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Abstract

Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-
wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We
uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in
or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish
embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in
renal function. By providing new insights into genes that regulate renal function, these results could further our
understanding of the pathogenesis of CKD.
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the University of Ulm, Germany (W Koenig). Genome-wide genotyping costs in F3 and F4 was in part funded by the Else Kröner-Fresenius-Stiftung (CA Böger, BK
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Introduction

Chronic kidney disease (CKD) affects nearly 10% of the global

population [1,2], and its prevalence continues to increase [3].

Reduced estimated glomerular filtration rate (eGFR), the primary

measure used to define CKD (eGFR,60 ml/min/1.73 m2) [4], is

associated with an increased risk of cardiovascular morbidity and

mortality [5], acute kidney injury [6], and end stage renal disease

(ESRD) [6,7].

Using genome-wide association studies (GWAS) in predomi-

nantly population-based cohorts, we and others have previously

identified more than 20 genetic loci associated with eGFR and

CKD [8–11]. Although most of these genetic effects seem largely

robust across strata of diabetes or hypertension status [9], evidence

suggests that some of the loci such as the UMOD locus may have

heterogeneous effects across these strata [11]. We thus hypothe-

sized that GWAS in study populations stratified by four key CKD

risk factors - age, sex, diabetes or hypertension status - may permit

the identification of novel eGFR and CKD loci. We carried this

out by extending our previous work [9] to a larger discovery

sample of 74,354 individuals with independent replication in

additional 56,246 individuals, resulting in a total of 130,600

individuals of European ancestry. To assess for potential

heterogeneity, we performed separate genome-wide association

analyses across strata of CKD risk factors, as well as in a more

extreme CKD phenotype.

Results

Meta-analyses of GWAS on the 22 autosomes were performed

for: 1) eGFR based on serum creatinine (eGFRcrea) and CKD

(6,271 cases) in the overall sample, 2) eGFRcrea and CKD

stratified by the four risk factors, and 3) CKD45, a more severe

CKD phenotype defined as eGFRcrea ,45 ml/min/1.73 m2 in
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the overall sample (2,181 cases). For the stratified analyses, in

addition to identifying loci that were significant within each

stratum, we performed a genome-wide comparison of the effect

estimates between strata of the four risk factors. A complete

overview of the analysis workflow is given in Figure S1. All studies

participating in the stage 1 discovery and stage 2 replication

phases are listed in Tables S1 and S2. The characteristics of all

stage 1 discovery samples by study are reported in Table S3, and

information on study design and genotyping are reported in

Table S4. Results of the eGFRcrea analyses are summarized in

the Manhattan and quantile-quantile plots reported in Figures S2

and S3. A total of 21 SNPs from the discovery stage were carried

forward for replication in an independent set of 56,246

individuals (Tables S5 and S6). These SNPs were selected for

replication for the following (Figure S1): 5 reached genome-wide

significance in either eGFRcrea overall or stratified analyses, 1

based on a test of direction-consistency of SNP-eGFR associa-

tions across the discovery cohorts for eGFRcrea overall, 4

demonstrated a P value#1026 and high between-study homoge-

neity (I2,25%) in the CKD45 analysis (Table S7), and 11

demonstrated between-strata P value#561025 along with a P

value#561025 for association with eGFRcrea in at least one of

the two strata (Table S8).

While none of the loci identified for CKD45 or the test for

between-strata difference analyses replicated, all 6 loci identified

from the eGFRcrea overall analysis, stratified analyses, and the

direction test did (Table 1). These 6 loci were identified and

replicated in the overall analysis (rs3925584, located upstream of the

MPPED2 gene; rs6431731 near the DDX1 gene), in the diabetes-free

sub-group (rs2453580 in an intron of the SLC47A1 gene), in the

younger age stratum (rs11078903 in an intron of the CDK12 gene;

rs12124078 located near the CASP9 gene), and the direction test

(rs2928148, located in the INO80 gene, see Methods for details). In

the combined meta-analysis of all 45 studies used in the discovery

and replication stages, all six SNPs met the genome-wide

significance threshold of 561028, with individual P values ranging

from 4.361028 to 8.4610218 (Table 1). The imputation quality of

these SNPs is reported in Table S9, and Figure S4 shows the

regional association plots for each of the 6 loci. We also confirmed

all previously identified renal function loci in the current data (Table

S10). Brief descriptions of the genes included within the 6 new loci

uncovered can be found in Table S11. Forest plots for the

associations between the index SNP at each of the 6 novel loci and

eGFR across all discovery studies and all strata are presented in

Figures S5 and S6. Most of the 6 new loci had similar associations

across strata of CKD risk factors except for the CDK12 locus, which

revealed stronger association in the younger (#65 years of age) as

compared to the older age group (.65 years of age).

We further examined our findings in 8,110 African ancestry

participants from the CARe consortium [12] (Table 2). Not

surprisingly, given linkage disequilibrium (LD) differences between

Europeans and African Americans, none of the 6 lead SNPs

uncovered in CKDGen achieved significance in the African

American samples. Next, we interrogated the 250 kb flanking

regions from the lead SNP at each locus, and showed that 4 of the

6 regions (MPPED2, DDX1, SLC47A1, and CDK12) harbored

SNPs that achieved statistical significance after correcting for

multiple comparisons based on the genetic structure of each region

(see Methods for details). Figure 1 presents the regional association

plots for MPPED2, and Figure S7 presents the plots of the

remaining loci in the African American sample. Imputation scores

for the lead SNPs can be found in Table S12. We observed that

rs12278026, upstream of MPPED2, was associated with eGFRcrea

in African Americans (P value = 561025, threshold for statistical

significance: P value = 0.001). While rs12278026 is monomorphic

in the CEU population in HapMap, rs3925584 and rs12278026

have a D9 of 1 (r2 = 0.005) in the YRI population, suggesting that

these SNPs may have arisen from the same ancestral haplotype.

We also performed eQTL analyses of our 6 newly identified loci

using known databases and a newly created renal eSNP database

(see Methods) and found that rs12124078 was associated with cis

expression of the nearby CASP9 gene in myocytes, which encodes

caspase-9, the third apoptotic activation factor involved in the

activation of cell apoptosis, necrosis and inflammation (P value for

the monocyte eSNP of interest = 3.7610213). In the kidney,

caspase-9 may play an important role in the medulla response to

hyperosmotic stress [13] and in cadmium-induced toxicity [14].

The other 5 SNPs were not associated with any investigated eQTL.

Additional eQTL analyses of 81 kidney biopsies (Table S13) did not

reveal further evidence of association with eQTLs (Table S14).

Of the 6 novel loci identified, 2 (MPPED2 and DDX1) were in

regions containing only a single gene, and 1 (CASP9) had its

expression associated with the locus lead SNP. Thus, to determine

the potential involvement of these three genes during zebrafish

kidney development, we independently assessed the expression of

4 well-characterized renal markers following morpholino knock-

down: pax2a (global kidney) [15], nephrin (podocyte) [16], slc20a1a

(proximal tubule) [17], and slc12a3 (distal tubule) [17]. While we

observed no abnormalities in ddx1 morphants (Figure S8), mpped2

and casp9 knockdown resulted in expanded pax2a expression in the

glomerular region in 90% and 75% of morphant embryos,

respectively, compared to 0% in controls (P value,0.0001 for both

genes; Figure 2A versus 2F and 2K; 2B versus 2G and 2L; and 2P).

Significant differences were also observed in expression of the

podocyte marker nephrin (Figure 2C versus 2H and 2M; 80% and

74% abnormalities for mpped2 and casp9, respectively, versus 0% in

controls, P value,0.0001 for both genes). For mpped2, no

differences were observed in expression of the proximal or distal

tubular markers slc20a1a and slc12a3 (P value = 1.0; Figure 2D

versus 2I and 2E versus 2J). Casp9 morphants and controls showed

no differences in proximal tubular marker expression (Figure 2D

versus 2N), but abnormalities were observed in distal tubular

marker expression in casp9 knockdown embryos (30% versus 0%;

Figure 2E versus 2O; P value = 0.0064).

Author Summary

Chronic kidney disease (CKD) is an important public health
problem with a hereditary component. We performed a
new genome-wide association study in up to 130,600
European ancestry individuals to identify genes that may
influence kidney function, specifically genes that may
influence kidney function differently depending on sex,
age, hypertension, and diabetes status of individuals. We
uncovered 6 new loci associated with estimated glomer-
ular filtration rate (eGFR), the primary measure of renal
function, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9,
and INO80. CDK12 effect was stronger in younger and
absent in older individuals. MPPED2, DDX1, SLC47A1, and
CDK12 loci were associated with eGFR in African ancestry
samples as well, highlighting the cross-ethnicity validity of
our findings. Using the zebrafish model, we performed
morpholino knockdown of mpped2 and casp9 in zebrafish
embryos and revealed podocyte and tubular abnormalities
with altered dextran clearance, suggesting a role for these
genes in renal function. These results further our
understanding of the pathogenesis of CKD and provide
insights into potential novel mechanisms of disease.
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Casp9 morphants displayed diminished clearance of 70,000 MW

fluorescent dextran 48 hours after injection into the sinus venosus

compared to controls, revealing significant functional consequences

of casp9 knockdown (Figure 2Q–2V). No clearance abnormalities

were observed in mpped2 morphants. The occurrence of abdominal

edema is a non-specific finding that is frequently observed in

zebrafish embryos with kidney defects. We examined the occur-

rence of edema in mpped2 and casp9 knockdown embryos at 4 and 6

days post fertilization (dpf), both in the absence and presence of

dextran, and observed a significant increase in edema prevalence in

casp9 with (P value,0.0001) and without (P value = 0.0234) dextran

challenge but not in mpped2 morphants (Figure 2W).

In order to further demonstrate differences in kidney function in

response to knockdown of mpped2 and casp9, we injected the

nephrotoxin gentamicin which predictably causes edema in a subset

of embryos. Casp9 morphants were more susceptible to developing

edema compared to both controls and mpped2 morphants

(Figure 2X). In addition, edema developed earlier and was more

severe, encompassing a greater area of the entire embryo (Figure

S9). Together, these findings suggest that casp9 and mpped2

knockdowns result in altered kidney gene expression and function.

Specifically, abnormal expression of pax2a and nephrin in casp9

morphants in addition to dextran retention and edema formation

suggest loss of casp9 impacts glomerular development and function.

The lead SNP at the MPPED2 locus is located approximately

100 kb upstream of the gene metallophosphoesterase domain

containing 2 (MPPED2), which is highly evolutionary conserved

and encodes a protein with metallophosphoesterase activity [18].

It has been recognized for a role in brain development and

tumorigenesis [19] but thus far not for kidney function.

To determine whether the association at our newly identified

eGFRcrea loci was primarily due to creatinine metabolism or renal

function, we compared the relative associations between eGFRcrea

and eGFR estimated using cystatin C (eGFRcys) (Figure S10, File

S1). The new loci showed similar effect sizes and consistent effect

directions for eGFRcrea and eGFRcys, suggesting a relation to

renal function rather than to creatinine metabolism. Placing the

results of these 6 loci in context with our previously identified loci

[8,9] (23 known and 6 novel), 18 were associated with CKD at a

0.05 significance level (odds ratio, OR, from 1.05 to 1.26; P values

from 3.7610216 to 0.01) and 11 with CKD45 (OR from 1.08 to

1.34; P values from 1.161025 to 0.047; Figure S11 and Table S15).

When we examined these 29 renal function loci by age group,

sex, diabetes and hypertension status (Tables S16, S17, S18, and

S19), we observed consistent associations with eGFRcrea for most

loci across all strata, with only two exceptions: UMOD had a

stronger association in older individuals (P value for difference

8.4610213) and in those with hypertension (P value for difference

0.002), and CDK12 was stronger in younger subjects (P value for

difference 0.0008). We tested the interaction between age and

rs11078903 in one of our largest studies, the ARIC study. The

interaction was significant (P value = 0.0047) and direction

consistent with the observed between-strata difference.

Finally, we tested for associations between our 6 new loci and

CKD related traits. The new loci were not associated with urinary

albumin-to-creatinine ratio (UACR) or microalbuminuria [20]

(Tables S20 and S21), with blood pressure from the ICBP

Consortium [21] (Table S22) or with myocardial infarction from

the CARDIoGRAM Consortium [22] (Table S23).

Discussion

We have extended prior knowledge of common genetic variants

for kidney function [8–11,23] by performing genome-wide
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association tests within strata of key CKD risk factors, including

age, sex, diabetes, and hypertension, thus uncovering 6 loci not

previously known to be associated with renal function in

population-based studies (MPPED2, DDX1, CASP9, SLC47A1,

CDK12, INO80). In contrast to our prior genome-wide analysis

[8,9], the majority of the new loci uncovered in the present

analysis have little known prior associations with renal function.

This highlights a continued benefit of the GWAS approach by

using large sample sizes to infer new biology.

Despite our hypothesis that genetic effects are modified by CKD

risk factors, most of the identified variants did not exhibit strong

cross-strata differences. This highlights that many genetic

associations with kidney function may be shared across risk factor

strata. The association of several of these loci with kidney function

in African Americans underscores the generalizability of identified

renal loci across ethnicities. Zebrafish knockdown of mpped2

resulted in abnormal podocyte anatomy as assessed by expression

of glomerular markers, and loss of casp9 led to altered podocyte

and distal tubular marker expression, decreased dextran clearance,

edema, and enhanced susceptibility to gentamicin-induced kidney

damage. These findings demonstrate the potential importance of

these genes with respect to renal function and illustrate that

zebrafish are a useful in vivo model to explore the functional

consequences of GWAS-identified genes.

Despite these strengths, there are some limitations of our study

that warrant discussion. Although we used cystatin C to separate

creatinine metabolism from true filtration loci, SNPs within the

cystatin C gene cluster have been shown to be associated with

cystatin C levels [8], which might result in some degree of

misclassification in absolute levels. While we used standard

definitions of diabetes and hypertension in the setting of

population-based studies, these may differ from those definitions

used in clinical practice. In addition, we were unable to

differentiate the use of anti-hypertension medications from other

clinical indications of these agents or type 1 from type 2 diabetes.

The absence of association between our six newly discovered SNPs

and the urinary albumin to creatinine ratio, blood pressure, and

cardiovascular disease may have resulted from disparate genetic

underpinnings of these traits, the overall small effect sizes, or the

cross-sectional nature of our explorations; and we were unable to

differentiate between these potential issues. Finally, power was

modest to detect between-strata heterogeneity.

With increased sample size and stratified analyses, we have

identified additional loci for kidney function that continue to have

novel biological implications. Our primary findings suggest that

there is substantial generalizability of SNPs associations across

strata of important CKD risk factors, specifically with hyperten-

sion and diabetes.

Figure 1. Genetic association and LD distribution of the MPPED2 gene locus in European and African ancestry populations. Regional
association plots in the CKDGen European ancestry discovery analysis (N = 74,354) (A) and in the CARe African ancestry discovery analysis (N = 8,110)
(B). LD structure: comparison between the HapMap release II – CEU and YRI samples in the region included within +/2100 kb from the target SNP
rs3925584 identified in the CKDGen GWAS. The green circle highlights a stream of high LD connecting the two blocks, indicating the presence of
common haplotypes (C).
doi:10.1371/journal.pgen.1002584.g001
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Materials and Methods

Phenotype definition
Serum creatinine and cystatin C were measured as detailed in

Tables S1 and S2. To account for between-laboratory variation,

serum creatinine was calibrated to the US nationally representa-

tive National Health and Nutrition Examination Study

(NHANES) standards in all discovery and replication studies as

described previously [8,24,25]. GFR based on serum creatinine

(eGFRcrea) was estimated using the four-variable MDRD Study

equation [26]. GFR based on cystatin C (eGFRcys) was estimated

as eGFRcys = 76.76(serum cystatin C)21.19 [27]. eGFRcrea and

eGFRcys values,15 ml/min/1.73 m2 were set to 15, and those

.200 were set to 200 ml/min/1.73 m2. CKD was defined as

eGFRcrea ,60 ml/min/1.73 m2 according to the National

Kidney Foundation guidelines [28]. A more severe CKD

phenotype, CKD45, was defined as eGFRcrea ,45 ml/min/

1.73 m2. Control individuals for both CKD and CKD45 analyses

were defined as those with eGFRcrea .60 ml/min/1.73 m2.

Covariate definitions
In discovery and replication cohorts, diabetes was defined as

fasting glucose $126 mg/dl, pharmacologic treatment for diabe-

tes, or by self-report. Hypertension was defined as systolic blood

pressure $140 mmHg or diastolic blood pressure $90 mmHg or

pharmacologic treatment for hypertension.

Discovery analyses
Genotyping was conducted as specified in Table S4. After

applying quality-control filters to exclude low-quality SNPs or

samples, each study imputed up to ,2.5 million HapMap-II

SNPs, based on the CEU reference samples. Imputed genotypes

were coded as the estimated number of copies of a specified allele

(allelic dosage). Additional, study-specific details can be found in

Table S1.

Primary association analysis
A schematic view of our complete analysis workflow is presented

in Figure S1. Using data from 26 population-based studies of

individuals of European ancestry, we performed GWA analyses of

the following phenotypes: 1) loge(eGFRcrea), loge(eGFRcys),

CKD, and CKD45 overall and 2) loge(eGFRcrea) and CKD

stratified by diabetes status, hypertension status, age group (#/

.65 years), and sex. GWAS of loge(eGFRcrea) and loge(eGFRcys)

were based on linear regression. GWAS of CKD and CKD45

were performed in studies with at least 25 cases (i.e. all 26 studies

for CKD and 11 studies for CKD45) and were based on logistic

regression. Additive genetic effects were assumed and models were

adjusted for age and, where applicable, for sex, study site and

principal components. Imputation uncertainty was accounted for

by including allelic dosages in the model. Where necessary,

relatedness was modeled with appropriate methods (see Table S1

for study-specific details). Before including in the meta-analysis, all

GWA data files underwent to a careful quality control, performed

using the GWAtoolbox package in R (www.eurac.edu/GWA

toolbox.html) [29].

Meta-analyses of study-specific SNP-association results, assum-

ing fixed effects and using inverse-variance weighting, i.e.: the

pooled effect b̂bpooled is estimated as
PK

i~1 wib̂bi

.PK
i~1 wi, where b̂bi

is the effect of the SNP on the outcome in the ith study, K is the

number of studies, and wi~1
.

SE(b̂bi) is the weight given to the ith

study. The meta-analyses were performed using METAL [30],

with genomic control correction applied across all imputed SNPs

[31] if the inflation factor l.1 at both the individual study level

and after the meta-analysis. SNPs with minor allele frequency

(MAF),1% were excluded. All SNPs with a meta-analysis P

value#561028 for any trait or any stratum were deemed genome-

wide significant [32].

In the eGFRcrea analyses, after excluding loci that were

previously reported [8,9], we selected for replication all SNPs with

P value,561028 in any trait or stratum that were independent

(defined by pairwise r2,0.2), in the primary association analysis.

This yielded five SNPs in five independent loci. The same criterion

was applied to the CKD analysis, where no SNPs passed the

selection threshold. Given the smaller number of cases with severe

CKD resulting in less statistical power, a different selection

strategy was adopted for the CKD45 analysis: selected for

replication were SNPs with discovery P value#561026,

MAF$5%, and homogeneous effect size across studies

(I2#25%). Four additional SNPs were thereby selected for

replication from the CKD45 analysis.

Direction test to identify SNPs for replication
In addition to identifying SNPs for replication based on the

genome-wide significance threshold from a fixed effect model

meta-analysis, we performed a ‘‘direction test’’ to identify

additional SNPs for which between-study heterogeneity in effect

size might have obscured the overall association that was

nevertheless highly consistent in the direction of allelic effects.

Under the null hypothesis of no association, the a priori probability

that a given effect allele of a SNP has either a positive or negative

association with eGFRcrea is 0.5. Because the meta-analysis

includes independent studies, the number of concordant effect

directions follows a binomial distribution. Therefore, we tested

whether the number of discovery cohorts with the same sign of

association (i.e. direction of effect) was greater than expected by

chance given the binomial distribution and a null expectation of

equal numbers of associations with positive and negative sign. The

test was only applied for eGFRcrea in the overall analysis.

Multiple testing was controlled by applying the same P value

Figure 2. Mpped2 and casp9 knockdowns result in defective kidney development. (A–E) Whole mount in situ hybridization in control
embryos demonstrates normal expression of the global kidney marker pax2a (A: lateral view; B: dorsal view), the glomerular marker nephrin (C), and
the tubular markers slc20a1a (proximal tubule, D), and slc12a3 (distal tubule, E) at 48 hours post fertilization (hpf). (F–J) Mpped2 morpholino (MO)
knockdown embryos develop glomerular gene expression defects (F–H, arrowheads), but tubular marker expression is normal (I, J). (K–O) Casp9 MO
knockdown embryos demonstrate reduced glomerular gene expression (K–M, arrowheads) and shortened distal tubules (O). (P) Quantification of
observed abnormalities per number of embryos reveal significant differences in expression of pax2a and nephrin in response to knockdown of both
mpped2 and casp9 (Fisher’s exact test). (Q–V) Embryos were injected with control, mpped2, or casp9 MO at the one-cell stage and subsequently
injected with 70,000 MW fluorescent rhodamine dextran at 80 hpf. Dextran fluorescence was monitored over the next 48 hours. All dextran-injected
embryos show equal loading into the cardiac sinus venosus at 2 hours post-injection (2 hpi/82 hpf; Q, S, U). Compared to control MO-injected
embryos (R) and mpped2 knockdown embryos (T), knockdown of casp9 resulted in reduced dextran clearance at 48 hpi as shown by increased trunk
fluorescence (V). (W) Casp9 knockdown results in increased susceptibility to edema formation both spontaneously (2dex) (P value = 0.0234, Fisher’s
exact test) and after dextran challenge (+dex) (P value,0.0001). Embryos injected with both MO and dextran did not survive to 6 dpf (N/A). (X) Edema
develops earlier and with higher frequency in casp9 morphants following injection of the nephrotoxin gentamicin.
doi:10.1371/journal.pgen.1002584.g002
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threshold of 561028 as in the overall GWAS. Given that no SNP

met this criterion, we selected for replication one novel SNP with

the lowest P value of 4.061027.

Genome-wide between-strata difference test to identify
SNPs for replication

Based on the results of the stratified GWAS of eGFRcrea and

CKD, for each SNP we tested the hypothesis whether the effect of

a SNP on eGFRcrea or CKD was the same between strata (null

hypothesis), i.e. diabetes versus non-diabetes subjects, hypertensive

versus normotensive, younger versus older, females versus males.

We used a two-sample test defined as Z = (b12b2)/(SE(b1)2+-
SE(b2)2)0.5, with b1 and b2 indicating the effect estimates in the two

strata and SE(b1) and SE(b2) their standard errors [33]. For large

samples, the test statistic follows a standard normal distribution.

SNPs were selected for replication if they had a between-stratum

difference P value#561025, an association P value#561025 in

one of the two strata, and MAF$10%. Independent loci were

defined using the same criteria as described above. Eleven further

SNPs, one per locus, were selected for replication from the

between-strata difference test.

Replication analysis
Replication was performed for a total of 21 SNPs including 5

from the overall and stratified eGFRcrea analyses, 1 from the

direction test on eGFRcrea, 4 from the overall CKD45 analysis,

and 11 from the between-strata difference test. Replication studies

used the same phenotype definition, and had available genotypes

from imputed in silico genome-wide SNP data or de novo

genotyping. The same association analyses including the identical

stratifications were performed as in discovery studies. Details can

be found in the Tables S2, S5 and S6. Study-specific replication

results for the selected SNPs were combined using the same meta-

analysis approach and software as in the discovery stage. One-

sided P values were derived with regard to the effect direction

found in the discovery stage. Based on the P value distribution of

all SNPs submitted for replication (the 10 from eGFRcrea and

CKD45 and the 11 from the between strata difference test), we

estimated the False Discovery Rate as a q-value using the

QVALUE [34] package in R. SNPs with q-value,0.05 were

called significantly replicating, thus specifying a list of associations

expected to include not more than 5% false positives.

Finally, study-specific results from both the discovery and

replication stage were combined in a joint inverse-variance

weighted fixed-effect meta-analysis and the two-sided P values

were compared to the genome-wide significance threshold of

561028 to test whether a SNP was genome-wide significant.

Between-study heterogeneity of replicated SNPs was quantified by

the I2 statistic [35].

Replication genotyping
For de novo genotyping in 10,446 samples from KORA F3,

KORA F4, SAPHIR and SAPALDIA, the MassARRAY system

at the Helmholtz Zentrum (München, Germany) was used, using

Assay Design v3.1.2 and the iPLEX chemistry (Sequenom, San

Diego, USA). Assay design failed for rs1322199 and genotyping

was not performed. Ten percent of the spectra were checked by

two independent, trained persons, and 100% concordance

between investigators was obtained. SNPs with a P value,0.001

when testing for Hardy-Weinberg equilibrium (rs10490130,

rs10068737, rs11078903), SNPs with call rate ,90% (rs500456

in KORA F4 only) or monomorphic SNPs (rs2928148) were

excluded from analyses without attempting further genotyping.

The call rates of rs4149333 and rs752805 were near 0% on the

MassARRAY system. These SNPs were thus genotyped on a

7900HT Fast Real-Time PCR System (Applied Biosystems,

Foster City, USA). Mean call rate across all studies and SNPs

ranged from 96.8% (KORA F4) to 99% (SAPHIR). Duplicate

genotyping was performed in at least 14% of the subjects in each

study with a concordance of 95–100% (median 100%). In the

Ogliastra Genetic Park Replication Study (n = 3000) de novo

genotyping was conducted on a 7900HT Fast Real-Time PCR

System (Applied Biosystems, Foster City, USA), with a mean call

rate of 99.4% and 100% concordance of SNPs genotyped in

duplicate.

Between-strata analyses for candidate SNPs in replication
samples

Twenty-nine SNPs, including the 6 novel loci reported in the

current manuscript along with 23 previously confirmed to be

associated with renal function [9], were tested for differential

effects between the strata. The same Z statistics as described for

discovery (above) was used and the Bonferroni-adjusted signifi-

cance level was set to 0.10/29 = 0.003.

SNP-by-age interaction, for the one SNP showing significantly

different effects between strata of age, was tested in the ARIC

study by fitting a linear model on log(eGFRcrea) adjusted for sex,

recruitment site, the first and the seventh genetic principal

components (only these two were associated with the outcome at

P value,0.05). Both the interaction term and the terms for the

main effects of age and the SNP were included in the model.

Power to assess between-strata effect difference
To assess genome-wide between-strata differences, with al-

pha = 561028 and power = 80%, the maximum detectable

difference was 0.025 when comparing nonDM versus DM and

0.015 when comparing nonHTN versus HTN. Similarly, when

testing for between-strata differences the 29 known and new loci

(Bonferroni-corrected alpha = 0.003) in the combined sample

(n = ,125,000 in nonDM and n = ,13,000 in DM) we had

80% power to detect differences as large as 0.035.

Look-up in African Americans (CARe)
For each of the 6 lead SNPs identified in our European

ancestry samples, we extracted eGFR association statistics from a

genome-wide study in the CARe African ancestry consortium

[12]. We further investigated potential allelic heterogeneity across

ethnicities by examining the 250 kb flanking region surrounding

each lead SNP to determine whether other SNPs with stronger

associations exist in each region. A SNP with the smallest

association P value with MAF.0.03 was considered the top SNP

in the African ancestry sample. We defined statistical significance

of the identified lead SNP in African ancestry individuals based

on a region-specific Bonferroni correction. The number of

independent SNPs was determined based on the variance

inflation factor (VIF) with a recursive calculation within a sliding

window of 50 SNPs and pairwise r2 of 0.2. These analyses were

performed using PLINK.

Analyses of related phenotypes
For each replicating SNP, we obtained association results for

urinary albumin-to-creatinine ratio and microalbuminuria from

our previous genome-wide association analysis [20], and for blood

pressure and myocardial infarction from genome-wide association

analysis from the ICBP [21] and CARDIoGRAM [22] consortia,

respectively.
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eSNP analysis
Significant renal SNPs were searched against a database of

expression SNPs (eSNP) including the following tissues: fresh

lymphocytes [36], fresh leukocytes [37], leukocyte samples in

individuals with Celiac disease [38], lymphoblastoid cell lines

(LCL) derived from asthmatic children [39], HapMap LCL from 3

populations [40], a separate study on HapMap CEU LCL [41],

peripheral blood monocytes [42,43], adipose [44,45] and blood

samples [44], 2 studies on brain cortex [42,46], 3 large studies of

brain regions including prefrontal cortex, visual cortex and

cerebellum (Emilsson, personal communication), liver [45,47],

osteoblasts [48], skin [49] and additional fibroblast, T cell and

LCL samples [50]. The collected eSNP results met criteria for

statistical significance for association with gene transcript levels as

described in the original papers.

A second expression analysis of 81 biopsies from normal kidney

cortex samples was performed as described previously [51,52].

Genotyping was performed using Affymetrix 6.0 Genome-wide chip

and called with GTC Software (Affymetrix). For eQTL analyses,

expression probes (Affymetrix U133set) were linked to SNP probes

with .90% call-rate using RefSeq annotation (Affymetrix build

a30). P values for eQTLs were calculated using linear multivariable

regression in both cohorts and then combined using Fisher’s

combined probability test (see also [52]). Pairwise LD was calculated

using SNAP [53] on the CEU HapMap release 22.

Zebrafish functional experiments
Zebrafish were maintained according to established IACUC

protocols. Briefly, we injected zebrafish embryos with newly

designed (mpped2, ddx1) or previously validated (casp9 [54])

morpholino antisense oligonucleotides (MO, GeneTools, Philo-

math OR) at the one-cell stage at various doses. We fixed embryos

in 4% PFA at the appropriate stages for in situ hybridization

(http://zfin.org/ZFIN/Methods/ThisseProtocol.html). Different

anatomic regions of the kidney were visualized using a panel of

4 established markers: pax2a (global kidney marker) [15], nephrin

(podocyte marker) [16], slc20a1a (proximal tubule) [17], and

slc12a3 (distal tubule marker) [17]. Abnormalities in gene

expression were independently scored by two investigators. We

compared the number of abnormal morphant embryos to control

embryos, injected with a standard control MO designed by

GeneTools, with the Fisher’s exact test, at the Bonferroni-

corrected significance level of 0.0125, i.e.: 0.05/4 markers. We

documented the development of gross edema at 4 and 6 days post-

fertilization in live embryos.

We performed dextran clearance experiments following previ-

ously described protocols [55]. Briefly, 80 hours after MO

injection, we anesthetized embryos in 4 mg/ml Tricaine in

embryo water (1:20 dilution), then positioned embryos on their

back in a 1% agarose injection mold. We injected an equal volume

of tetramethylrhodamine dextran (70,000 MW; Invitrogen) into

the cardiac sinus venosus of each embryo. We then returned the

embryos to fresh embryo water. Using fluorescence microscopy,

we imaged the embryos at 2 hours post-injection (82 hpf) to

demonstrate equal loading, then at 48 hours post-injection (128

hpf) to evaluate dextran clearance.

Embryos were injected with control, mpped2, or casp9 MOs at

the one-cell stage. At 48 hpf, embryos were manually dechor-

ionated, anesthetized in a 1:20 dilution of 4 mg/ml Tricaine in

embryo water, and oriented on a 1% agarose injection mold. As

previously described [56], embryos were injected with equal

volumes of 10 mg/ml gentamicin (Sigma) in the cardiac sinus

venosus, returned to fresh embryo water, and subsequently scored

for edema (prevalence, time of onset) over the next 3 days.

Supporting Information

Figure S1 Flowchart of the project.

(TIF)

Figure S2 Genome-wide 2log10 P values plot from stage 1

discovery meta-analysis. Plots show the discovery analysis of

eGFRcrea in the overall group, with known loci [8,9] highlighted

in orange and novel loci highlighted in blue (A), and in strata of the

main CKD risk factors (B, C, D, and E), with complementary

groups being contrasted each other. The dotted line indicates the

genome-wide significance threshold at P value = 561028. The

unmarked locus is RNASEH2C on chromosome 11, colored in

gray despite genome-wide significance. The P value for the current

stage 1 discovery for rs4014195 was 2.761029. This locus

previously did not replicate [9]; when we additionally considered

our prior non-overlapping in silico and de novo replication data,

the current stage 2 P value was 0.8832, yielding a combined stage

1+stage 2 P value of 2.661027. Therefore, we did not submit this

SNP for further replication.

(PDF)

Figure S3 Quantile-quantile plots of observed versus expected

2log10 P values from the discovery analysis of eGFRcrea overall

(A) and by strata of the main CKD risk factors (B). The orange line

and its 95% confidence interval (shaded area) represent the null

hypothesis of no association. In panel (A), results are compared

when considering all SNPs (black dots) and when removing SNPs

from loci that were already reported in previous GWAS [8,9]

(orange dots). The meta-analysis inflation factor l is reported

along with the discovery sample size. Individual-study minimum,

maximum and median ls are also reported for comparison.

Genomic-control correction was applied twice: on individual study

results, before the meta-analysis, and on the meta-analysis results.

(PDF)

Figure S4 Regional association plots for the six new loci in the

European ancestry discovery samples: (A) MPPED2; (B) DDX1; (C)

SLC47A1; (D) CASP9; (E) CDK12; (F) INO80. 2log10 P values are

plotted versus genomic position(build 36). The lead SNP in each

region is labeled. Other SNPs in each region are color-coded

based on their LD to the lead SNP(LD based on the HapMap

CEU, see color legend). Gene annotations are based on UCSC

Genome Browser(RefSeq Genes, build 36) and arrows indicate

direction of transcription. Graphs were generated using the stand-

alone version of LocusZoom [57], version 1.1.

(PDF)

Figure S5 Forest plots of the six novel loci in the discovery

phase.

(TIF)

Figure S6 Results from discovery meta-analysis of eGFRcrea for

the six new loci: overall sample and all strata are considered.

Reported is the effect size on log(eGFRcrea) and its 95%

confidence interval. The stratum where the SNP was discovered

is marked with a triangle for discovery based on meta-analysis P

value or with a circle for discovery based on direction test.

(TIF)

Figure S7 Regional association plots for the six new loci in the

African ancestry CARe samples: (A) MPPED2; (B) DDX1; (C)

SLC47A1; (D) CASP9; (E) CDK12; (F) INO80. 2log10 P values are

plotted versus genomic position (build 36). The lead SNP in each

region is labeled and identified by a blue arrow and blue P value.

The SNP with the smallest P value in the region is indicated by a

red arrow. Other SNPs in each region are color-coded based on

their LD to the lead SNP (based on the HapMap YRI, see color
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legend). Gene annotation is based on UCSC Genome Browser

(RefSeq Genes, build 36) and arrows indicate direction of

transcription. Graphs were generated using the stand-alone

version of LocusZoom [57], version 1.1.

(PDF)

Figure S8 Ddx1 knockdown does not affect kidney gene

expression. (A–E) Uninjected control embryos show normal

kidney development as demonstrated by in situ hybridization for

the renal markers pax2a (A, B), nephrin (C), slc20a1a (D) and slc12a3

(E). (F–J) Ddx1 morpholino(MO)-injected embryos do not show

significant changes in renal marker expression. (K) Number of

observed abnormalities per number of embryos examined at

400 uM MO injection for renal gene expression analysis.

(TIF)

Figure S9 Casp9 and mpped2 knockdown embryos are more

susceptible to gentamicin-induced kidney injury. Compared to

control embryos (A), casp9 and mpped2 knockdown embryos

develop edema at 103 hpf (C, E), suggestive of a renal defect. When

injected with gentamicin, a nephrotoxin that reproducibly induces

edema in control embryos (B), mpped2 and casp9 knockdown

embryos develop edema earlier, more frequently, and in a more

severe fashion (D, F). Whereas control embryos primarily develop

cardiac edema, mpped2 and casp9 knockdown embryos display

cardiac (arrowhead), ocular (black arrow), and visceral (white arrow)

edema, demonstrating that mpped2 and casp9 knockdown

predisposes embryos to kidney injury. (G) Quantification of edema

prevalence in control, mpped2, and casp9 knockdown embryos 2,

22, and 55 hours post-injection (hpi) of gentamicin. These numbers

are presented graphically in Figure 2X.

(TIF)

Figure S10 Comparison of the effect size on eGFRcrea and on

eGFRcys for the lead SNPs of known and new loci. Results are

based on the largest sample size available for each locus, i.e. the

combined discovery and replication sample for the novel loci

(N = 130,600), the discovery sample only for the known loci

(N = 74,354). Sign of effect estimates has been changed to reflect

the effects of the eGFRcrea lowering alleles. Original beta

coefficients and their standard errors for the two traits can be

downloaded from the File S1.

(TIF)

Figure S11 Odds ratios (ORs) and 95% confidence intervals of

CKD and CKD45 for the lead SNPs of all known and new loci,

sorted by decreasing OR of CKD.

(TIF)

File S1 Effect size on eGFRcrea and on eGFRcys for the lead

SNPs of known and new loci.

(XLSX)

Table S1 Study-specific methods and full acknowledgments—

discovery studies.

(DOC)

Table S2 Study-specific methods and full acknowledgments—

replication studies and functional follow-up studies.

(DOC)

Table S3 Characteristics of stage 1 discovery studies.

(DOC)

Table S4 Study-specific genotyping information for stage 1

discovery studies.

(DOC)

Table S5 Characteristics of stage 2 replication studies.

(DOC)

Table S6 Study-specific genotyping information for stage 2 in

silico replication studies.

(DOC)

Table S7 Top four SNPs from the CKD45 analysis.

(DOC)

Table S8 Loci identified by the test for differential effects

between strata in the GWAS. Results are sorted by trait, group

and chromosome. For each SNP, the P value of the test for

difference between strata is reported.

(DOC)

Table S9 Imputation quality of replicated SNPs in all discovery

and replication studies: median MACH-Rsq and interquartile

range (IQR) are reported.

(DOC)

Table S10 Effects of novel and known loci on log(eGFRcrea) in

the overall population.

(DOC)

Table S11 Genes nearest to loci associated with renal traits.

(DOC)

Table S12 Imputation Quality (MACH-Rsq) for the best SNPs

in the African ancestry samples of the CARe consortium (1.00

refers to genotyped data).

(DOC)

Table S13 Baseline characteristics of the kidney biopsies for the

eQTL analysis.

(DOC)

Table S14 Analysis of the new loci for eQTL status in meta-

analysis of two cohorts of kidney biopsies.

(DOC)

Table S15 Association of novel and known loci with CKD and

CKD45: Odds Ratios (OR), 95% confidence intervals (95%CI)

and P values.

(DOC)

Table S16 Association between novel and known loci and

log(eGFRcrea) in individuals without and with diabetes and test

for difference between strata.

(DOC)

Table S17 Association between novel and known loci and

log(eGFRcrea) in individuals without and with hypertension and

test for difference between strata.

(DOC)

Table S18 Association between novel and known loci and

log(eGFRcrea) in individuals younger and older than 65 years and

test for difference between strata.

(DOC)

Table S19 Association between novel and known loci and

log(eGFRcrea) in females and in males and test for difference

between strata.

(DOC)

Table S20 Effects of novel loci on the logarithm of urinary

albumin-to-creatinine ratio (log(UACR)) in the overall sample and

by diabetes and hypertension status.

(DOC)

Table S21 Effects (log odds ratios) of novel loci on microalbu-

minuria (MA) in the overall sample and by diabetes and

hypertension status.

(DOC)
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Table S22 Association of novel loci with diastolic and systolic

blood pressure in the ICBP consortium.

(DOC)

Table S23 Association of novel loci with myocardial infarction

in the CARDIoGRAM consortium.

(DOC)
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