward Identification of Alcoholism Susceptibility Genes on Chromosome 7 in the COGA dataset

Alison M. Goate, Ph.D.

This research is supported by NIH Grant (U10AA08403) from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). There are no interests to disclose.

Genetics of alcoholism

- 1) To what extent do genetic influences impact the trait of interest?
- 2) Can we identify these genetic influences?
- 3) How do these genes act and interact with other genetic/environmental influences?

The heritability of alcoholism

Twin & adoption studies

 \rightarrow Denmark, Sweden, Finland, Australia, USA

Across birth cohorts

 \rightarrow late 1800s to early 1970s

Across methods of assessment

→ In-patient hospitalizations, gov't records, diagnostics interview

◆ Across diagnostic criteria
 → Feighner, DSMIII-R, DSMIV, ICD

Heritability estimates

- \rightarrow 51-65% in females
- →48-73% in males

Collaborative Study of the Genetics of Alcoholism

"The long-term objective of this multi-dimensional interdisciplinary research project is to *characterize the genetic factors* involved in the determination of predisposition to alcoholism. This substantial undertaking involves the expertise of biochemists, clinicians, geneticists, neuropsychologists, neurophysiologists, and statisticians."

--original COGA grant application, 1989

COGA strategy

1. Ascertain alcoholic families

Polydiagnostic interview Electrophysiological data

2. Linkage analyses to identify chromosomal regions

↑ allele-sharing among affecteds within a family

3. Association analyses to identify specific genes

Collaborative Study of the Genetics of Alcoholism

- Patients identified through inpatient/outpatient treatment programs at 6 sites
 - General sample: 1,227 families (n=9265)
 - Semi-structured Assessment for the Genetics of Alcoholism Interview (SSAGA)
 - Genetic sample: 262 families (n=2282)
 - Blood draw, EEG/ERP, neuropsychological assessments
 - 2 waves of data collection

Phenotypes used in the genetic analyses

- Alcohol dependence
 - → COGA= DSMIIIR plus Feighner criteria
 - \rightarrow DSMIV
 - \rightarrow ICD10
 - Other substance abuse
 - \rightarrow Cocaine dependence
 - → Marijuana dependence
 - \rightarrow Habitual smoking (2 packs/day for at least 6 months)
- Comorbid disorders
 - \rightarrow depression
- Endophenotypes
 - → Electroencephalogram (EEG)
 - \rightarrow Event related potential (ERP)

Neurophysiological Endophenotypes

S-transform of evoked activity to target in VP3
 yields time-frequency characteristics of signal

Endophenotypes: Theta band (3-7 Hz) + delta band (1-2 Hz) between 300-700 ms (when P3 component is maximum) in brain regions (frontal, central, parietal)
 Time-frequency distribution mean value

SOLAR linkage analysis

→Using 1340 individuals in 253 families

Jones et al.

Theta + Delta Oscillations Underlying GO NO-GO P3 Are Reduced In Alcoholics

Kamarajan et al., 2003

SOLAR Linkage Analysis:Theta + Delta Oscillations VP3 Target (S-Transform)

TIME by FREQ

Difficulties with Complex Disorders

Many genes of small effect

• Genetic heterogeneity

•Gene-gene interaction

Gene-environment interaction

Phenotype definition

EEG Summary

Imbalance in excitation/inhibition (CNS disinhibition) in alcoholics and individuals at risk

Hypothesis: CNS disinhibition involved in genetic predisposition for development of alcohol dependence

• EEG as an endophenotype for alcohol dependence

EEG Heritabilities

Frequency band	<u>Mean h2</u>
Delta (1.5-3.5 Hz)	76%
Theta (4-7.5 Hz)	89%
Alpha (8-12.5 Hz)	89%
Beta (13-25 Hz)	86%

Van Beijsterveldt et al., 1996

Linkage Results in COGA

Results of the initial genome screen for COGA alcohol dependence

S chromosomal regions showed evidence for a susceptibility locus

- Chromosome 1 near D1S1588
- Chromosome 2 near D2S1790
- Chromosome 7 near D7S1793

1 chromosomal region showed evidence for a protective locus

- Chromosome 4 near ADH3

Evidence for a susceptibility gene for alcohol dependence on chromosome 7

ASPEX Sib Phase Chromosome 07

Evidence for a susceptibility gene for depression on chromosome 7

ASPEX Sib Phase Chromosome 07

Linkage to chromosome 7

Linkage Analysis Of Theta ERO: Chromosome 7

Jones et al.

COGA association strategy

Multiple analytic methods: family-based
 Extended families (PDT; trios & discordant sibs)
 Classic TDT trios (TRANSMIT; SAGE)

Multiple SNPs in each gene

◆LD across the region

Consistency!

Family-based association methods

TDT – Transmission Disequilibrium Test

Family-based association methods

TDT – Transmission Disequilibrium Test

PDT – Pedigree Disequilibrium Test

All possible trios Affected vs unaffected siblings

Location of SNPs within and flanking the *CHRM2* gene on chromosome 7

Table 2. Pedigree disequilibrium test (PDT) of 9 SNPs within and flanking the CHRM2 gene and Major Depressive Disorder.

SNP	p-value
rs2350786	0.034
rs324640	0.064
rs324650	0.047
rs324651	0.649
M164040.0	78
M256	0.056
rs1378650	0.122
rs1424548	0.710
rs324656	0.486

Transmit disequilibrium test (TDT) of 9 SNPs within and flanking the CHRM2 gene and alcohol dependence.

Diagnosis	COGA_M1 (N=888)		DSM4_M1 (N=756)		ICD10_M1 (N=575)	
SNP	Chi	p-val	Chi	p-val	Chi	p-val
rs2350786	0.02	0.888	0.00	0.995	0.01	0.905
rs324640	1.01	0.315	0.53	0.468	0.01	0.934
rs324650	0.98	0.321	0.73	0.394	0.07	0.796
rs324651	1.44	0.231	2.13	0.145	0.49	0.485
M16404	0.27	0.603	0.17	0.679	0.03	0.862
M256	0.01	0.928	0.01	0.918	0.03	0.865
rs1378650	0.20	0.653	0.29	0.591	0.09	0.766
rs1424548	0.65	0.421	0.00	0.954	0.01	0.912
rs324656	0.02	0.896	0.05	0.828	0.46	0.496

Model 1: Unaffected subjects are defined as individuals who drink but do not endorse any symptoms of alcohol dependence.

Pair-wise disequilibrium between SNPs in the CHRM2 gene

SNP D'	rs2350786	rs324651	M16404	rs1378650
2 ²				
rs2350786				
(A:0.29/G:0.81)		0.67	0.44	0.60
rs324651 (G:087/T:0.13)	0.03		0.97	0.83
M16404 (A:0.41/T:0.59)	0.13	0.09		0.79
rs1378650 (C:0.58/T:0.42)	0.23	0.07	0.60	

Pedigree disequilibrium test (PDT) of 4 SNPs within and flanking the CHRM2 gene and alcohol dependence

	SNP (P-values)				
Disease Model	rs2350786	rs324651	M16404	rs1378650	
COGA M1	0.733	0.195	0.036	0.032	
COGA M2	0.682	0.264	0.050	0.051	
DSM4 M1	0.811	0.025	0.008	0.022	
DSM4 M2	0.707	0.107	0.023	0.043	
ICD10 M1	0.704	0.061	0.079	0.196	
ICD10 M2	0.677	0.289	0.167	0.203	

Model 1: Unaffected subjects are defined as individuals who drink but do not endorse any symptoms of alcohol dependence. Model 2: Unaffected subjects are defined as individuals who drink but do not meet diagnostic criteria for alcohol dependence.

Haplotype analysis three SNPs within the CHRM2 gene using SIMWALK with DSM IV diagnosis Model 1.

Global PDT test of SNP haplotypes (excluding the 3 rare haplotypes) with DSM IV_m1 = χ^2 =10.43 p=0.034, 4 d.f.

CHRM2 SNPs LD SOLAR MEASURED GENOTYPE DELTA TARGET

rs2350786	Frontal	0.66	rs8191992	Frontal	0.21
	Central	0.09		Central	0.0046
	Parietal	0.08		Parietal	0.0014
rs324640	Frontal	0.99	rs8191993	Frontal	0.69
	Central	0.02		Central	0.39
	Parietal	0.08		Parietal	0.96
rs324650	Frontal	0.82	rs1378650	Frontal	0.21
	Central	0.048		Central	0.008
	Parietal	0.01		Parietal	0.004
rs324651	Frontal	0.36	rs1424548	Frontal	0.95
	Central	0.12		Central	0.66
	Parietal	0.2		Parietal	0.61
			rs324656	Frontal	0.24
				Central	0.033
				Parietal	0.065

Conclusions I – Association Studies

COGA strategy for testing candidate genes

- \rightarrow Within family tests
- \rightarrow Multiple SNPs in each gene
- →Consistency between association results and patterns of LD

Evidence for association
 GABRA2 on chromosome 4
 GABRG3 on chromosome 15

GABA_A receptor genes & alcoholism

Why association with some GABA-A receptors and not others?

→ Chromosome 4:
◆ GABRA2 (not GABRG1, GABRA4, GABRB1)
→ Chromosome 15:
◆ GABRG3 (not GABRB3, GABRA5)

•What about these genetic variants alters risk?

→Sequencing, no amino acid substitutions→Regulatory differences

Demonstrated genetic influence on alcoholism

→Identified specific genes

Characterizing the risk associated with these genes

→From identifying genetic influence

 \rightarrow To identifying specific genes

→To characterizing the risk associated with those genes

- Gene-gene & gene-environment interaction
- Developmental trajectories associated with genetic risk factors

Acknowledgments - COGA

H. Begleiter, SUNY HSC @ Brooklyn, Principal InvestigatorH. Edenberg, Indiana University, Co-Principal Investigator

This collaborative study includes nine different centers where data collection, analysis, and storage take place. The nine sites and Principal Investigators and Co-Investigators are: Howard University (R. Taylor), Indiana University (H. Edenberg, J. Nurnberger, Jr., P.M. Conneally, T. Foroud), Rutgers University (J. Tischfield), Southwest Foundation (L. Almasy), SUNY HSC @ Brooklyn (B. Porjesz, H. Begleiter), University of California, San Diego (M. Schuckit), University of Connecticut (V. Hesselbrock), University of Iowa (R. Crowe, S. Kuperman), Washington University (L. Bierut, C.R. Cloninger, J. Rice, A. Goate)

Lisa Neuhold, NIAAA Staff Collaborator

This national collaborative study is supported by the NIH Grant U10AA08403 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA).