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Dysferlin Mediates the Cytoprotective Effects of TRAF2 Following

Myocardial Ischemia Reperfusion Injury

Huei-Ping Tzeng, PhD; Sarah Evans, PhD; Feng Gao, MD; Kari Chambers, PhD; Veli K. Topkara, MD; Natarajan Sivasubramanian, PhD;
Philip M. Barger, MD; Douglas L. Mann, MD

Background—We have demonstrated that tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), a scaffolding protein
common to TNF receptors 1 and 2, confers cytoprotection in the heart. However, the mechanisms for the cytoprotective effects of
TRAF2 are not known.

Methods/Results—Mice with cardiac-restricted overexpression of low levels of TRAF2 (MHC-TRAF2,¢) and a dominant negative
TRAF2 (MHC-TRAF2py) were subjected to ischemia (30-minute) reperfusion (60-minute) injury (I/R), using a Langendorff
apparatus. MHC-TRAF2, ¢ mice were protected against I/R injury as shown by a significant ~27% greater left ventricular (LV)
developed pressure after |/R, whereas mice with impaired TRAF2 signaling had a significantly ~=~38% lower LV developed pressure,
a ~41% greater creatine kinase (CK) release, and ~52% greater Evans blue dye uptake after I/R, compared to LM. Transcriptional
profiling of MHC-TRAF2, ¢ and MHC-TRAF2py mice identified a calcium-triggered exocytotic membrane repair protein, dysferlin, as
a potential cytoprotective gene responsible for the cytoprotective effects of TRAF2. Mice lacking dysferlin had a significant ~39%
lower LV developed pressure, a ~20% greater CK release, and x=29% greater Evans blue dye uptake after /R, compared to wild-
type mice, thus phenocopying the response to tissue injury in the MHC-TRAF2py mice. Moreover, breeding MHC-TRAF2, ¢ onto a
dysferlin-null background significantly attenuated the cytoprotective effects of TRAF2 after I/R injury.

Conclusion—The study shows that dysferlin, a calcium-triggered exocytotic membrane repair protein, is required for the
cytoprotective effects of TRAF2-mediated signaling after 1/R injury. (/ Am Heart Assoc. 2014;3:e000662 doi: 10.1161/

JAHA.113.000662)

Key Words: cytoprotection e dysferlin = TNF receptor associated factor 2  tumor necrosis factor

M yocardial reperfusion after a period of ischemia may be
regarded as a “mixed blessing.” That is, on the one
hand, there is the clear-cut benefit that occurs as the result of
recovery of heart muscle that attends reperfusion; however, on
the other hand, there are also deleterious reperfusion-depen-
dent effects that can be attributed to excessive activation of
proinflammatory cytokines. Although excessive activation of
proinflammatory cytokines may be overtly deleterious by
producing left ventricular (LV) dysfunction and increased
tissue destruction attributable to robust inflammatory

From the Center for Cardiovascular Research, Division of Cardiology,
Department of Medicine, Washington University School of Medicine, St. Louis,
MO (H.-P.T., S.E., K.C., V.K.T., P.M.B., D.L.M.); Winters Center for Heart Failure
Research Section of Cardiology, Baylor College of Medicine, Houston, TX (F.G.,
N.S.).

Correspondence to: Douglas L. Mann, MD, Division of Cardiology, 660 S
Euclid Ave, Campus Box 8086, St. Louis, MO 63110. E-mail: dmann@dom.
wustl.edu

Received December 13, 2013; accepted January 28, 2014.

© 2014 The Authors. Published on behalf of the American Heart Association,
Inc., by Wiley Blackwell. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is
properly cited and is not used for commercial purposes.

response, there is increasing evidence that activation of
proinflammatory cytokines may be beneficial by upregulating
cytoprotective pathways, as well as by promoting tissue repair.
Indeed, we and others have suggested that proinflammatory
cytokines belonging to a phylogenetically conserved host
defense system, collectively referred to as innate immunity,
may be beneficial by upregulating cytoprotective pathways, as
well as by promoting tissue repair.'* Both gain- and loss-of-
function studies have suggested an important role for tumor
necrosis factor (TNF) with respect to mediating myocardial
cytoprotection in vitro,® ex vivo,>*%” as well as in vivo.® '°
Moreover, TNF has been implicated as a mediator of classic
ischemic preconditioning, through a signal transducer and
activator of transcription 3—dependent pathway (SAFE path-
way).* We have shown, through a variety of experimental
approaches, that signaling through the type 1 (TNFR1) and
type 2 (TNFR2) TNF receptors is sufficient to mimic the effects
of TNF in vitro and ex vivo.>'" Although it is conceivable that
TNFR1 and TNFR2 activate disparate cytoprotective signal
transduction pathways, the most parsimonious explanation is
that TNFR1 and TNFR2 transduce a common cytoprotective
repertoire in the heart. Noting that the intracellular scaffolding
protein, TNFR-associated factor 2 (TRAF2) was common to
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both TNFR1 and TNFR2, and recognizing that TRAF2 mediates
cytoprotection in nonmyocyte cell types,'? we reasoned that
the cytoprotective effects of TNF in the heart were mediated,
at least in part, through TRAF2. To this end, we generated lines
of mice with low levels of TRAF2 expression in the heart (MHC-
TRAF2,c) and demonstrated that these mice had significantly
improved LV functional recovery and significantly less LV
tissue injury after ischemia-reperfusion (I/R) injury, when
compared to littermate (LM) control mice."’

To extend our initial observations with respect to the
cytoprotective role of TRAF2 in the heart, here we generate
lines of mice with a cardiac-restricted dominant negative form
of TRAF2 (MHC-TRAF2py). Notably, hearts from MHC-
TRAF2pN mice demonstrated an | /R injury-induced phenotype
that was opposite to the MHC-TRAF2.c mice, namely,
increased membrane permeability, increased creatine kinase
(CK) release, and significantly worse LV functional recovery
after reperfusion. Transcriptional profiling of MHC-TRAF2 ¢
and MHC-TRAF2py mice and subsequent functional studies in
mice identified dysferlin, a calcium-triggered exocytotic
membrane repair protein, as a novel cytoprotective gene that
mediates the cytoprotective effects of TRAF2-mediated sig-
naling in the mammalian heart.

Methods

Generation and Characterization of Transgenic
and Knockout Mice

MHC-TRAF2py Transgenic Mice

Mice with cardiac-restricted expression of dominant negative
TRAF2 (MHC-TRAF2py) were generated using a dominant
negative TRAF2 construct (a generous gift from Dr Yongwon
Choi'®), in which the N-terminal domain of TRAF2 (TRAF2,4 .
501) lacking the N-terminal ring and zinc fingers essential for
TRAF2-mediated nuclear factor kappa B (NF-xB)- and c-Jun N-
terminal kinase (JNK)-mediated signaling was deleted. Briefly,
the TRAF2A241.507 mutant construct was inserted behind the
myosin heavy chain (¢MHC) promoter, which was obtained
from Dr Jeff Robbins. The TRAF2py transgene constructs were
injected into single-cell embryos of Friend virus B (FVB) mice
at the Transgenic Core Facility at Baylor College of Medicine,
as previously described.'” Founder lines were identified by
Southern blotting, as described above. " Age-matched LM
mice that lacked the transgene were used as appropriate
controls. Hemizygous MHC-TRAF2py mouse lines were
characterized at 12 weeks of age using standard morpholog-
ical and histological analyses, as well as two-dimensional
(2D)-targeted M-mode echocardiography (Echo), as previously
described.'" Further characterization of MHC-TRAF2pN mice
was performed by examining activation of NF-xB in nuclear

extracts obtained from hearts of 12-week naive MHC-
TRAF2py and LM control mice. Electrophoretic mobility shift
assays (EMSAs) were performed, as previously described,
using an NF-kB oligonucleotide consensus sequence (5'-AGT
TGA GGG GAC TTT CCC AGG C-3’; Santa Cruz Biotechnology,
Santa Cruz, CA). Specificity of binding was determined by
competition with a 20x molar excess of the respective
unlabeled oligonucleotide. JNK activation was determined in
LM control and MHC-TRAF2py hearts at 12 weeks of age by
Western blot analysis, using rabbit anti-JNK (Catalog No.
9252; Cell Signaling Technology, Danvers, MA) and rabbit
anti-phospho-JNK antibody (Catalog No. 9251 from Cell
Signaling Technology).

MHC-TRAF2,¢ Transgenic Mice

The hemizygous line of transgenic (Tg) mice with cardiac-
restricted overexpression of low levels of TRAF2 (referred to
as MHC-TRAF2,c) have been described elsewhere in detail
(FVB background).'" Briefly, MHC-TRAF2,c hearts have
improved LV functional recovery, decreased myocardial CK
release, and decreased uptake of Evans blue dye after I/R
injury ex vivo, when compared to LM controls."’

Dysferlin-Null Mice

Dysferlin-null mice (129-Dysf™ @™ /] [dysferlin—/~]),"* main-
tained on a 129 background, were purchased from The
Jackson Laboratory (dysferlin™/~; Stock No. 006830; Bar
Harbor, ME). The lines of 129S1/Svim] (129) wild-type (WT)
mice that were used as the appropriate controls (http://
jaxmice.jax.org/strain/002448.html) were also purchased
from The Jackson Laboratory (129; Stock No. 0024480).
Dysferlin™/~ mice were characterized at 12 weeks of age
using standard morphological and histological analyses, as
well as 2D-targeted M-mode ECG, as previously described."
LV function was assessed ex vivo in 12-week dysferlin™/~ and
WT mouse hearts using a buffer-perfused Langendorff appa-
ratus, as previously described.'”

MHC-TRAF2,c/Dysferlin-Null Mice

MHC-TRAF2,c were outcrossed with dysferlin™/~ mice to
produce F1 lines of MHC-TRAF2,c/dysferlin™’* mice. F1
MHC-TRAF2,c/dysferlin™/* mice were back-crossed with
dysferlin™/~ mice to generate MHC-TRAF2,/dysferlin™/~
mice or with 129 mice to generate WT/dysferlin®/* control
mice. F2 lines of mice were used for all experiments.

For all studies reported herein, we used 12-to 14-week-old
male mice. Animals were housed under standard environ-
mental conditions and fed standard chow and tap water ad
libitum. All experiments were approved by the Institutional
Animal Care and Use Committees at the Baylor College of
Medicine and Washington University School of Medicine and
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were conducted in accord with the guidelines of the Baylor
College of Medicine and Washington University School of
Medicine Animal Care and Research Advisory Committee and
the rules governing animal use, as published by the National
Institutes of Health (NIH; Bethesda, MD).

I/R Injury

Hearts from MHC-TRAF2py, MHC-TRAF2, ¢, dysferlin*/*, and
MHC-TRAF2, c/dysferlin ™/~ mice and their respective LM
and/or WT controls were isolated and perfused in the
Langendorff mode, as previously described."" In brief, isolated
hearts were perfused at a constant pressure of 70 mm Hg
with modified Krebs-Henseleit buffer containing (in mmol) 118
NaCl, 24 NaHCOg3, 4.7 KCI, 1.2 KH,POy, 1.2 MgS0y, 2.2 CaCl,,
10 glucose, and 2 pyruvate, equilibrated with 95% 0,-5% CO,
to yield a pH of 7.4 (37°C). A hand-made balloon was inserted
into the LV and connected to a pressure transducer (ML844;
ADInstruments, Colorado Springs, CO). The balloon was
inflated with water to adjust LV end-diastolic pressure (LVEDP)
at 5 to 10 mm Hg. All hearts were paced at 420 bpm with
pacing electrodes placed on the right atrium. After a 20-minute
stabilization period, hearts were subjected to no-flow ischemia
(t=0 minutes) for 30 minutes, followed by reperfusion
(t=30 minutes) for up to 60 minutes (t=90 minutes). Func-
tional data were recorded at 1 kHz on a data acquisition
system (PowerlLab; ADInstruments). LV developed pressure
(LVDP) was calculated as the difference between peak systolic
pressure and LVEDP, and the resulting LV functional recovery
data are expressed as the percentage of LVDP at baseline.

Assessment of Cardiac Myocyte Injury After I/R
Injury

To assess the effects of I /R injury on cardiac myocyte injury in
MHC-TRAF2py, MHC-TRAF2,¢, dysferlin™/~, MHC-TRAF2,c/
dysferlin’/*, and WT control hearts, we assessed CK release
in the effluent 30 minutes after reperfusion, as previously
described." Data are expressed as units per gram of cardiac
tissue. Because triphenyltetrazolium chloride staining may
underestimate the true extent of tissue injury within the first
3 hours of cardiac injury,'® we used Evans blue dye uptake to
assess the degree of myocardial tissue injury after I/R injury,
as previously described.'" Briefly, Evans blue dye crosses into
cells with permeable membranes and accumulates in myofi-
brils, where it emits red autofluorescence when examined
using fluorescence microscopy. Fluorescence microscopy
(x200) was performed using a filter set with an excitation of
510 to 560 nm and an emission of 590 nm in order to assess
the amount of Evans blue dye uptake in the myocardium at
baseline and after I/R injury. Hearts were examined at the
level of the papillary muscle, using a total of 30 microscopic

fields per heart. Data are expressed as the percent area of the
myocardium with red fluorescence.

Transcriptional Profiling in MHC-TRAF2 ¢ and
MHC-TRAF2y Hearts

Total RNA was extracted from hearts of MHC-TRAF2 ¢, MHC-
TRAF2py, and LM control mice using TRIzol reagent (Invitro-
gen, Carlsbad, CA), according to the manufacturer’s instruc-
tions. Gene expression analysis was performed using the
Sentrix BeadChip and BeadStation system from Illumina, Inc
(San Diego, CA). RNA was further processed and hybridized to
a Mouse Ref-6.1.1 BeadChip array (lllumina). The mouse Ref-6
BeadChips contain sequences representing ~46 000 curated
genes and expressed sequence tags (ESTs). After scanning
the probe array, the resulting image was analyzed using
BeadStudio software (lllumina). Samples were normalized
using a cubic spline procedure.

Differentially expressed genes between MHC-TRAF2 ¢ and
MHC-TRAF2py and LM controls were determined using an
ANOVA test with contrasts using Partek GS (Partek, St. Louis,
MO) using an unadjusted P value <0.05 and a fold change of
1.2 or greater. Agglomerative hierarchical clustering (combi-
nation of two rows/columns or clusters at each step of the
procedure) was also performed using Partek GS. Euclidean
distance was used to measure dissimilarity (the distance
between two rows or columns), and average linkage (the
average distance between all pairs of objects in two different
clusters) was used as the measure of distance between two
clusters. An analysis of gene expression in relation to cellular
components was performed using the Database for Annotation
Visualization and Integrated Discovery (http://david.abcc.n-
ciferf.gov/),"” according to the classification of cellular
components assigned by the Gene Ontology (GO) Consortium.

Dysferlin mRNA and Protein Expression in MHC-
TRAF2,; and MHC-TRAF2py Hearts

Dysferlin mRNA levels were determined in 12-week hearts from
MHC-TRAF2, ¢, MHC-TRAF2py, and LM control mice by real-
time quantitative polymerase chain reaction (RT-gPCR), using
an ABI 7500 Fast Real-Time quantitative PCR System (Applied
Biosystems, Foster City, CA). Two micrograms of total RNA was
reverse transcribed into cDNA using the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). cDNAs were
amplied for 18S rRNA (Part No.: 4333760F) and dysferlin
(Assay ID No.: Mm00458042_m1) using the TagMan gene
expression assay (Applied Biosystems), and the final results
represent the fold change relative to LM controls using the
AACt method with normalization to 18s expression.

Dysferlin protein levels were determined in membrane
preparations obtained from 12-week-old MHC-TRAF2, ¢, MHC-
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TRAF2py, and LM control mice. Briefly, LV tissue was
homogenized in isotonic sucrose buffer containing (in
mmol/L): 20.0 Tris-HCI, 250.0 sucrose, 1 Na3VOy, 2.0 MgCl,,
2.0 EDTA, 0.5 EGTA, 2.0 phenylmathanesulfonyl fluoride, and
1.0 dithiothreitol and 0.02% (vol/vol) protease inhibitor
cocktail (pH 7.4). Homogenates were centrifuged at
100 000g for 60 minutes at 4°C to separate the particulate
fraction from the cytosolic fraction, and the resulting pellet
was resonicated in sucrose buffer containing 0.1% Triton X-
100 and centrifuged at 100 000g for 30 minutes at 4°C.
Equivalent amounts (50 pg) of supernatant protein were
separated on a 10% SDS-PAGE and transferred to nitrocellu-
lose membranes. Western blot analysis was performed using
rabbit anti-dysferlin (1:1000; Epitomics, Burlingame, CA),
followed by a peroxidase-labeled secondary antibody
(1:3000; Cell Signaling). Antigen-antibody complexes were
visualized by enhanced chemiluminescence (ECL; Amersham
Pharmacia Biotech, Piscataway, NJ). Membranes were incu-
bated at 70°C for 10 minutes in stripping buffer and then
reprobed for rabbit anti-calsequestrin (1:1000; Abcam, Cam-
bridge, MA). Original films were exposed to ECL (Hyperfilm™,
ECL™; Amersham Pharmacia Biotech), and band density was
determined (in arbitrary units) using the software, Image])
(NIH). Dysferlin protein levels were normalized by calseques-
trin levels to account for any potential loading differences.

NF-kB-Induced Activation of Dysferlin Gene
Expression

Previous studies from this laboratory have suggested that TNF-
TRAF2-mediated activation of NF-kB is responsible for provok-
ing cytoprotective responses in the heart after I/R injury."’ To
determine whether NF-kB was involved in upregulation of
dysferlin in MHC-TRAF2,; mouse hearts, we performed a
chromatin immunoprecipitation (ChIP) assay using the EZ-ChIP
Assay Kit (Millipore, Temecula, CA), following the manufac-
turer’s instructions. Briefly, mouse hearts were minced and
incubated in PBS containing 1% formaldehyde at room temper-
ature for 10 minutes to cross-link proteins to DNA. Cross-
linking was stopped by adding 2.5 mol/L glycine to a final
concentration of 0.125 mol/L. Tissue was then washed twice
in cold PBS, homogenized in 2 mL PBS containing Protease
Inhibitor Cocktail I, pelleted, and resuspended in 1 mL SDS
lysis buffer containing Protease Inhibitor Cocktail [l. Chromatin
was sonicated to shear cross-linked DNA to ~200 to 1000 bpin
length. Sheared chromatin was precleared with Protein G
Agarose for 1 hour at 4°C with rotation. After pelleting agarose,
1% volume of each sample was removed to use as input. The
remaining chromatin was immunoprecipitated with antibodies
against NF-xB family members (RelB: sc-226, Santa Cruz; p50:
ab7971, Abcam; p65: No. 8242, Cell Signaling; p52: ab7972,
Abcam) or control antibodies overnight at 4°C with rotation.

Protein G Agarose was then added to protein/DNA complexes
at 4°C for 1 hour. Agarose was pelleted and washed sequen-
tially with low-salt buffer, high-salt buffer, LiCl wash buffer, and
Tris-EDTA buffer. Protein/DNA cross-links were reversed by
incubating samples at 65°C overnight. Chromatin was then
digested with RNase at 37°C for 30 minutes and with
proteinase K at 45°C for 2 hours. DNA was purified with spin
filters provided with the kit. PCR was performed with 4 pL of
immunoprecipitated DNA using the following primers: forward,
5'CATATAAGCCTGTGCCCTCATAAGAAC 3'; reverse, 5’ GGATGC
TGTAGATAGACGACTGAGAAZ3'. Primers were chosen based on
a kB site in the dysferlin variant 1 promoter predicted by the
TFSearch (http://www.cbrc.jp/research/db/
TFSEARCH.html), Promo (http://alggen.lsi.upc.es/cgi-bin/
promo_v3/promo/promoinit.cgi?dirDB=TF_8.3), and TFBIND
(http:/ /tfbind.hgc.jp/) programs.

To determine whether I/R injury resulted in differential
localization of dysferlin in cardiac myocytes from MHC-TRAF, ¢
mouse hearts, compared to LM controls, we performed
immunohistochemical (IHC) staining at baseline and after
60 minutes of |/R injury. Briefly, hearts were subjected to the
I/R protocol exactly as described above and were then
perfuse fixed with Z-fix (Anatech, Battle Creek, MI). Antigen
retrieval was performed by placing slides in retrieval buffer
(180 pmol/L citric acid, 820 pmol/L sodium citrate) and
heating in a microwave 3x for 4 minutes. Tissue was then
permeabilized using 1x TBS/0.1% Triton X-100 for 20 min-
utes at room temperature. After permeabilization, tissue was
blocked in a buffer containing 10x blocking reagent (Roche,
Indianapolis, IN), 9 mL FCS, and 27 maleate buffer
(100 mmol/L maleic acid, 150 mmol/L NaCl; pH 7.5) for
30 minutes at room temperature. A primary rabbit anti-
dysferlin monoclonal antibody (Romeo; Epitomics, Burlin-
game, CA) was applied overnight at 4°C (1:50 dilution in
blocking buffer). Slides were washed with 1x TBS/0.1%
Tween 3x 5 minutes each and labeled with a red fluores-
cence-conjugated anti-rabbit secondary antibody (Alexa Fluor
647; Life Technologies, Carlsbad, CA) for 1 hour at room
temperature (1:500 dilution in blocking buffer). Slides were
washed with TBS/0.1% Tween, mounted with Vectashield
containing 4’,6-diamidino-2-phenylindole (DAPI; Vector Labo-
ratories, Burlingame, CA), and imaged using a Zeiss confocal
(LSM 700 Laser Scanning Confocal; Carl Zeiss GmbH, Jena,
Germany) microscope using DAPI and Alexa Fluor 647 filters.

Statistical Analysis

Data are expressed as mean+SEM. Two-way repeated-
measures ANOVA was used to test for differences in percent
LVDP between groups as a function of time after I/R injury
between groups. Post-hoc ANOVA testing was performed,
where appropriate, using Fisher’s least significant difference
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test.'® CK release, the area of the myocardium (%) with Evans
blue uptake after 1/R injury, dysferlin mRNA and protein
levels, and heart weight/body weight ratios were examined
using a nonpaired t test. All data were tested for normality
before performing parametric testing. Significant differences
were said to exist at P<0.05.

Results

Generation and Characterization of Tg and
Knockout Mice

MHC-TRAF2py Tg mice

We obtained five founder lines of mice, harboring 1, 10, 15,
25, and 30 copies of the cardiac-restricted TRAF2py trans-
gene. For the present study, we selected the MHC-TRAFpy
line harboring 30 copies of the transgene (MHC-TRAF2py).

MHC-TRAF2py mice were born with the expected Mendelian
frequency and developed normally. MHC-TRAF2py mice
lacked a cardiac phenotype at 12 weeks of age, as assessed
by gross morphology and hematoxylin and eosin (H&E)
staining (Figure 1A), as well as by assessment of heart
weight/body weight ratio (Figure 1B), and 2D ECG assess-
ment of LV structure (Figure 2A through 2C). Further
characterization of 12-week-old mice showed no differences
in LV function in MHC-TRAF2py, compared with LM controls,
when assessed in vivo by 2D ECG or ex vivo by buffer-
perfursed Langendorff apparatus (Figure 2D through 2G). To
further characterize MHC-TRAF2py mice, we examined NF-kB
and JNK activity in 12-week-old LM and MHC-TRAF2py mice.
As expected, neither NF-kB nor JNK were activated in naive
MHC-TRAF2pN mouse hearts. EMSAs from hearts of mice with
targeted overexpression of TRAF2, which were used as
positive controls, had activation of NF-kB, as we have
reported previously.'?
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Figure 1. Characterization of transgenic mice expressing dominant negative TRAF2 (MHC-TRAF2py),
compared to littermate (LM) control mice. A, Representative photographs of 12-week MHC-TRAF2py
transgenic and LM control hearts, hematoxylin and eosin—strained cross-sections at the level of the
papillary muscle, and representative hematoxylin and eosin—stained cross-sections at the level of the
papillary muscles (x400). B, Heart weight/body weight ratio (n=6/group). C, Left panel: Electromobility
shift assay (EMSA) of NF-kB activation in nuclear extracts from LM, MHC-TRAF2 ¢ (positive control), MHC-
TRAF2py, and lipopolysaccharide (LPS)-stimulated hearts (20 mg/kg intraperitoneally for 1 hour).
Specificity of DNA-protein-binding nuclear extracts was determined using a 20x molar excess of the
respective unlabeled oligonucleotide. D, JNK activation assay in LM and TRAF2py hearts (12 weeks) at
baseline and after |/R injury. BW indicates body weight; HW, heart weight; 1/R, ischemia-reperfusion; JNK,
c-Jun N-terminal kinase; MHC, myosin heavy chain; NF-kB, nuclear factor kappa B; TRAF2, tumor necrosis

factor receptor-associated factor 2.
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Figure 2. LV structure and function in MHC-TRAF2py mice. 2D-targeted echocardiography was used in
12-week MHC-TRAF2py transgenic and littermate (LM) control mice to determine (A) LV end-diastolic
dimension (LVEDD), (B) LV posterior wall diameter (LVPWd), (C) ratio of LV radius to LV wall thickness (r/h),
and (D) percent LV fractional shortening (% FS) (n=5 control group; n=6 transgenic mice). Buffer-perfused
Langendorff apparatus was used to determine (E) percent LV developed pressure (LVDP), (F) LV +dP/dt,
and (G) LV —dP/dt in 12-week MHC-TRAF2py transgenic and LM hearts (n=6/group). LV indicates left
ventricle; TRAF2, tumor necrosis factor receptor-associated factor 2.

Effects of Cardiac-Restricted Overexpression of
Dominant Negative TRAF2 After I/R Injury

To determine the effects of loss of TRAF2-mediated signaling
after I/R injury, we subjected MHC-TRAF2py mice to
30 minutes of no-flow ischemia, followed by 60 minutes of
reperfusion. The salient finding shown by Figure 3A is that
hearts from MHC-TRAF2py mice had significantly worse LV
functional recovery at 10 to 60 minutes (P<0.05/time point)
after reperfusion, when compared to the LM control mice. To
determine whether the decreased functional recovery of
MHC-TRAF2py mice was the result of increased myocyte
injury, we measured CK release and Evans blue dye uptake
30 minutes after reperfusion. As shown in Figure 3B, there
was a significant (P<0.05) 1.4-fold increase in CK release after
/R injury in MHC-TRAF2py hearts, when compared to LM
control hearts. Consistent with these findings, there was a
significant (P<0.05) increase in Evans blue dye uptake in
MHC-TRAF2py mouse hearts, as depicted by the representa-
tive fluorescence photomicrographs shown in Figure 3C and
the group data summarized in Figure 3D. In contrast, hearts
from MHC-TRAF2, ¢ mice that were subjected to I/R injury
demonstrated significantly improved LV functional recovery
10 to 60 minutes (P<0.05/time) after IR injury, compared to

LM controls, consistent with our earlier observations. "
Viewed together, these results suggest that low levels of
myocardial TRAF2 are sufficient to protect cardiac myocytes
against I/R injury, whereas loss of TRAF2-mediated signaling
in cardiac myocytes leads to increased cardiac myocyte injury
and decreased functional recovery after /R injury.

Transcriptional Profiling in MHC-TRAF2 ¢ and
MHC-TRAF2\ Hearts

To explore the potential mechanisms responsible for the
cytoprotective effects of TRAF2 in the adult heart, we
performed transcriptional profiling in 12-week-old naive LM,
MHC-TRAF2,c, and MHC-TRAF2py hearts. Transcriptional
profiling revealed that there were 1059 upregulated genes
and 1199 downregulated genes in MHC-TRAF2 ¢ hearts, in
comparison to LM controls, whereas MHC-TRAF2py hearts
had 965 upregulated genes and 1089 downregulated genes,
in comparison to LM controls (Figure 4A and 4B). Agglomer-
ative hierarchical clustering of these transcriptional profiles
showed that gene expression profiles in the MHC-TRAF2 ¢
and MHC-TRAF2py mouse hearts clustered differently than
those in LM control hearts (Figure 5), suggesting that gain
and loss of TRAF2 signaling in the heart results in discordant
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Figure 3. Effects of I/R injury on transgenic mice expressing low levels of TRAF2 (MHC-TRAF2,¢) or
dominant negative TRAF2 (MHC-TRAF2py) and their respective littermate (LM) controls. A, Percent of left
ventricular developed pressure after /R injury (n=6/group). B, CK release in the effluent 30 minutes after
I/R injury in MHC-TRAF2py and LM controls (n=7/group). C, Representative images of Evans blue dye
uptake. Red coloration indicates uptake of Evans blue dye into necrotic/permeable cardiac myocytes. D,
Group data for Evans blue uptake (n=7/group). *P<0.05, compared to LM controls. CK indicates creatine
kinase; I/R, ischemia-reperfusion; LVDP, left ventricle developed pressure; TRAF2, tumor necrosis factor

receptor-associated factor 2.

changes in gene expression relative to WT levels of TRAF2
signaling. Moreover, gene expression profiles of MHC-
TRAF2py hearts clustered with LM control hearts. Based
upon the functional studies shown in Figure 3, which
suggested that gain and loss of function of TRAF2 signaling
led, respectively, to improved and worsened responses to I/R
injury, as well as the transcriptional profiling studies, which
suggested that MHC-TRAF2py and the MHC-TRAF2 ¢ mouse
hearts had distinct gene profiles, we focused our search for
potential candidate cytoprotective genes on those genes
whose expression level (relative to LM) was discordant
(opposite) in MHC-TRAF2py and in the MHC-TRAF2, ¢ mouse
hearts. Figure 4 shows that there were 94 discordant genes
that were upregulated in MHC-TRAF2 ¢ mice and downreg-
ulated in MHC-TRAF2py mice (referred to as “Up/Down”;
Figure 4A), and there were 110 discordant genes that were
downregulated in MHC-TRAF2, c mice and upregulated in
MHC-TRAF2py mice (referred to as “Down/Up”; Figure 4B).
Of the 94 discordant genes identified in the Up/Down group,

there were 25 expressed sequence tags (ESTs) and 69 known
genes. Of the 110 discordant genes in the Down/Up group,
there were 31 ESTs and 79 known genes (see Table 1). We
then performed a GO analysis of cellular components on the
148 genes identified in the Up/Down and Down/Up groups.
As shown in Figure 4C, the cellular components that were
enriched  (greatest to least) included cytoplasm
(P=0.047x10~*), mitochondrion (P=0.025x10"%), plasma
membrane (P=0.047), cytoskeleton (P=0.052), endosome
(P=0.014), and nucleus (P=0.09). Given that our results
implicated TRAF2 signaling with preservation of membrane
integrity after I/R injury (Figure 3C and 3D), as well as
previous in vitro studies from this laboratory, which demon-
strated that TNFR1- and TNFR2-mediated signaling preserved
sarcolemmal integrity after hypoxia reoxygenation injury,”> we
focused our search on genes in the plasma membrane gene
cluster. Table 2 depicts those discordantly regulated genes in
MHC-TRAF2pNy and MHC-TRAF2, . mouse hearts that were
identified in the plasma membrane gene cluster. An expanded
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Figure 4. Transcriptional profiles of MHC-TRAF2,c and MHC-TRAF2py hearts. A, Venn diagram of
significantly (P<0.05) upregulated transcripts in MHC-TRAF2,c (1086) and downregulated transcripts in
MHC-TRAF2py (833), compared to LM controls (Up/Down). B, Venn diagram of significantly (P<0.05)
downregulated transcripts in MHC-TRAF2, ¢ (1103) and upregulated in MHC-TRAF2py (844), compared to
LM controls (Down/Up). C, Gene ontology cellular component analysis of the discordant genes (Up/Down
and Down/Up transcripts). LM indicates littermate; TRAF2, tumor necrosis factor receptor-associated

factor 2.
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Figure 5. Transcriptional profiling of MHC-TRAF2 ¢ and MHC-
TRAF2py hearts. Hierarchical clustering of significant changes in
gene expression in 12-week MHC-TRAF2 ¢ and MHC-TRAF2py
control mice, relative to LM controls. LM indicates littermate;
TRAF2, tumor necrosis factor receptor-associated factor 2.

version of this table that includes gene function (neXProt
[http://www.nextprot.org/db/]) and the GO biological pro-
cesses for each gene (http://www.geneontology.org) is
presented in Table 3. Inspection of Table 3 reveals that there
were clusters of genes involved in the cytoskeleton/integrins
(ENAH, ITGB5, VASP, RALB, ITGB1, DST, and SYNC), ion

channels (KCNH2, KCNB1), energetics (ATP1B1), cell death
(FKBP8, RHOB, and MFGES8), membrane trafficking (DYS,
MSN, RAB11A, and RAB3A), and cell signaling (PPP1R9B,
PLXND, EPS15, CAMK2N1, ATF6B, ASAH2, and CISH). Of
these potential candidate genes, dysferlin was of particular
interest because of its role in maintaining sarcolemmal
integrity through exocytotic membrane “patch” repair.?® We
therefore focused on the potential role of dysferlin in TRAF2-
mediated cytoprotection.

To confirm results with respect to the dysferlin gene array
transcriptional profiling studies, we performed RT-gPCR and
Western blot analysis in hearts of LM, MHC-TRAF2py, and
MHC-TRAF2, ¢ mouse hearts. As shown in Figure 6A, mRNA
levels of dysferlin were significantly increased (P<0.05) in
MHC-TRAF2 ¢ hearts, compared to LM controls. Although
there was a decrease in dysferlin mRNA in MHC-TRAF2py
hearts, when compared to LM controls, this change was not
significantly statistically (P=0.09). Importantly, Western blot
analysis demonstrated that membrane protein levels of
dysferlin were 1.8-fold upregulated (P<0.0001) in MHC-
TRAF2,c hearts and downregulated 0.7-fold (P<0.05) in
MHC-TRAF2py hearts, compared to respective LM controls
(Figure 6B). Accordingly, we focused subsequent studies on
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Table 1. Discordant Genes in TRAF2,c and TRAF2py Mice

Gene Symbol Gene Name P Value Fold Change P Value Fold Change
Up/down TRAF2,¢ versus TRAF2, ¢ versus TRAF2py versus TRAF2py versus
LM LM LM LM
TSC22D4 TSC22 domain family, member 4 7.03E-05 4.41 3.95E-02 -1.18
CCND2 Cyclin D2 1.56E-03 1.94 2.58E-02 —1.28
PSMD8 Proteasome (prosome, macropain) 26S subunit, 9.57E-03 1.72 1.86E-02 —1.53
non-ATPase, 8
CKB Creatine kinase, brain 1.11E-03 1.67 8.51E-04 —1.76
SYNPO2L Synaptopodin 2-like 3.21E-03 1.67 4.73E-02 —1.21
MLLT11 Myeloid/lymphoid or mixed-lineage leukemia (trithorax 1.12E-03 1.61 1.42E-02 —1.22
homolog, Drosophila); translocated to, 11
PLXNB2 Plexin B2 3.01E-04 1.60 8.14E-03 —1.16
ACTA2 Actin, alpha 2, smooth muscle, aorta 2.43E-02 1.51 4.68E-03 —-2.10
VASP Vasodilator-stimulated phosphoprotein 8.38E-03 1.50 4.49E-02 —1.24
SERPINH1 Serpin peptidase inhibitor, clade H (heat shock protein 9.25E-03 1.49 4.94E-02 —1.24
47), member 1, (collagen binding protein 1)
MASP1 Mannan-binding lectin serine peptidase 1 (C4/C2 2.29E-03 1.44 4.52E-03 -1.33
activating component of Ra-reactive factor)
STXBP1 Syntaxin-binding protein 1 2.37E-02 1.43 3.86E-02 -1.35
PPP1R9B Protein phosphatase 1, regulatory (inhibitor) subunit 9B 2.66E-03 1.37 2.16E-02 —-1.16
TMEM63C Transmembrane protein 63C 4.21E-03 1.37 3.14E-02 —1.16
NAT11 N-acetyltransferase 11 1.59E-03 1.36 7.99E-03 -1.19
PLXND1 Plexin D1 2.43E-02 1.36 4.15E-02 -1.29
ATP1B1 ATPase, Na*/K* transporting, beta 1 polypeptide 2.76E-02 1.36 2.58E-02 —-1.37
IGFBP5 Insulin-like growth factor binding protein 5 2.44E-02 1.36 2.86E-02 -1.33
ITGB5 Integrin, beta 5 1.45E-03 1.33 7.93E-04 —1.42
EPS15 Epidermal growth factor receptor pathway substrate 15 1.01E-02 1.31 5.12E-03 —1.41
MAST4 Microtubule-associated serine/threonine kinase family 1.37E-02 1.30 1.34E-02 -1.30
member 4
CAMK2N1 Calcium/calmodulin-dependent protein kinase i 4.60E-02 1.29 3.41E-02 -1.34
inhibitor 1
HSP90AB1 Heat shock protein 90 kDa alpha (cytosolic), class B 3.57E-02 1.29 3.94E-02 —1.27
member 1
SOAT1 Sterol 0-acyltransferase (acyl-coenzyme A: cholesterol 3.36E-03 1.28 2.65E-02 —-1.12
acyltransferase) 1
ENAH Enabled homolog (Drosophiia) 8.93E-03 1.27 2.06E-03 —1.49
MIF Macrophage migration inhibitory factor (glycosylation- 8.68E-03 1.27 1.94E-02 —-1.20
inhibiting factor)
KBTBD10 Kelch repeat and BTB (P0Z) domain-containing 10 1.44E-03 1.26 3.46E-03 -1.19
RHOB Ras homolog gene family, member B 2.37E-02 1.26 1.49E-03 —1.84
RNF145 Ring finger protein 145 7.85E-03 1.25 4.94E-02 —-1.12
CAND1 Cullin-associated and neddylation-dissociated 1 1.30E-02 1.24 4.44E-02 —-1.14
TUBB2C Tubulin, beta 2C 3.16E-03 1.24 3.51E-03 -1.23
SQSTM1 Sequestosome 1 3.63E-02 1.23 6.86E-03 —1.46
HSPB8 Heat shock 22 kDa protein 8 1.78E-02 1.23 8.29E-03 -1.31
RBPMS2 RNA-binding protein with multiple splicing 2 1.91E-02 1.23 3.94E-02 —-1.17
Continued
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Table 1. Continued
Gene Symbol Gene Name P Value Fold Change P Value Fold Change
ATF6 Activating transcription factor 6 3.49E-02 1.22 3.94E-02 —1.21
NOL8 Nucleolar protein 8 4.74E-05 1.21 6.60E-03 —1.04
SAMDIL Sterile alpha motif domain-containing 9-like 3.83E-03 1.20 7.88E-04 —1.38
PPP1R12A Protein phosphatase 1, regulatory (inhibitor) subunit 2.00E-02 1.20 6.90E-03 —1.31
12A
ITGB1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, 4.56E-02 1.20 4.37E-03 —1.53
antigen CD29 includes MDF2, MSK12)
SLC11A2 Solute carrier family 11 (proton-coupled divalent metal 3.83E-02 1.20 4.15E-02 —-1.19
ion transporters), member 2
PPM1E Protein phosphatase 1E (PP2C domain containing) 1.64E-02 1.20 3.72E-02 —1.14
DYNC1LI2 Dynein, cytoplasmic 1, light intermediate chain 2 3.11E-02 1.20 1.42E-02 —1.27
ITPR1 Inositol 1,4,5-triphosphate receptor, type 1 2.56E-02 1.19 2.21E-02 —1.21
NDOR1 NADPH-dependent diflavin oxidoreductase 1 1.17E-02 1.19 3.33E-03 —1.32
DST Dystonin 3.82E-02 1.19 1.78E-02 —1.25
CDC16 Cell division cycle 16 homolog (Saccharomyces 3.91E-02 1.18 1.04E-02 —1.32
cerevisiae)
WDR36 WD repeat domain 36 1.04E-02 1.18 3.08E-02 -1.12
ARHGEF10 Rho guanine nucleotide exchange factor (GEF) 10 2.02E-02 1.18 4.15E-02 —-1.13
LRRC51 Leucine-rich repeat containing 51 1.06E-02 1.17 4.27E-02 —-1.10
PABPC4 Poly(A)-binding protein, cytoplasmic 4 (inducible form) 5.98E-03 1.17 1.08E-02 -1.14
DNAJC18 DnaJ (Hsp40) homolog, subfamily C, member 18 3.05E-02 117 2.13E-02 —1.20
MFGES8 Milk fat globule-EGF factor 8 protein 1.95E-02 1.17 4.36E-02 —-1.12
IRF6 Interferon-regulatory factor 6 3.01E-02 1.15 1.47E-02 —1.20
ARL5A ADP-ribosylation factor-like 5A 1.07E-04 1.15 2.01E-03 —1.05
LUZP1 Leucine zipper protein 1 3.85E-02 1.15 1.42E-02 —1.22
RAB11A RAB11A, member RAS oncogene family 2.33E-02 1.14 7.66E-03 —1.21
THOC2 THO complex 2 8.06E-03 113 1.12E-02 -1.12
FBXW2 F-box and WD repeat domain-containing 2 2.22E-02 1.13 6.08E-03 —1.21
ASAH2 N-acylsphingosine amidohydrolase (nonlysosomal 4.35E-03 1.12 1.42E-02 —1.08
ceramidase) 2
MYCBP C-myc-binding protein 1.25E-02 1.12 5.37E-03 —1.16
AGPS Alkylglycerone phosphate synthase 4.74E-02 1.11 2.64E-02 —-1.14
RCC1 Regulator of chromosome condensation 1 4.75E-02 1.10 2.32E-02 —1.14
ZNF202 Zinc finger protein 202 1.72E-02 1.10 7.47E-03 -1.14
HEXA Hexosaminidase A (alpha polypeptide) 8.52E-03 1.10 1.03E-02 —1.09
SKIv2L2 Superkiller viralicidic activity 2-like 2 (S. cerevisiae) 1.39E-02 1.09 2.86E-02 —1.07
DYSF Dysferlin, limb girdle muscular dystrophy 2B (autosomal | 1.66E-02 1.09 2.67E-02 —1.07
recessive)
MSN Moesin 2.68E-02 1.07 3.24E-02 —1.06
GALT Galactose-1-phosphate uridylyltransferase 4.03E-02 1.05 3.10E-03 —1.14
ARL6 ADP-ribosylation factor-like 6 4.90E-03 1.05 8.02E-03 —1.04
Down and up LC-TRAF2 vs WT | LC-TRAF2 vs WT | DN-TRAF2 vs WT | DN-TRAF2 vs WT|
EFNB3 Ephrin B3 3.69E-05 —2.27 3.81E-03 1.19
ABHD1 Abhydrolase domain-containing 1 3.31E-04 —2.03 4.88E-03 1.33
Continued
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Table 1. Continued

Gene Symbol Gene Name P Value Fold Change P Value Fold Change
MDH1 Malate dehydrogenase 1, NAD (soluble) 8.96E-03 —1.82 2.88E-02 1.48
MAOB Monoamine oxidase B 1.21E-04 —-1.72 1.68E-02 1.1
GSTK1 Glutathione Stransferase kappa 1 4.46E-04 —-1.71 3.02E-02 1.13
DNASE2A Deoxyribonuclease Il alpha 5.52E-05 —1.66 2.27E-02 1.07
RHD Rh blood group, D antigen 4.76E-04 —1.50 4.62E-04 1.50
KDM5D Lysine (K)-specific demethylase 5D 2.79E-04 —1.43 6.58E-03 113
ATPSE ATP synthase, H* transporting, mitochondrial F1 5.91E-03 —-1.40 1.55E-02 1.27

complex, epsilon subunit
LGALS4 Lectin, galactose binding, soluble 4 1.12E-03 —1.38 9.53E-03 1.17
NDUFB10 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4.33E-02 —1.38 2.27E-02 1.51
10
DBT Dihydrolipoamide branched chain transacylase E2 4.12E-03 —1.34 3.35E-02 1.15
C8B Complement component 8, beta subunit 2.21E-02 -1.34 9.23E-03 1.49
CD80 CD80 antigen 5.90E-03 -1.34 1.13E-02 1.26
ATP5F1 ATP synthase, H* transporting, mitochondrial FO 2.32E-03 -1.33 5.28E-03 1.24
complex, subunit b, isoform 1
CHKB Choline kinase beta 1.81E-03 —1.32 2.29E-02 112
FIGF C-fos-induced growth factor 2.03E-03 —1.31 2.38E-02 112
APPL2 Adaptor protein, phosphotyrosine interaction, PH 2.16E-03 —1.31 8.06E-03 1.19
domain and leucine zipper-containing 2
KCNH2 Potassium voltage-gated channel, subfamily H (eag- 7.73E-03 —-1.29 6.20E-03 1.32
related), member 2
MRPL30 Mitochondrial ribosomal protein L30 1.70E-02 -1.29 2.23E-02 1.26
SEMA5B Sema domain, 7 thrombospondin repeats (type 1 and 2.48E-03 -1.29 4.89E-03 1.22
type 1-like), transmembrane domain (TM) and short
cytoplasmic domain, (semaphorin) 5B
ASB11 Ankyrin repeat and SOCS box-containing protein 11 1.27E-03 -1.29 4.41E-02 1.07
GMNN Geminin 6.20E-03 —1.28 1.92E-02 1.18
MRPS28 Mitochondrial ribosomal protein S28 2.15E-02 -1.27 2.86E-02 1.24
GOLGA2 Golgi autoantigen, golgin subfamily a, 2 8.62E-03 —-1.25 1.80E-03 1.47
DCAKD Dephospho-CoA kinase domain containing 3.50E-02 —1.25 3.58E-02 1.24
SYNC Syncoilin 2.32E-02 -1.25 4.54E-02 1.18
PXMP2 Peroxisomal membrane protein 2 1.37E-04 —1.24 9.15E-03 1.27
PLCXD3 Phosphatidylinositol-specific phospholipase C, X 5.06E-03 —1.24 1.39E-02 1.16
domain containing 3
CCNG1 Cyclin G1 7.62E-04 —1.24 1.25E-04 1.49
NDUFB2 NADH dehydrogenase (ubiquinone) 1 beta 3.48E-02 —1.24 3.27E-02 1.24
subcomplex, 2
TCEA3 Transcription elongation factor A (Sll), 3 2.42E-02 —-1.23 3.58E-02 1.20
MRPL47 Mitochondrial ribosomal protein L47 1.35E-02 —-1.23 1.42E-03 1.58
PDYN Prodynorphin 1.63E-03 —1.23 5.16E-03 1.15
ACADL Acyl-coenzyme A dehydrogenase, long-chain 2.62E-02 —-1.23 2.62E-03 1.60
OLFR29-PS1 | Olfactory receptor 29, pseudogene 1 8.34E-03 —-1.23 2.52E-02 1.15
ICT1 Immature colon carcinoma transcript 1 7.11E-03 —1.22 1.48E-02 117
CSDA Cold shock domain protein A 2.78E-04 —1.22 5.70E-04 117
Continued

DOI: 10.1161/JAHA.113.000662

Downloaded from http://jaha.ahgjournals.org/ at Washington University on March 4, 2014

Journal of the American Heart Association

11

HDYVHASHY TVNIDIYO


http://jaha.ahajournals.org/
http://jaha.ahajournals.org/

TRAF2 and Dysferlin Tzeng et al

Table 1. Continued

Gene Symbol Gene Name P Value Fold Change P Value Fold Change
CISH Cytokine-inducible SH2-containing protein 1.73E-02 -1.22 6.49E-03 1.33
NDUFA6 NADH dehydrogenase (ubiquinone) 1 alpha 4.11E-02 —1.21 6.94E-03 1.44

subcomplex, 6 (B14)
PLCB2 Phospholipase C, beta 2 4.18E-05 —1.21 1.93E-02 1.02
XLR3A X-linked lymphocyte-regulated 3A 1.13E-02 —1.20 2.55E-02 1.15
KCNB1 Potassium voltage-gated channel, Shab-related 8.84E-03 —1.20 9.40E-03 1.20
subfamily, member 1
ACINT Apoptotic chromatin condensation inducer 1 2.55E-02 -1.19 6.94E-03 1.32
NDUFS6 NADH dehydrogenase (ubiquinone) Fe-S protein 6 2.42E-03 —1.18 2.00E-02 1.08
UBE2G1 Ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. | 4.22E-02 —1.18 3.65E-02 1.19
elegans)
IL20RA Interleukin-20 receptor, alpha 2.84E-02 —1.18 4.50E-02 1.15
FXC1 Fractured callus expressed transcript 1 2.15E-03 —1.17 8.43E-03 1.1
DLD Dihydrolipoamide dehydrogenase 2.97E-02 -1.17 4.52E-03 1.35
NDUFB5 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4.94E-03 —1.16 2.00E-02 1.10
5
TRPT1 TRNA phosphotransferase 1 4.20E-02 —1.16 1.88E-02 1.22
OLFR1352 Olfactory receptor 1352 7.35E-03 —1.15 3.58E-02 1.08
FERT2 Fer (fms/fps-related) protein kinase, testis 1.71E-03 —1.15 4.94E-03 1.10
specific 2
C6 Complement component 6 6.16E-03 —1.14 2.65E-02 1.08
DUSTL Dihydrouridine synthase 1-like (S cerevisiae) 9.65E-03 —1.14 3.56E-03 1.20
OLFR1335 Olfactory receptor 1335 1.21E-03 —-1.13 4.37E-02 1.04
TMEM126B Transmembrane protein 126B 4.24E-02 —-1.13 2.20E-03 1.44
MRPS21 Mitochondrial ribosomal protein S21 2.64E-02 —-1.13 3.65E-02 1.11
CNP 2',3'-cyclic nucleotide 3’ phosphodiesterase 4.53E-02 —1.12 5.52E-03 1.28
UBR4 Ubiquitin protein ligase E3 component n-recognin 4 4.91E-02 —1.12 1.87E-02 1.18
CDC26 Cell division cycle 26 1.17E-02 -1.12 8.80E-03 1.13
PARP2 Poly (ADP-ribose) polymerase family, member 2 3.56E-02 —-1.11 6.40E-03 1.22
COQ10A Coenzyme Q10 homolog A (yeast) 1.71E-02 —-1.11 1.43E-03 1.28
ZFP655 Zinc finger protein 655 3.09E-02 —-1.11 2.50E-02 1.12
RNF113A2 Ring finger protein 113A2 1.09E-02 —1.11 3.44E-03 1.16
SPINLWA Serine protease inhibitor-like, with Kunitz and WAP 2.07E-02 —1.10 1.96E-03 1.25
domains 1 (eppin)
SULT3A1 Sulfotransferase family 3A, member 1 1.99E-03 -1.10 4.19E-02 1.03
RNASEH2A Ribonuclease H2, large subunit 4.89E-02 —1.10 4.22E-02 1.1
RBM33 RNA-binding motif protein 33 4.26E-02 —1.10 7.29E-03 1.20
IKBKAP Inhibitor of kappa light polypeptide enhancer in B cells, 4.41E-02 —1.09 1.29E-02 1.15
kinase complex-associated protein
TRAF4 TNF receptor-associated factor 4 1.17E-02 —1.09 4.31E-03 1.13
PPP2R2D Protein phosphatase 2, regulatory subunit B, delta 4.29E-02 —1.09 1.08E-02 1.16
isoform
MRGPRB4 MAS-related GPR, member B4 3.12E-03 —1.08 3.01E-03 1.08
DPP6 Dipeptidylpeptidase 6 1.90E-02 —1.08 4.64E-03 1.14
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Table 1. Continued

Gene Symbol Gene Name P Value Fold Change P Value Fold Change
MRPL1 Mitochondrial ribosomal protein L1 1.41E-02 —1.07 3.37E-04 1.30
ARSA Arylsulfatase A 4.48E-02 -1.07 2.77E-02 1.09
LEF1 Lymphoid enhancer-binding factor 1 2.25E-02 —1.06 1.34E-02 1.07
JMJD2C Jumonji domain-containing 2C 1.03E-02 —1.05 2.08E-02 1.04
PCNA Proliferating cell nuclear antigen 3.57E-02 —1.05 7.19E-04 1.23

LM indicates littermate; WT, wild type.
Table 2. Changes in Gene Expression Identified in Gene Ontology of Cellular Components
Fold Change Fold Change

Symbol Gene Name LC-TRAF2 Versus WT DN-TRAF2 Versus WT

Plasma membrane: up/down
VASP Vasodilator-stimulated phosphoprotein 1.50 —1.24
PPP1R9B Protein phosphatase 1, regulatory (inhibitor) subunit 9B 1.37 —1.16
PLXND1 Plexin D1 1.36 -1.29
ATP1B1 ATPase, Na*/K* transporting, beta 1 polypeptide 1.36 —1.37
ITGB5 Integrin, beta 5 1.33 —1.42

EPS15 Epidermal growth factor receptor pathway substrate 15 1.31 —1.41

CAMK2N1 Calcium/calmodulin-dependent protein kinase Il inhibitor 1 1.29 —1.34
ENAH Enabled homolog (Drosophila) 1.27 —1.49
RHOB Ras homolog gene family, member B 1.26 —1.84
ATF6B Activating transcription factor 6 beta 1.22 -1.21
ITGB1 Integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12) | 1.20 —1.53
SLC11A2 Solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 1.20 —-1.19
DST Dystonin 1.19 —-1.25
MFGE8 Milk fat globule-EGF factor 8 protein 1.17 -1.12
RAB11A RAB11A, member RAS oncogene family 1.14 —1.21
ASAH2 N-acylsphingosine amidohydrolase (nonlysosomal ceramidase) 2 1.12 —1.08
DYSF Dysferlin, limb girdle muscular dystrophy 2B (autosomal recessive) 1.09 -1.07
MSN Moesin 1.07 —1.06

Plasma membrane: down/up
MAOB Monoamine oxidase B —-1.72 1.11
C8B Complement component 8, beta polypeptide —1.34 1.49
CD80 CD80 molecule —1.34 1.26
KCNH2 Potassium voltage-gated channel, subfamily H (eag-related), member 2 -1.29 1.32
SYNC Syncoilin, intermediate filament protein —1.25 1.18
CSDA Cold shock domain protein A —1.22 117
CISH Cytokine-inducible SH2-containing protein —1.22 1.33
KCNB1 Potassium voltage-gated channel, Shab-related subfamily, member 1 —-1.20 1.20
ARSA Arylsulfatase A -1.07 1.09

Bold indicates candidate gene selected for study.
TRAF2 indicates tumor necrosis factor receptor-associated factor 2; WT, wild type.
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Table 3. Expanded Gene Lists in the Plasma Membrane Compartment

Symbol Gene Name

Function

GO Biological Process

Plasma membrane: up/down

VASP Vasodilator-
stimulated
phosphoprotein

Ena/VASP proteins are actin-associated proteins
involved in a range of processes dependent on
cytoskeleton remodeling and cell polarity, such as
axon guidance, lamellipodial and filopodial dynamics,
platelet activation, and cell migration. VASP
promotes actin filament elongation. It protects the
barbed end of growing actin filaments against
capping and increases the rate of actin
polymerization in the presence of capping protein.
VASP stimulates actin filament elongation by
promoting the transfer of profilin-bound actin
monomers onto the barbed end of growing actin
filaments; plays a role in actin-based mobility of
Listeria monocytogenes in host cells; regulates actin
dynamics in platelets; and plays an important role in
regulating platelet aggregation.

Actin polymerization or depolymerization
(GO:0008154]; Neural tube closure
(G0:0001843); Protein
homotetramerization (G0:0051289)

PPP1R9B | Protein phosphatase
1,

regulatory
(inhibitor)

subunit 9B

Acts as a scaffold protein in multiple signaling
pathways; modulates excitatory synaptic
transmission and dendritic spine morphology; binds
to actin filaments (F-actin) and shows cross-linking
activity; binds along the sides of the F-actin; may
play an important role in linking the actin
cytoskeleton to the plasma membrane at the
synaptic junction; believed to target protein
phosphatase 1/PP1 to dendritic spines, which are
rich in F-actin, and regulates its specificity toward
ion channels and other substrates, such as AMPA-
and NMDA-type glutamate receptors; plays a role in
regulation of G-protein-coupled receptor signaling,
including dopamine D2 receptors and alpha-
adrenergic receptors; binds to ADRA1B and RGS2
and mediates regulation of ADRA1B signaling; may
confer to Rac signaling specificity by binding to both
RacGEFs and Rac effector proteins; probably
regulates p70 S6 kinase activity by forming a
complex with TIAM1 (by similarity)

Cell cycle arrest (GO:0007050); cell
differentiation (G0:0030154); cell
migration (G0:0016477); cellular
response to morphine [G0:0071315];
filopodium assembly (G0:0046847);
negative regulation of cell growth
(GO:0030308); nervous system
development (G0:0007399); regulation of
cell proliferation (G0:0042127);
regulation of exit from mitosis (G0:0007096);
regulation of opioid
receptor-signaling pathway
(GO:2000474); RNA splicing
(G0:0008380)

PLXND1 Plexin D1

Cell surface receptor for SEMA4A and for class 3
semaphorins, such as SEMA3A, SEMA3C, and
SEMASE; plays an important role in cell-cell
signaling, and in regulating the migration of a wide
spectrum of cell types; regulates the migration of
thymocytes in the medulla; regulates endothelial cell
migration; plays an important role in ensuring the
specificity of synapse formation; required for normal
development of the heart and vasculature (by
similarity); mediates antiangiogenic signaling in
response to SEMA3E

Angiogenesis (G0:0001525); dichotomous
subdivision of terminal units involved in
salivary gland branching (G0:0060666);
endothelial cell migration (G0:0043542);
patterning of blood vessels
(G0:0001569); regulation of
angiogenesis (G0:0045765); regulation
of cell migration (G0:0030334);
semaphorin-plexin signaling pathway
(GO:0071526); synapse assembly
(G0:0007416)

ATP1B1 Sodium/potassium-
transporting
ATPase

subunit beta-1

This is the noncatalytic component of the active
enzyme, which catalyzes the hydrolysis of ATP
coupled with the exchange of Na(+) and K(+) ions
across the plasma membrane. The beta subunit
regulates, through assembly of alpha/beta
heterodimers, the number of sodium pumps
transported to the plasma membrane.

ATP biosynthetic process (G0:0006754);
response to hypoxia (G0:0001666);
transport (G0:0006810)

ITGB5 Integrin beta-5

Integrin alpha-V/beta-5 is a receptor for fibronectin. It
recognizes the sequence R-G-D in its ligand.

Cell-matrix adhesion (G0:0007160);
integrin-mediated signaling pathway

Continued
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Table 3. Continued

Symbol Gene Name Function GO Biological Process
(G0:0007229); multicellular organismal
development (G0:0007275)

EPS15 Epidermal growth Involved in cell growth regulation; may be involved in Cell proliferation (G0:0008283); clathrin
factor the regulation of mitogenic signals and control of cell coat assembly (G0:0048268); endocytic
receptor pathway proliferation; involved in the internalization of ligand- recycling (G0:0032456); protein
substrate 15 inducible receptors of the receptor tyrosine kinase transport (G0:0015031)

(RTK) type, in particular, EGFR; plays a role in the
assembly of clathrin-coated pits (by similarity)

CAMK2N1 | Calcium/calmodulin- | Potent and specific inhibitor of CaM-kinase Il (CAMK2) None listed
dependent protein
kinase
Il inhibitor 1

ENAH Enabled homolog Ena/VASP proteins are actin-associated proteins Actin binding (G0:0003779); SH3 domain

involved in a range of processes dependent on binding (G0:0017124); WW domain
cytoskeleton remodeling and cell polarity, such as binding (G0:0050699)

axon guidance and lamellipodial and filopodial

dynamics in migrating cells.

RHOB Rho-related GTP- Mediates apoptosis in neoplastically transformed cells Angiogenesis (G0:0001525); apoptotic
binding after DNA damage; not essential for development, process (G0:0006915); cell adhesion
protein RhoB but affects cell adhesion and growth factor signaling (GO:0007155); cell cycle cytokinesis

in transformed cells; plays a negative role in (G0:0033205); cellular response to
tumorigenesis because deletion causes tumor hydrogen peroxide (G0:0070301);
formation; involved in intracellular protein trafficking Cellular response to ionizing radiation
of a number of proteins; targets PKN1 to endosomes (GO:0071479); endosome to lysosome
and is involved in trafficking of the EGF receptor from transport (G0:0008333); GTP catabolic
late endosomes to lysosomes; also required for process (G0:0006184); negative
stability and nuclear trafficking of AKT1/AKT, which regulation of cell cycle (G0:0045786);
promotes endothelial cell survival during vascular positive regulation of angiogenesis
development; serves as a microtubule-dependent (GO:0045766); positive regulation of
signal that is required for the myosin contractile ring apoptotic process (G0:0043065); protein
formation during cell cycle cytokinesis; required for transport (G0:0015031); Rho protein
genotoxic stress-induced cell death in breast cancer signal transduction (G0:0007266);
cells. transformed cell apoptotic process
(G0:0006927)

ATF6B Activating Transcriptional factor that acts in the unfolded protein Regulation of transcription, DNA dependent
transcription response (UPR) pathway by activating UPR target (r0:0006355); response to unfolded
factor 6 beta genes induced during ER stress; binds DNA on the protein (GO:0006986); signal

5'-CCAC[GA]-3’ half of the ER stress response transduction (G0:0007165);
element (ERSE) (5'-CCAATN(9)CCAC[GA]-3') when transcription, DNA dependent
NF-Y is bound to ERSE (G0:0006351)

ITGB1 Integrin beta-1 Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/ B cell differentiation (GO:0030183);
beta-1, and alpha-11/beta-1 are receptors for calcium-independent cell-matrix
collagen. Integrins alpha-1/beta-1 and alpha-2/beta- adhesion (G0:0007161); cardiac muscle
2 recognize the proline-hydroxylated sequence G-F- cell differentiation (G0:0055007); cell fate
P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha- specification (G0:0001708); cell
3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/ migration (G0:0016477); cell migration
beta-1, alpha-10/beta-1, alpha-11/beta-1, and involved in sprouting angiogenesis
alpha-V/beta-1 are receptors for fibronectin. Integrin (G0:0002042); cell-cell adhesion
alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1, and mediated by integrin (G0:0033631); cell-
alpha-7/beta-1 are receptors for lamimin. Integrin matrix adhesion (G0:0007160); cellular
alpha-9/beta-1 is a receptor for VCAM1, cytotactin, defense response (GO:0006968); cellular
and osteopontin. It recognizes the sequence A-E-I-D- response to ionizing radiation
G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a (G0:0071479); cellular response to
receptor for epiligrin, thrombospondin, and CSPG4. vitamin D (G0:0071305); G4/S transition
Integrin alpha-V/beta-1 is a receptor for vitronectin. of mitotic cell cycle (G0:0000082); germ

cell migration (G0:0008354); homophilic
cell adhesion (G0:0007156); in utero
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Symbol

Gene Name

Function

GO Biological Process

embryonic development (GO:0001701);
integrin-mediated signaling pathway
(G0:0007229); interspecies interaction
between organisms (G0:0044419);
leukocyte cell-cell adhesion
(GO:0007159); maternal process
involved in female pregnancy
(G0:0060135); negative regulation of cell
projection organization (G0:0031345);
negative regulation of cell proliferation
(GO:0008285); negative regulation of
neuron differentiation (G0:0045665);
positive regulation of apoptotic process
(GO:0043065); positive regulation of cell
migration (G0:0030335); any process
that activates or increases the frequency,
rate, or extent of cell migration; positive
regulation of cell proliferation
(GO:0008284); positive regulation of cell-
substrate adhesion (G0:0010811);
positive regulation of endocytosis
(G0:0045807); positive regulation of
MAPK cascade (G0:0043410); positive
regulation of neuron differentiation
(GO:0045666); positive regulation of
neuron projection development
(G0:0010976); positive regulation of
peptidyl-tyrosine phosphorylation
(GO:0050731); protein transport within
lipid bilayer (G0:0032594); regulation of
cell cycle (GO:0051726); regulation of G-
protein-coupled receptor protein
signaling pathway (G0:0008277);
response to activity (G0:0014823);
response to drug (G0:0042493);
response to gonadotropin stimulus
(G0:0034698); response to transforming
growth factor beta stimulus
(G0:0071559); sarcomere organization
(GO:0045214); tight junction assembly
(GO:0070830); tissue homeostasis
(G0:0001894)

SLC11A2

Solute carrier family | Important in metal transport, in particular, iron; can also

1

transport manganese, cobalt, cadmium, nickel,

(proton-coupled vanadium, and lead; involved in apical iron uptake

divalent
metal ion

into duodenal enterocytes; involved in iron transport
from acidified endosomes into the cytoplasm of

transporters), erythroid precursor cells; may play an important role
member 2 in hepatic iron accumulation and tissue iron

distribution

Activation of cysteine-type endopeptidase
activity involved in apoptotic process
(GO:0006919); cellular response to
oxidative stress (G0:0034599); transport
of cobalt, cadmium, copper, iron, lead,
nickel, vanadium, and zinc (GO:multiple
terms); hydrogen ion transmembrane
transporter activity; dendrite
morphogenesis (G0:0048813); learning
or memory (G0:0007611)

DST

Dystonin

Cytoskeletal linker protein; acts as an integrator of
intermediate filaments, actin, and microtubule
cytoskeleton networks; required for anchoring either
intermediate filaments to the actin cytoskeleton in
neural and muscle cells or keratin-containing
intermediate filaments to hemidesmosomes in

Axonogenesis (G0:0007409); cell adhesion
(G0:0007155); cell cycle arrest
(G0:0007050); cell motility (G0:0048870);
cytoplasmic microtubule
organization (G0:0031122); cytoskeleton
organization (G0:0007010);
hemidesmosome assembly
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Table 3. Continued

Symbol Gene Name Function GO Biological Process

epithelial cells; the proteins may self-aggregate to (GO:0031581); integrin-mediated

form filaments or a two-dimensional mesh. signaling pathway (G0:0007229);
intermediate filament cytoskeleton
organization (G0:0045104); maintenance
of cell polarity (G0:0030011);
microtubule cytoskeleton organization
(GO:0000226); regulation of microtubule
polymerization or depolymerization
(GO:0031110); response to wounding
(G0:0009611); retrograde axon cargo
transport (G0:0008090)

MFGES8 Lactadherin Plays an important role in the maintenance of intestinal Angiogenesis (G0:0001525); cell adhesion
epithelial homeostasis and the promotion of mucosal (G0:0007155); interspecies interaction
healing; promotes VEGF-dependent between organisms (G0:0044419);
neovascularization (by similarity); contributes to phagocytosis, engulfment (G0:0006911);
phagocytic removal of apoptotic cells in many phagocytosis, recognition (G0:0006910);
tissues; specific ligand for the alpha-v/beta-3 and positive regulation of apoptotic cell
alpha-v/beta-5 receptors; also binds to clearance (G0:2000427); positive
phosphatidylserine-enriched cell surfaces in a regulation of cell proliferation
receptor-independent manner; zona pellucida- (G0:0008284); response to estrogen
binding protein, which may play a role in gamete stimulus (G0:0043627); single
interaction; binds specifically to rotavirus and inhibits fertilization (GO:0007338)
its replication

RAB11A RAB11a, member Regulates endocytic recycling; may exert its functions Cell cycle (GO:0007049) cytokinesis
RAS by interacting with multiple effector proteins in (G0:0000910); GTP catabolic process
oncogene family different complexes; acts as a major regulator of (GO:0006184); neuron projection

membrane delivery during cytokinesis; together with development (G0:0031175); plasma
MYO5B and RABBA, participates in epithelial cell membrane to endosome transport
polarization; together with RAB3IP, RAB8A, the (GO:0048227); protein localization in
exocyst complex, PARD3, PRKCI, ANXA2, CDC42, plasma membrane (G0:0072659);
and DNMBP, promotes transcytosis of PODXL to the regulation of long-term neuronal synaptic
apical membrane initiation sites (AMIS), apical plasticity (G0:0048169); regulation of
surface formation, and lumenogenesis (by similarity); protein transport (G0:0051223); small
together with MYO5B, participates in CFTR trafficking GTPase-mediated signal transduction
to the plasma membrane and TF (transferrin) (G0:0007264); vesicle-mediated
recycling in nonpolarized cells; required in a complex transport (G0:0016192)

with MYO5B and RAB11FIP2 for the transport of

NPC1L1 to the plasma membrane; participates in the

sorting and basolateral transport of CDH1 from the

Golgi apparatus to the plasma membrane; regulates

the recycling of FCGRT (receptor of Fc region of

monomeric IgG) to basolateral membranes (by

similarity)

ASAH2 N-acylsphingosine Hydrolyzes the sphingolipid ceramide into sphingosine Apoptotic process (G0:0006915); ceramide
amidohydrolase and free fatty acid at an optimal pH of 6.5 to 8.5; metabolic process (G0:0006672); signal
(nonlysosomal acts as a key regulator of sphingolipid signaling transduction (G0:0007165)
ceramidase) 2 metabolites by generating sphingosine at the cell
(neutral surface; acts as a repressor of apoptosis both by
sphingomyelinase) reducing C16-ceramide, thereby preventing

ceramide-induced apoptosis, and generating
sphingosine, a precursor of the antiapoptotic factor,
sphingosine 1-phosphate; probably involved in the
digestion of dietary sphingolipids in intestine by
acting as a key enzyme for the catabolism of dietary
sphingolipids and regulating the levels of bioactive
sphingolipid metabolites in the intestinal tract

DYSF Dysferlin Key calcium ion sensor involved in the Ca(2+)-triggered None identified
synaptic key calcium ion sensor involved in Ca(2+)-
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Table 3. Continued

Symbol

Gene Name

Function

GO Biological Process

triggered synaptic vesicle-plasma membrane fusion;
plays a role in the sarcolemma repair mechanism of

both skeletal muscle and cardiomyocytes that
permits rapid resealing of membranes disrupted by
mechanical stress

MSN

Moesin

Probably involved in connections of major cytoskeletal
structures to the plasma membrane; may inhibit
herpes simplex virus 1 infection at an early stage

Cellular component movement
(GO:0006928); leukocyte cell-cell
adhesion (G0:0007159); leukocyte
migration (G0:0050900); membrane-to-
membrane docking (G0:0022614);
regulation of lymphocyte migration
(G0:2000401)

Plasma membrane: down/up

MAOB

Monoamine oxidase
B

Catalyzes the oxidative deamination of biogenic and

xenobiotic amines and has important functions in the metabolism

of neuroactive and vasoactive amines in

the central nervous system and peripheral tissues;
MAOB preferentially degrades benzylamine and
phenylethylamine.

Negative regulation of serotonin secretion
(GO:0014063); positive regulation of
dopamine metabolic process
(GO:0045964); response to aluminum ion
(G0:0010044); response to
corticosterone stimulus (G0:0051412);
response to drug (G0:0042493);
response to ethanol (G0:0045471);
response to lipopolysaccharide
(G0:0032496); response to selenium ion
(GO:0010269); response to toxin
(G0:0009636)

C8B

Complement
component 8,
beta subunit

Constituent of the membrane attack complex (MAC)
that plays a key role in the innate and adaptive
immune response by forming pores in the plasma
membrane of target cells

Complement activation (G0:0006956);
complement activation, alternative
pathway (G0:0006957); complement
activation, classical pathway
(G0:0006958); cytolysis (GO:0019835);
immune response (G0:0006955)

CD80

T-lymphocyte
activation
antigen CD80

Involved in the costimulatory signal essential for T-
lymphocyte activation; T-cell proliferation and
cytokine production is induced by the binding of
CD28 or CTLA-4 to this receptor.

Cell-cell signaling (G0:0007267);
interspecies interaction organisms
(GO:0044419); intracellular signal
transduction (G0:0035556); positive
regulation of alpha-beta T-cell
proliferation (G0:0046641); positive
regulation of the granulocyte
macrophage colony-stimulating factor
biosynthetic process (G0:0045425);
positive regulation of the interleukin-2
biosynthetic process (G0:0045086);
Positive regulation of peptidyl-tyrosine
phosphorylation (G0:0050731); positive
regulation of signal transduction
(GO:0009967); positive regulation of T-
helper 1 cell differentiation
(G0:0045627); positive regulation of
transcription, DNA dependent
(G0:0045893); T-cell activation
(GO:0042110)

KCNH2

Potassium voltage-
gated
channel subfamily
H
member 2

Pore-forming (alpha) subunit of voltage-gated inwardly

rectifying potassium channel; channel properties are
modulated by cAMP and subunit assembly; mediates

the rapidly activating component of the delayed
rectifying potassium current in heart (IKr)

Blood circulation (G0:0008015); muscle
contraction (G0:0006936); potassium ion
transport (G0:0006813); protein
heterooligomerization (G0:0051291);
regulation of heart contraction
(GO:0008016); regulation of membrane
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Table 3. Continued

Symbol

Gene Name

Function

GO Biological Process

potential (G0:0042391); regulation of
transcription, DNA dependent
(G0:0006355)

SYNC

Syncoilin

Intermediate filament

Intermediate filament-based process
(G0:0045103)

CSDA

Cold shock domain
protein A

Binds to the GM-CSF promoter; seems to act as a
repressor; binds also to full-length mRNA and to
short RNA sequences containing the consensus site
5’-UCCAUCA-3"; may have a role in translation
repression

Fertilization (GO:0009566); in utero
embryonic development (G0:0001701);
male gonad development (G0O:0008584);
negative regulation of apoptotic process
(G0:0043066); negative regulation of
skeletal muscle tissue development
(G0:0048642); negative regulation of
transcription from RNA polymerase Il
promoter (G0:0000122); organ
regeneration (G0:0031100); positive
regulation of organ growth
(G0:0046622); regulation of
transcription, DNA dependent
(GO:0006355); response to cold
(GO:0009409); spermatogenesis
(G0:0007283); transcription, DNA
dependent (G0:0006351); positive
regulation of organ growth (G0:0046622)

CISH

Cytokine inducible
SH2-containing
protein

SOCS family proteins form part of a classical negative
feedback system that regulates cytokine signal
transduction. CIS is involved in the negative
regulation of cytokines that signal through the JAK-

Intracellular signal transduction
(GO:0035556); negative regulation of
signal transduction (G0:0009968);
protein ubiquitination (G0:0016567);

proteins (by similarity).

STAT5 pathway, such as erythropoietin, prolactin,
and interleukin-3 (IL-3) receptor. Inhibits STAT5
transactivation by suppressing its tyrosine
phosphorylation; may be a substrate-recognition
component of an SCF-like ECS (Elongin BC-CUL2/5-
SOCS-box protein) E3 ubiquitin-protein ligase
complex, which mediates the ubiquitination and
subsequent proteasomal degradation of target

regulation of cell growth (G0:0001558)

KCNB1 Potassium voltage-

Mediates the voltage-dependent potassium ion

Protein homooligomerization (G0:0051260)

gated permeability of excitable membranes; channels open
channel subfamily or close in response to the voltage difference across
B the membrane, letting potassium ions pass in accord
member 1 with their electrochemical gradient
ARSA Arylsulfatase A Hydrolyzes cerebroside sulfate None identified

dysferlin as a potential candidate gene for the cytoprotective
effects of TRAF2.

NF-kB-Induced Activation of Dysferlin Gene
Expression

Previous studies from this laboratory have suggested that
TNF/TRAF2-mediated activation of NF-xB is responsible for
provoking cytoprotective responses in the heart after I/R
injury.'" Previously, we have reported that both RelB and p52
were upregulated in hearts of MHC-TRAF2,c mice, when

compared to LM controls.' To determine whether compo-
nents of noncanonical NF-xB signaling were responsible for
the observed increased in dysferlin expression in MHC-
TRAF2,c mouse hearts, we performed a ChIP assay. As shown
in Figure 7, there was a significant 2-fold increase in RelB
binding to the dysferlin (variant 1) promoter in MHC-TRAF2 ¢
hearts, when compared to WT hearts, which was accompanied
by significant binding of p50 and p52, which are potential
binding partners for RelB. These experiments suggest that
TRAF2-mediated activation of NF-kB contributed to increased
dysferlin expression observed in MHC-TRAF2, ¢ hearts.
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Figure 6. Expression levels of dysferlin mRNA and protein levels in MHC-TRAF2,c MHC-TRAF2py, and
littermate (LM) control) mice. A, mRNA levels in naive 12-week-old MHC-TRAF2, ¢ and MHC-TRAF2py,
relative to respective LM control hearts (n=6/group). B, Representative Western blot of dysferlin protein
levels in naive 12-week-old MHC-TRAF2 ¢ and MHC-TRAF2py and group data for dysferlin protein (relative
to calsequestrin) in MHC-TRAF2,c and MHC-TRAF2py hearts (n=8/group). *P<0.05, compared to the
respective LM control. TRAF2 indicates tumor necrosis factor receptor-associated factor 2.

Inout

19G

IP: RelB

p50

P65

P52

L

MHC-TRAF2,.

Ll

VHC TRAFZ2,

LI

MHCTRAFZ,

LM

C-TRAFZ,e

ML

-

Fold change compared to WT
O =2 N W B OO®Mm N 0O O O

_

p50 p6s psz

RelB

Figure 7. NF-kB chromatin immunprecipitation (ChlIP). RelB,
p50, p65, and p52 antibodies were used for ChIP on mouse heart
chromatin. Presence of NF-kB family members at a kB site in the
dysferlin promoter was detected by PCR and expressed as fold
change relative to WT controls (n=3). LM indicates littermate; NF-
kB, nuclear factor kappa B; PCR, polymerase chain reaction;
TRAF2, tumor necrosis factor receptor-associated factor 2; WT,
wild type.

Characterization of the Dysferlin-Null Mice

Phenotypic Characterization of Dysferlin-Null
(Dysferlin~"~) Mice

In order to explore the role of dysferlin as a potential mediator
of the cytoprotective effects of TRAF2, we first characterized

the phenotype of the dysferlin-null (dysferlin™"~) mice
employed in these studies. Figure 8A shows that 12-week-
old dysferlin™/~ mice had no obvious LV phenotype, as
assessed by gross morphology and H&E staining. There was,
however, a small, but significant, increase in the heart
weight/body weight ratio in dysferlin™/~ mice, when com-
pared to WT controls (Figure 8B). 2D-targeted M-mode echo
disclosed no significant differences in LV fractional shortening
(Figure 8C) or LVDP (Figure 8D), LV +dP/dt (Figure 8E) and
LV —dP/dt (Figure 8F), or LV dimensions (Figure 8G through
81) between dysferlin™/~ knockout mice, compared to WT
controls.

1/R Injury

Although previous studies in dysferlin-null mice have failed to
demonstrate a role for dysferlin in reducing infarct size after
acute coronary ligation in vivo,'* the role of dysferlin after I/R
injury (wherein the mechanisms of cell injury are different) is
not known. Accordingly, we subjected dysferlin™/~ mouse
hearts to 30 minutes of global ischemia, followed by
60 minutes of reperfusion. The salient finding shown by
Figure 9A is that LV functional recovery after |/R injury was
significantly (P<0.001 by ANOVA) worse in dysferlin-null
hearts, when compared to WT. Differences in LVDP were
evident 20 minutes after reperfusion and remained signifi-
cantly worse than WT controls 60 minutes after reperfusion
(P<0.05/time). Importantly, both myocardial CK release
(Figure 9B) and degree of uptake of Evans blue dye (Figure 9C
and 9D) were significantly increased (P<0.05 for both) in
hearts of |/R-injured dysferlin-null mice, when compared to
WT controls. These results are consistent with the thesis that
dysferlin-mediated membrane repair is important for main-
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Figure 8. Characterization of dysferlin-null (dysferlin~/") mice. Dysferlin =/~ and wild-type (WT) control
mice were 12 weeks of age. A, Representative photographs of dysferlin™/~ and WT control hearts;
hematoxylin and eosin—stained cross-sections at the level of the papillary muscle and representative
hematoxylin and eosin—stained cross sections at the level of the papillary muscles (x400). B, Heart weight/
body weight ratio (n=6/group) of dysferlin™/~ hearts and WT controls. C, Percent LV fractional shortening
(% FS) in 12-week-old dysferlin™/~ hearts (n=9) and WT controls (n=6). D, Percent LV developed pressure (%
LVDP) ex vivo (n=6 hearts/group). E and F, LV +dP/dt and LV —dP/dt ex vivo (n=9/group). G, LV end-
diastolic dimension (LVEDD), (H) LV posterior wall diameter (LVPWd), and (I) ratio of LV radius to LV wall
thickness (r/h). *P<0.05, compared to the respective WT control. BW indicates body weight; HW, heart

weight; LV, left ventricle.

taining membrane integrity and LV functional recovery after
I/R injury.

Effects of Dysferlin on TRAF2-Mediated
Cytoprotection After I/R Injury
To determine whether the cytoprotective effects of TRAF2

were mediated, at least in part, through dysferlin, we
generated MHC-TRAF2,¢/dysferlin™/~ mice and subjected

these hearts to I/R injury. The important finding shown by
Figure 10A is that the cytoprotective effects of TRAF2 were
attenuated significantly in a dysferlin-null background. As
shown, functional recovery in MHC-TRAF2,c/dysferlin™/~
mice was significantly less than MHC-TRAF2, ¢ mice at 10 to
60 minutes (P<0.05/time point) after reperfusion. Further-
more, there was a significant increase in myocardial CK
release (Figure 10B) and degree of uptake of Evans blue dye
(Figure 10C and 10D; P<0.05 for both) in hearts of I/R-
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(WT) control mice. Dysferlin™/~ and WT control mice were 12 weeks of age. A, Percent LV developed
pressure after I/R injury (n=6 hearts/group). B, Creatine kinase (CK) release in the effluent at baseline and
30 minutes after I/R injury (n=6 hearts/group). C, Representative images of Evans blue dye uptake. D,
Group data for Evans blue dye uptake at baseline and 30 minutes after I/R injury (n=6 hearts/group).
*P<0.05, compared to WT controls. LV indicates left ventricle; LVDP, LV developed pressure.

injured MHC-TRAF2, c/dysferlin™/~ mice, when compared to
MHC-TRAF2,c mice. A second important finding shown in
Figure 10A is that the overall degree of functional recovery in
the MHC-TRAF2, c/dysferlin =/~ mice was significantly greater
than WT control mice (P<0.001), suggesting that the
cytoprotective effects of TRAF2 are not exclusively mediated
through dysferlin.

To determine whether I/R injury resulted in differential
localization of dysferlin in cardiac myocytes from MHC-TRAF, ¢
mouse hearts, compared to LM controls, we performed IHC
staining at baseline in naive hearts and 60 minutes after I/R
injury. As shown by the representative photomicrographs in
Figure 11, dysferlin was not immunodetectable in cardiac
myocytes from LM controls or MHC-TRAF ¢ mouse hearts. It
contrast, after /R injury, dysferlin was weakly detectable in the
cytoplasm of scattered cardiac myocytes from control hearts,
whereas dysferlin immunostaining was easily detectable at the
intercalated disks and diffusely throughout the cytoplasm of
cardiac myocytes from MHC-TRAF, ¢ mouse hearts, suggesting
that TRAF2 signaling resulted in increased dysferlin trafficking
to the membrane of MHC-TRAF, ¢ mouse hearts.

Discussion

The results of this study, in which we employed both gain- and
loss-of-function approaches to delineate the mechanism(s) for
the cytoprotective effects of TRAF2, suggest that TRAF2-
mediated upregulation of dysferlin is responsible, at least in
part, for the cytoprotective effects of TRAF2 after |/R injury.
As shown in Figure 3A, Tg mouse lines with cardiac-restricted
overexpression of low levels of TRAF2 (MHC-TRAF2.c) had
improved LV functional recovery after |/R injury, relative to
LM controls, whereas mice with cardiac-restricted overex-
pression of MHC-TRAF2py had decreased LV functional
recovery after 1/R injury. Decreased functional recovery in
MHC-TRAF2py mice was accompanied by increased CK
release (Figure 3B) and Evans blue dye uptake (Figure 3C
and 3D), consistent with increased membrane permeability.
Improved functional recovery in MHC-TRAF2, . mice is
associated with decreased CK release and decreased Evans
blue dye uptake, consistent with enhanced membrane
stability.”" To delineate the mechanisms for the cytoprotec-
tive effects of TRAF2, we performed transcriptional profiling in
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Figure 10. Effects of ischemia-reperfusion (I/R) injury in MHC-TRAF2, ¢ MHC-TRAF2, c/dysferlin™/~, and
littermate (LM) controls. All studies were performed in 12-week-old mice (see Methods for breeding
strategy). A, Percent LV developed pressure after /R injury (n=6 to 7 hearts/group). B, Creatine kinase
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MHC-TRAF2, ¢ and MHC-TRAF2py mouse hearts. Using this
unbiased strategy, we identified a calcium-triggered exocy-
totic membrane repair protein, termed dysferlin, as a potential
candidate cytoprotective gene downstream from TRAF2-
mediated signaling (Figure 4 and Table 2). Importantly, dys-
ferlin mRNA and protein were significantly upregulated in
MHC-TRAF2, ¢ mice, whereas dysferlin protein was signifi-
cantly downregulated in MHC-TRAF2py mice (Figure 6).
Moreover, dysferlin was immunolocalized to the intercalated
disks and diffusely throughout the cytoplasm of cardiac
myocytes from MHC-TRAF2 ¢ mouse hearts after 1/R injury,
whereas it was weakly detectable in the cytoplasm of WT
control hearts (Figure 11). Consistent with our earlier obser-
vations, which have implicated an important role for NF-xB
signaling in terms of mediating the cytoprotective effects of
the TNF-TRAF2-signaling pathway,'' the ChIP assay identified
RelB, p50, and p52 binding in the promoter region of the
dysferlin gene (Figure 7). Characterization of dysferlin-null
mice revealed that they had decreased functional LV recovery,
increased CK release, and increased Evans blue dye uptake
after I/R injury (Figure 9), thus phenocopying the response to

I/R injury observed in MHC-TRAF2py mice. Finally, breeding
MHC-TRAF2, ¢ mice onto a dysferlin-null background (MHC-
TRAF2,c/dysferlin™/~) resulted in increased tissue injury,
increased Evans Blue dye uptake, and decreased functional
recovery, when compared to MHC-TRAF2, ¢ mice (Figure 10),
suggesting that dysferlin mediates, at least in part, the
cytoprotective effects of TRAF2. Importantly, functional
recovery in MHC-TRAF2,c/dysferlin™/~ mice after I/R injury
was still significantly greater than observed in WT controls
(Figure 10A), suggesting that cytoprotective effects of TRAF2
are not mediated exclusively through dysferlin. Indeed, TRAF2
mediates mitophagy through an E3 ligase-dependent mech-
anism in the adult heart.?' Although speculative, these results
suggest that the cytoprotective effects of TRAF2 may relate to
clearance of mitochondria that are damaged after I/R injury.

Dysferlin-Mediated Membrane Repair in the
Mammalian Heart

Given that maintenance of plasma membrane integrity is
required for cell viability, it is not surprising that cells have

DOI: 10.1161/JAHA.113.000662

Journal of the American Heart Association 23

Downloaded from http://jaha.ahagjournals.org/ at Washington University on March 4, 2014

HDYVHASHY TVNIDIYO


http://jaha.ahajournals.org/
http://jaha.ahajournals.org/

TRAF2 and Dysferlin Tzeng et al

Naive

Ischemia/Reperfusion (60 min)

MHC-TRAF2, -

Littermate
i ‘

'
0,
»

Figure 11. Dysferlin immuohistochemical staining in littermate controls and MHC-TRAF ¢ mouse hearts.
In naive hearts, dysferlin was not immunodetectable in cardiac myocytes from littermate controls (A) or
MHC-TRAF_c mouse hearts (B). In contrast, after 1/R injury, dysferlin was weakly detectable in the
cytoplasm of scattered cardiac myocytes from control hearts (B and C). As shown by arrows, dysferlin
immunostaining was easily detectable at the intercalated disks (E) and diffusely throughout the cytoplasm
(F) of cardiac myocytes from MHC-TRAF ¢ mouse hearts, suggesting that TRAF2 signaling resulted in
increased dysferlin trafficking to the membrane of the MHC-TRAF ¢ mouse heart. I/R indicates ischemia
reperfusion; TRAF2, tumor necrosis factor receptor-associated factor 2.

evolved a variety of different “emergency repair” mechanisms
to facilitate plasma membrane resealing under physiologic
and pathophysiologic conditions. This is particularly important
for cells residing in mechanically stressful environments, such
as cardiac and/or skeletal myocytes.?’???* In mammalian
cells, plasma membranes reseal spontaneously if the lesion is
small (<1 pmol/L). If the membrane lesion is large (>1 pmol/
L), nucleated cells use an active membrane repair process
that is based on Ca”*-triggered active trafficking of cytoplas-
mic vesicles to the site of membrane damage with
subsequent fusion of vesicles with the plasma membrane
(exocytosis), thereby creating a “patch” of new membrane
across the gap in the plasma membrane. The process of
active membrane fusion during exocytosis requires several
membrane proteins, including SNARE proteins,”® synaptotag-
mins,?® and a recently described muscle-specific TRIM
protein, MG53, that is important in sarcolemmal repair in
ischemic preconditioning.?’”

Recently, a family of proteins termed “ferlins” has been
shown to play an important role in membrane repair by
facilitating Ca?"-mediated trafficking of vesicles to the site of
membrane injury. The ferlin family consists of four different

highly conserved genes that encode dysferlin, myoferlin,
otoferlin, and Fer1L4 (reviewed previously?®). Dysferlin is a
273 kDa type Il transmembrane protein that is enriched in
skeletal and cardiac muscle.?® Mutations in dysferlin lead to
three distinct muscular dystrophies (“dysferlinopathies”):
limb-girdle muscular dystrophy type 2B;*® Miyoshi myopa-
thy;?® and distal myopathy with anterior tibialis onset.
Although onset of dilated cardiomyopathy is extremely rare
in dysferlinopathies, ~50% of patients develop mild structural
(increased myocardial fibrosis) and functional (diastolic dys-
function) cardiac abnormalities.?*° These findings are con-
sistent with experimental studies that have shown that aging
dysferlin-deficient mice develop progressive myocardial fibro-
sis by 10 to 12 months of age, suggesting an important role
for membrane repair mechanisms in aging hearts.'**'
Relevant to the present study, dysferlin deficiency has been
implicated in the development of a dilated cardiomyopathic
phenotype after adrenergic and/or mechanical stress.'*3% Han
et al. demonstrated increased cardiac myocyte membrane
permeability (increased Evans blue dye uptake) and progressive
LV dysfunction in exercising dysferlin-null mice. Although these
researchers did not demonstrate a role for dysferlin in reducing

DOI: 10.1161/JAHA.113.000662

Journal of the American Heart Association 24

Downloaded from http://jaha.ahagjournals.org/ at Washington University on March 4, 2014

HDOYVIASHY TVNIDIYO


http://jaha.ahajournals.org/
http://jaha.ahajournals.org/

TRAF2 and Dysferlin Tzeng et al

infarct size after acute coronary ligation, they did not examine
the role of dysferlin in /R injury, wherein the mechanisms of
cell injury are different. Our results are in agreement with these
earlier studies that have demonstrated an important role for
dysferlin-mediated membrane repair during mechanical
stress'* and extend these observations by demonstrating the
importance of membrane resealing as a critical component of
the cytoprotective effects of inflammatory signaling after I/R
injury. These results are also concordant with our earlier in vitro
observations, wherein we demonstrated that TNF-mediated
signaling through TNFR1 or TNFR2 preserved sarcolemmal
membrane integrity (calcium influx and lactic dehyrogenase
release) in isolated cardiac myocytes that were subjected to
hypoxia reoxygenation injury.”

Although the present study did not delineate the mecha-
nism(s) for the cytoprotective role of dysferlin during I/R
injury, it bears emphasis that the exact mechanisms respon-
sible for dysferlin-mediated membrane repair are incompletely
understood.3? Moreover, these studies were conducted ex
vivo, which excludes the effects of infiltrating inflammatory
cells that could also affect innate immune signaling, Accord-
ingly, it will be important, in future studies, to further
delineate the interacting protein partners for dysferlin in
MHC-TRAF2 ¢ mice, as well as extend these observations to
studies in vivo Finally, we cannot exclude the formal
possibility that the deleterious effects observed in MHC-
TRAF2pN mice after 1/R injury were nonspecific, and were
secondary to high levels of expression of the transgene, as
has been reported for inert proteins that have been overex-
pressed in the heart.

Conclusions

The results of this study demonstrate, for the first time, that
TRAF2-mediated signaling confers cytoprotection in the heart,
at least in part, through upregulation of dysferlin, a calcium-
triggered exocytotic membrane repair protein. Although the
innate immune system has been implicated in maintaining
“barrier function” in the skin, gastrointestinal system, and
trachea in vertebrate species,,3‘°”34 these observations have
focused predominately on activation of the adaptive immune
system by the innate immune system in response to
disruption of the epithelial barrier. Our results extend this
conceptual paradigm and suggest that one of the important
functions of innate immune activation in the heart in response
to tissue injury is preservation and maintenance of the
physical barrier between the extra- and intracellular environ-
ment through enhanced and/or facilitated sarcolemmal
repair, thereby preventing calcium-induced activation of cell
death machinery, loss of cytosolic constituents vital to cell
function, as well as preserving the electrochemical gradient

across the sarcolemma that is required for membrane
excitability and myocyte contraction. Consistent with this
thesis, both gain- and loss-of-function studies have shown
that TNF and TNF receptors are required for preservation of
epidermal barrier function in mice.*® This point of view is also
consistent with the “danger” model of immunity, which
proposes that healthy tissue induces tolerance (eg, precon-
ditioning), whereas unhealthy tissue stimulates the adaptive
immune system, which would be activated by release of
damage-associated molecular patterns.®® Given that loss of
dysferlin-mediated membrane repair attenuated, but did not
abrogate, the cytoprotective effects of TRAF2-mediated
signaling, it will be important, in subsequent studies, to
determine whether additional plasma membrane proteins that
were identified by our screening strategy contribute to
maintaining sarcolemmal repair after |/R injury.
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