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A Short Hairpin RNA Screen of Interferon-Stimulated Genes Identifies
a Novel Negative Regulator of the Cellular Antiviral Response

Jianqing Li,a Steve C. Ding,b Hyelim Cho,a Brian C. Chung,b Michael Gale Jr.,c Sumit K. Chanda,b Michael S. Diamonda,d,e

Departments of Molecular Microbiology,a Medicine,d and Pathology and Immunology,e Washington University School of Medicine, St. Louis, Missouri, USA; Infectious and
Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California, USAb; Department of Immunology, University of Washington School of
Medicine, Seattle, Washington, USAc

ABSTRACT The type I interferon (IFN) signaling pathway restricts infection of many divergent families of RNA and DNA viruses
by inducing hundreds of IFN-stimulated genes (ISGs), some of which have direct antiviral activity. We screened 813 short hair-
pin RNA (shRNA) constructs targeting 245 human ISGs using a flow cytometry approach to identify genes that modulated infec-
tion of West Nile virus (WNV) in IFN-�-treated human cells. Thirty ISGs with inhibitory effects against WNV were identified,
including several novel genes that had antiviral activity against related and unrelated positive-strand RNA viruses. We also de-
fined one ISG, activating signal cointegrator complex 3 (ASCC3), which functioned as a negative regulator of the host defense
response. Silencing of ASCC3 resulted in upregulation of multiple antiviral ISGs, which correlated with inhibition of infection of
several positive-strand RNA viruses. Reciprocally, ectopic expression of human ASCC3 or mouse Ascc3 resulted in downregula-
tion of ISGs and increased viral infection. Mechanism-of-action and RNA sequencing studies revealed that ASCC3 functions to
modulate ISG expression in an IRF-3- and IRF-7-dependent manner. Compared to prior ectopic ISG expression studies, our
shRNA screen identified novel ISGs that restrict infection of WNV and other viruses and defined a new counterregulatory ISG,
ASCC3, which tempers cell-intrinsic immunity.

IMPORTANCE West Nile virus (WNV) is a mosquito-transmitted virus that continues to pose a threat to public health. Innate im-
mune responses, especially those downstream of type I interferon (IFN) signaling, are critical for controlling virus infection and
spread. We performed a genetic screen using a gene silencing approach and identified 30 interferon-stimulated genes (ISGs) that
contributed to the host antiviral response against WNV. As part of this screen, we also identified a novel negative regulatory pro-
tein, ASCC3, which dampens expression of ISGs, including those with antiviral or proinflammatory activity. In summary, our
studies define a series of heretofore-uncharacterized ISGs with antiviral effects against multiple viruses or counterregulatory
effects that temper IFN signaling and likely minimize immune-mediated pathology.
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Virus infection of mammalian cells induces several indepen-
dent and interdependent signaling pathways to promote ex-

pression of genes that confer an antiviral state. RNA intermediates
of virus replication are recognized by pathogen recognition recep-
tors (PRRs), such as Toll-like receptors (TLRs) and RIG-I-like
receptors (RLRs), which bind to adaptor molecules (e.g., MyD88,
TRIF, and MAVS) that signal specific transcription factors (e.g.,
IRF-3, IRF-7, and NF-�B) to translocate into the nucleus and
induce expression of type I interferon (IFN) and other genes en-
coding antiviral and immune regulatory activity (1, 2). Secreted
type I IFN binds in an autocrine and paracrine manner to the
IFN-�/� receptor (IFNAR) on the surface of cells and triggers a
signaling cascade that induces hundreds of interferon-stimulated
genes (ISGs) (3). The importance of this pathway is underscored
by the vulnerability of Ifnar�/� mice to infection by many families
of viruses (4–6).

Members of the Flavivirus genus are the most important
arthropod-borne viruses causing disease in humans. This genus

includes viruses (West Nile virus [WNV], Japanese encephalitis
virus [JEV], yellow fever virus [YFV], and dengue virus [DENV])
that are endemic in several parts of the world and collectively
cause hundreds of millions of infections each year (7). Flavivirus
infection causes severe disease in humans, including hemorrhagic
fever, shock syndrome, liver failure, and encephalitis. The en-
hanced spread of flaviviruses worldwide highlights a need for an
improved understanding of mechanisms of immune control, as
insight into the cell-intrinsic processes that restrict infection may
facilitate novel strategies to limit disease (8).

Although type I IFN responses control the cell and tissue tro-
pism of WNV and other flaviviruses (4), the molecules that restrict
infection are not fully defined. In prior studies using deficient
mice or cells, PKR and RNase L were identified as ISGs that con-
tribute to IFN-mediated control of WNV infection (9, 10). More
recent experiments in mice have suggested that IFIT1 and viperin
restrict WNV infection in vivo with prominent effects in neurons
of the central nervous system (11–13). IFITM genes also have been
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reported to inhibit early entry steps in flavivirus infection (14–16),
although these and other less well characterized ISGs (17–20) have
not been extensively studied.

Here, we applied a genetic screen using a flow cytometry-based
gene silencing approach to identify candidate ISGs that limit
WNV infection. In contrast to prior screens that used ectopic ex-
pression to identify ISGs that were sufficient to confer an antiviral
effect (18, 20, 21), we transduced a library of 813 lentivirus-
encoded short hairpin RNAs (shRNAs) targeting 245 human ISGs
in HeLa cells. We selected a gene silencing approach because it
could (i) be performed using physiological concentrations of
IFN-�, (ii) define the relative importance of any given ISG in the
context of an intact IFN response, and (iii) identify ISGs that re-
quire a multicomponent complex to have antiviral function. Us-
ing this approach, we identified 30 genes that when silenced re-
sulted in a 3- to 114-fold increase in WNV infection in the setting
of exogenous IFN-� treatment. Novel ISGs with the greatest im-
pact on WNV infection included IFI6, IL13RA1, MAFK, SC4MOL,
and PAK3. We also identified one ISG, ASCC3, a putative DNA
helicase, which negatively regulated cell-intrinsic antiviral re-
sponses. Mechanism-of-action studies revealed that ASCC3 func-
tioned by dampening ISG expression through an interaction with
the IRF-3 and IRF-7 pathway. Thus, type I IFN signaling promotes
the expression of a large number of ISGs, several of which contrib-
ute to the antiviral response against WNV, with others having
counterregulatory functions to minimize excessive immune acti-
vation.

RESULTS
An shRNA-based screen for defining ISGs with anti-WNV activ-
ity. To identify ISGs that inhibit replication of West Nile virus
(WNV), we designed a lentivirus-based microRNA-adapted
shRNA library containing 813 shRNA constructs against 245 dif-
ferent human ISGs (see Table S1 in the supplemental material)
with, on average, four independent shRNAs per gene. ISGs were
defined by our own and published microarray analyses as genes
that were induced in cells at least 2-fold after treatment with
IFN-� or IFN-� (22–26). We used our library to perform a screen
in 96-well plates of human HeLa cells that were pretreated with
inhibitory concentrations of IFN-�. The bicistronic pGIPZ lenti-
viral vector cotranscribes a microRNA carrying the shRNA and
encoding green fluorescent protein (GFP), which marks trans-
duced cells expressing the shRNA (Fig. 1A). HeLa cells were trans-
duced transiently with lentiviruses carrying a single shRNA
against a candidate ISG, treated with IFN-� for 6 h to induce ISG
expression, and infected with WNV (multiplicity of infection
[MOI] of 5). Viral infection was monitored by flow cytometry 48 h
later for expression of viral envelope protein in GFP� transduced
and GFP� nontransduced cells (Fig. 1B and C) and normalized to
wells transduced with a negative-control (scrambled) shRNA.
shRNA constructs against ISGs with Z scores of �2 standard de-
viations from the mean were considered “hits” in the primary
screen (Fig. 2A). Using this criterion, 80 shRNAs corresponding to
29 different ISGs were identified as putative antiviral molecules
(see Table S2). For 26 of these candidate genes, transduction of at
least two independent shRNAs targeting different mRNA seg-
ments resulted in increased WNV infection, suggesting that the
observed phenotype was likely not due to off-target effects. The
remaining three ISG (IRF8, OAS1, and SAMHD1) hits were re-
tained for further study because they had low shRNA representa-

tion in the original library (see Table S2). Beyond these core ISG
hits, we expanded the list for validation to include genes with
multiple independent shRNAs that enhanced WNV infectivity
greater than 2-fold by flow cytometry but yet fell short of achiev-
ing Z scores of �2. By relaxing the stringency of selection, we
added another 33 ISGs corresponding to 81 shRNAs. The list of 62
(29 core plus 33 secondary) ISGs captured proteins involved in
pattern recognition (TLR3 and MAVS), IFN signaling (STAT2,
JAK2, and IRF9), and known IFN effector functions against RNA
viruses (PKR, OAS1, and IFIT2) (Fig. 2B). Expression of three
shRNA constructs targeting one ISG, ASCC3, had opposing effects
and resulted in inhibition of WNV infection, suggesting that it
might be required for viral replication (27) or negatively regulate a
host antiviral pathway.

Validation of the candidates from the primary screen. To val-
idate hits from the primary screen, we optimized the efficiency of
transduction of lentiviruses carrying shRNA (see Fig. S1A in the
supplemental material) and measured a different virological end-
point; we assessed viral yield in the supernatant of WNV-infected
HeLa cells at three time points (24, 48, and 72 h) (see Table S3).
Silencing 47 of the 62 ISGs identified in the primary screen re-
sulted in higher WNV titers in the supernatant for at least one time
point relative to control shRNA (2- to 114-fold compared to con-
trol shRNA, P � 0.05); silencing 30 of these ISGs resulted in in-
creased WNV infection relative to control shRNA (3- to 114-fold,
P � 0.05) at all three time points (Fig. 2C). This subgroup of 30
ISGs included several genes with established innate immune rec-
ognition and signaling functions (PKR, IRF3, IRF9, JAK2, STAT2,
TLR3, and MAVS). The efficiency of gene silencing of these ISGs
was confirmed by quantitative reverse transcription-PCR (qRT-
PCR) (�86% reduction compared to cells receiving nontargeting
shRNA, P � 0.05) (Fig. 2D and data not shown), and importantly,
no changes in cell proliferation or cytotoxicity were observed (see
Fig. S1B and C). Silencing of several ISGs (DDX24, IFI44L, IFI6,
IFRD1, IL13RA1, MAFK, PAK3, SAMD9L, and SC4MOL) not pre-
viously implicated in cell-intrinsic antiviral control of WNV re-
sulted in increased infection at all time points (Fig. 3A to J). The
specificity of silencing was validated, as no change in the expres-
sion of a reference antiviral gene (PKR) was observed in the trans-
duced cells (see Fig. S1D). To determine whether the ISG hits were
sufficient to restrict WNV infection, we ectopically expressed sev-
eral with a C-terminal Flag tag in HeLa cells and measured WNV
infectivity (Fig. 3K; see also Fig. S1E). Whereas IFI6 and SC4MOL
significantly inhibited WNV infection (P � 0.01), DDX24, IFI44L,
IFRD1, IL13RA1, MAFK, PAK3, and SAMD9L did not show this
effect. IFITM3, which was recently identified as an antiviral ISG
against flaviviruses (14–16, 20) but was not picked up in the
shRNA screen, also showed an inhibitory effect against WNV
when expressed ectopically. In addition to WNV, DENV serotype
2 (DENV-2) and encephalomyocarditis virus (EMCV) infections
also were enhanced after silencing several genes in the list, includ-
ing IFI6, MAFK, PAK3, and DDX24 (Fig. 3L and M). Among these
validated hits, IFI6 and IFI44L were suggested recently to inhibit
infection of related Flaviviridae family members (YFV, DENV,
and hepatitis C virus [HCV]) when expressed ectopically in cells
in the absence of type I IFN signaling (18, 20).

ASCC3 negatively regulates cell-intrinsic innate immunity.
While silencing of several different genes resulted in enhanced
WNV infection, the opposing effect observed with ASCC3 sug-
gested that some ISGs might have counterregulatory functions to
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suppress host antiviral activity or could be required as cofactors
supporting viral infection (27). Validation studies confirmed that
silencing of ASCC3 (82% reduction of mRNA levels, P � 0.001)
(Fig. 4A) conferred an inhibitory effect on the yield on several
positive-strand RNA viruses from Flaviviridae (WNV, 12-fold at
48 h, P � 0.001), Togaviridae (Chikungunya virus, 20-fold at 48 h,
P � 0.001), and Picornaviridae (EMCV, 8-fold at 48 h, P � 0.05)
families (Fig. 4B to D) without causing cytotoxicity (see Fig. S1C
in the supplemental material).

Although ASCC3 was reported as an ISG in transcriptional
profiling studies (28), we validated this finding in primary cells.
ASCC3 expression was induced after treatment with exogenous
IFN-� in murine macrophages (4.5-fold increase at 24 h, P �
0.01) and embryonic fibroblasts (murine embryonic fibroblasts
[MEFs], 6.4-fold at 24 h, P � 0.01) but not in dendritic cells

(see Fig. S2A in the supplemental material). Moreover, WNV
infection of MEFs also induced expression of ASCC3 (4-fold
increase at 48 h, P � 0.05). In comparison, tumor necrosis
factor alpha (TNF-�) treatment of MEFs did not induce
ASCC3 expression (see Fig. S2B to D). These data suggest that
ASCC3 is regulated in a type I IFN-dependent and cell-type-
specific manner.

To confirm the virological phenotype, we reciprocally and
transiently expressed ASCC3 with a C-terminal hemagglutinin
(HA) epitope tag in HeLa cells (Fig. 4E) and assessed its impact
on viral infection. WNV infection was enhanced (4-fold at 48 h,
P � 0.001) in cells transfected with ASCC3 compared to a
control plasmid (Fig. 4F). Similar results were observed in hu-
man 293T cells (data not shown). Analogously, transduction of
an shRNA targeting the mouse Ascc3 ortholog in NIH 3T3

FIG 1 Lentivirus-based shRNA screen for ISGs that affect WNV infection. (A) Schematic of pGIPZ lentivirus vector expressing shRNA and GFP. LTR,
long terminal repeat of HIV; CMV, immediate early promoter from human cytomegalovirus; IRES, internal ribosome entry site; Puro, puromycin
selection marker. (B) Cartoon of the shRNA screen. Packaged and pseudotyped lentiviruses expressing 813 shRNAs were transduced into HeLa cells (list
in Table S1 in the supplemental material). Forty-eight hours later, cells were treated with human IFN-� (10 IU/ml for 6 h) and then infected with WNV
at an MOI of 5. Forty-eight hours later, cells were processed by flow cytometry. (C) Representative flow cytometry contour plots (from two independent
screens) showing cells transduced with lentiviral vectors containing a scrambled shRNA control or shRNA specific against ISGs with top Z scores from the
primary screen. The x axis reports the lentivirus transduction efficiency as represented by GFP expression, and the y axis shows infectivity of WNV, as
judged by anti-envelope protein staining.
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fibroblasts silenced its mRNA expression by 82% (P � 0.05)
(Fig. 4G) and resulted in reduced WNV infection (up to 8-fold,
P � 0.01) under basal conditions (Fig. 4H) or in the presence of
IFN-� treatment (Fig. 4I).

ASCC3 modulates cellular ISG expression. As silencing of
ASCC3 resulted in an antiviral effect against three unrelated vi-
ruses, we speculated that it functioned to temper expression or
activity of key host defense pathways. To evaluate this hypothesis,
we sequenced mRNA (RNA-seq) from IFN-�-treated cells trans-
duced with either scrambled shRNA or shRNA against ASCC3
(see Table S4 in the supplemental material). Silencing of ASCC3
resulted in the upregulation and downregulation of 199 and 42
genes, respectively, with P values of �0.05, indicating a significant
impact on cellular gene expression. Notably, silencing of cellular
ASCC3 resulted in enhanced expression of RIG-I-like receptors
(DHX58) and type I IFN-induced genes, including IFI44, RSAD2,
and IFIT2 (Fig. 5A). To validate the RNA-seq results, we measured
by qRT-PCR basal or IFN-�-induced mRNA expression of 13
ISGs (PKR, GBP1, IFI44, IFNA2, IFNB1, IRF1, ISG15, ISG20,

MX1, OAS2, RNASE L, STAT1, and RSAD2) that are induced
through type I IFN-dependent or -independent (e.g., via IRF-3)
signaling pathways (28, 29) (Fig. 5B and C). Silencing of ASCC3
enhanced (2- to 31-fold, P � 0.05) expression of 7 ISGs at the basal
level and 9 ISGs in the presence of IFN-�, suggesting that ASCC3
negatively regulates expression of selected ISGs.

ASCC3 functions in an IRF-3- and IRF-7-dependent manner.
We hypothesized that ASCC3 might function to negatively regu-
late ISG expression through either NF-�B or IRF-3- and IRF-7-
dependent transcriptional signals. However, ectopic expression of
ASCC3 in Ikk��/� fibroblasts showed enhanced WNV infection,
suggesting that the integrity of the NF-�B activation pathway was
not essential for ASCC3-dependent effects on infection (Fig. 6A).
We also failed to observe substantive differences in the levels of
I�B� or the p65 subunit of NF-�B in cells that were silenced for or
that ectopically expressed ASCC3 (data not shown). Given this, we
next assessed whether the functional effects of ASCC3 required
IRF-3- and IRF-7-dependent signals. We silenced Ascc3 expres-
sion in wild-type (WT) or Irf3�/� � Irf7�/� double-knockout

FIG 2 Validation of ISGs with antiviral potential. (A) Distribution of WNV infection in cells transduced with shRNA (normalized to the scrambled shRNA).
Selected ISGs targeted by shRNA hits are labeled in blue. (B) Pie chart showing classification of top ISG hits, grouped by their known or putative functional
categories (see Table S2 in the supplemental material). (C) Pie charts showing the breakdown of the 47 ISGs that were validated by viral yield assays. The chart
on the left shows the number of ISGs in which silencing resulted in enhanced WNV production (relative to cells transduced with the scrambled shRNA) at
different time points. The chart on the right shows the relative fold differences in viral yield associated with silencing of these ISGs (see also Table S3). (D) mRNA
was harvested from cells transduced with the indicated shRNA or the scrambled shRNA control, and relative expression of the corresponding ISGs was
determined by qRT-PCR (see also Fig. S1). The results are the averages of three independent experiments and are shown as means � standard deviations.
Statistical significance was determined by Student’s t test (***, P � 0.001; **, P � 0.01; *, P � 0.05).
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FIG 3 Antiviral genes against RNA viruses. (A to J) Multistep growth analysis of WNV infection on HeLa cells transduced with either scrambled shRNA or shRNA targeting the
following top candidates: PKR, DDX24, IFI44L, IFI6, IFRD1, IL13RA1, MAFK, PAK3, SAMD9L, and SC4MOL. After transduction, cells were treated with 10 IU/ml of IFN-� for
6 h and then infected with WNV at an MOI of 0.05. The data are the averages of three independent experiments performed in triplicate with error bars indicating the standard
deviations and asterisks marking values that are statistically different from the scrambled shRNA (***, P � 0.001; **, P � 0.01; *, P � 0.05). (K) HeLa cells were transfected with
ISGstaggedoruntaggedwith3�Flag.Onedaylater,cellswere infectedwithWNVatanMOIof0.3.Onedayafter this,viral infectivitywasmeasuredasthepercentageof infected
cells and is represented as mean � standard deviation. Statistical significance was determined by Student’s t test (***, P � 0.001; **, P � 0.01; *, P � 0.05). (L and M) Titers of
DENV-2andEMCVgrownfromHeLacells transducedwithscrambledshRNAandshRNAtargeting IRF9, IFI6, IFI44L,DDX24,MAFK,PAK3,SC4MOL, and IFRD1.Dataare
shown as means � standard deviations. Statistical significance was determined by Student’s t test (***, P � 0.001; **, P � 0.01; *, P � 0.05).
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(DKO) MEFs and measured WNV infection and levels of selected
ISGs. Ascc3 expression was decreased by up to 74% and 60% in
WT and DKO MEFs, respectively (P � 0.01) (Fig. 6B). In un-
treated WT or DKO MEFs, we failed to observe an effect of Ascc3
silencing on WNV infection (see Fig. S3 in the supplemental ma-
terial), possibly due to its lower level of expression in these cells.
However, silencing of Ascc3 in the context of IFN-� treatment
resulted in decreased WNV infection at 72 h in WT MEFs (10.5-

fold, P � 0.001), and this effect was not observed in DKO MEFs
(Fig. 6C). Consistent with this, we observed increased ISG (Ifi44,
Irf1, and Rsad2) expression in Ascc3-silenced WT but not Irf3�/�

� Irf7�/� DKO MEFs (Fig. 6D to F). Collectively, our results
suggest a model in which IFN-� induces expression of antiviral,
proinflammatory, and counterregulatory ISGs, the last of which
include proteins such as ASCC3. Expression of ASCC3 dampens
the type I IFN-dependent signals likely by modulating activity of

FIG 4 Silencing of ASCC3 restricts viral replication. (A) Expression of ASCC3 mRNA in HeLa cells expressing scrambled or ASCC3 shRNA. The results are the
averages of three independent experiments, and asterisks indicate differences that are statistically significant (***, P � 0.001). (B to D) Titers of WNV (B),
Chikungunya virus (C), and EMCV (D) in the supernatants of HeLa cells transduced with either control or shRNA against ASCC3 at the indicated time points.
The results are the averages of three independent experiments performed in triplicate, and asterisks indicate differences from the scrambled shRNA that are
statistically significant (***, P � 0.001; **, P � 0.01; *, P � 0.05). (E and F) HeLa cells were transfected with expression plasmids encoding GFP or human ASCC3
tagged at the C terminus with HA. (E) The transfection efficiency was measured by flow cytometry using an anti-HA tag antibody and an Alexa Fluor
647-conjugated secondary antibody. (F) Multistep growth analysis of WNV infection in GFP (vector) and human ASCC3-transfected cells. The results are the
averages of three independent experiments, and asterisks indicate differences that are statistically significant (***, P � 0.001; **, P � 0.01). (G to I) NIH 3T3 cells
were transduced with lentivirus carrying a control shRNA or shRNA against murine Ascc3. The mRNA levels of Ascc3 were measured under basal or IFN-�-
induced conditions by qRT-PCR and are expressed relative to those after transduction with scrambled shRNA (G). Multistep growth analysis of WNV infection
was performed in the corresponding cells without (H) or with (I) IFN-� pretreatment (50 IU/ml for 6 h). The results are the averages of three independent
experiments, and asterisks indicate differences that are statistically significant (***, P � 0.001; **, P � 0.01; *, P � 0.05).
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IRF-3 and IRF-7 pathways and thus tempers the cellular host de-
fense and inflammatory response.

DISCUSSION

In this report, we performed an shRNA screen and identified 30
candidate ISGs with antiviral activity against WNV. Our screening
methodology relied on gene silencing through delivery of mi-
croRNA by lentiviruses. In comparison to prior ectopic gene ex-
pression screens (15, 18, 20, 21), our experiments were performed
in the context of an intact IFN signaling pathway so that we could
identify single ISGs that were required for an optimal host re-
sponse against WNV. Subsequent validation studies with multiple
independent shRNAs targeting an individual gene and virological
growth curve analyses defined nine novel genes that strongly re-
stricted WNV infection. Testing these candidates with related
(DENV) and unrelated (EMCV) positive-strand RNA viruses re-
vealed that several had antiviral activity against multiple viruses.
Ectopic expression experiments demonstrated that a subset of
ISGs (IFI6 and SC4MOL) were sufficient for conferring antiviral
effects against WNV in the absence of the exogenous type I IFN
stimulation. We also identified a novel ISG (ASCC3), which had
an opposing phenotype: silencing human ASCC3 or mouse Ascc3
decreased viral infection, and reciprocal ectopic expression en-
hanced viral infection. Mechanistic studies suggested that ASCC3
serves a counterregulatory function against cellular IFN-induced
antiviral responses and acts in part by modulating signals of the
IRF-3 and IRF-7 pathways.

Among the 30 ISGs identified in our screen with antiviral ac-
tivity against WNV, seven genes are established components of
innate immune recognition and signaling molecules (PKR, IRF3,
IRF9, JAK2, STAT2, TLR3, and MAVS). Indeed, the mouse or-
thologs of several of these genes are required for control of WNV
infection in mice or primary cells in the context of targeted gene
deletion or silencing (9, 29–33). Four additional ISGs (IFIT3,
TRIM21, IFI6, and IFI44L) have been reported to have inhibitory
activity in the context of ectopic gene expression and infection by
YFV, adenovirus, vesicular stomatitis virus, Sindbis virus, EMCV,
or HCV (20, 21, 34–36). Among the known antiviral effects of
these genes, TRIM21 has been suggested to sustain IRF-3 activa-
tion (34) whereas IFIT3 may sequester viral RNA displaying 5=-
ppp (37) or inhibit translation initiation by binding subunits of
eIF3 (38). While ectopic expression of IFI6 and SC4MOL inhib-
ited viral infection, to date, no mechanism of action has been
described for either gene. Beyond these, we identified a group of
ISGs with heretofore-uncharacterized antiviral activity, including
an RNA helicase (DDX24), a serine/threonine protein kinase
(PAK3), a transcription factor (MAFK), an endoplasmic reticu-
lum protein (SC4MOL), a tyrosine kinase-associated receptor
(IL13RA1), an IFN-related development regulator (IFRD1), and a
sterile alpha motif domain-containing protein (SAMD9L). Silenc-
ing expression of DDX24, PAK3, MAFK, and IFI6 enhanced infec-
tion by a related flavivirus (DENV) and an unrelated picornavirus
(EMCV), suggesting that their antiviral activities are more broad

FIG 5 Silencing ASCC3 expression upregulates cellular antiviral response. (A) HeLa cells were transduced with either scrambled shRNA or shRNA against
ASCC3. Forty-eight hours later, cells were treated with 10 IU/ml of human IFN-� for 6 h. mRNAs were then harvested, purified, and sequenced. Ingenuity
pathway analysis determined expression and interaction of ISGs and PRRs. Red and green colors indicate higher and lower gene expression levels, respectively,
in ASCC3-silenced cells than in control cells. Fold differences in expression are listed in Table S4 in the supplemental material with a cutoff of a �2-fold change
and an ANOVA P value with a Benjamini and Hochberg algorithm-corrected false discovery rate of �0.05. Shown are functional relationships that associate with
antimicrobial pathway, inflammatory pathway, and posttranslational modification. (B and C) Gene expression profiles of 13 ISGs in HeLa cells that were
transduced with an shRNA (scrambled or targeting ASCC3) under basal (B) or IFN-� treatment (50 IU/ml for 6 h) (C) conditions. mRNA abundance of ISGs
was assayed using a commercial TaqMan array in 96-well plates and normalized to GAPDH. Statistical significance was determined by Student’s t test (**, P �
0.01; *, P � 0.05).
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spectrum in nature. By comparison, other ISGs (IFI44L,
SC4MOL, and IFRD1) showed a more targeted restriction of fla-
viviruses in our experiments.

While systematic or candidate-based ectopic expression
screens have identified ISGs with antiviral activities against Flavi-
viridae family members (15, 18, 20), we observed limited overlap
in our shRNA-based screen, demonstrating the novelty of our
approach. Beyond the differences in viruses (WNV, YFV, DENV,
or HCV) and cell types (HeLa, 293T, Huh-7, and STAT1�/� fi-
broblasts) used during the primary screen, our shRNA-based
strategy uniquely was performed in the presence of an active type
I IFN response (associated with exogenous treatment) and thus is
more likely to identify ISGs that are required, but not necessarily
sufficient, for an optimal antiviral response (39, 40). Nonetheless,
each approach identified both putative effector molecules and up-
stream signaling proteins that modulate the host response. For
instance, genes in the RIG-I-like receptor (RLR) signaling path-

way (ectopic screen, RIG-I [DDX58] and MDA5 [IFIH1]; shRNA
screen, MAVS) were identified. In comparison, some signaling
proteins showed much greater antiviral activity when expressed
ectopically, such as IRF-1. Expression of this transcription factor
conferred broad-spectrum antiviral activity in multiple cell types,
presumably by inducing other ISGs or antiviral genes (20). Most
of our top candidates did not inhibit WNV infection when ex-
pressed ectopically in HeLa cells, which may explain why they
were not captured in prior screens. These ISGs may require other
IFN-stimulated factors to control viral infection. In addition to
these targeted screens, two unbiased genome-wide small interfer-
ing RNA (siRNA) screens against HCV (39) and WNV (40) also
identified ISGs with antiviral activity. A comparison of our hit list
with the WNV study by Krishnan and colleagues (40) revealed
only three matching genes (ATCAY, LPGAT1, and SERPINB7)
that, when silenced, affected WNV infection. The disparity may
reflect the absence of IFN stimulation in their system— our anti-

FIG 6 ASCC3 functions through an IRF-3- and IRF-7-dependent pathway. (A) Primary Ikk��/� MEFs were transfected with pCAGGS-GFP or pCAGGS-
ASCC3-HA and then infected with WNV at an MOI of 0.05. Viral titers were monitored through a focus-forming assay at indicated time points. The results are
the averages of three independent experiments performed in duplicate, and asterisks indicate differences that are statistically significant (***, P � 0.001; **, P �
0.01). (B) Primary wild-type (WT) and Irf3�/� � Irf7�/� DKO MEFs were transduced with scrambled shRNA or shRNA against murine Ascc3. Cells were either
untreated or treated with 10 IU/ml murine IFN-� for 6 h. Total RNA was harvested, and expression of Ascc3 was determined by qRT-PCR. (C) Multistep growth
analysis of WNV infection was performed on the corresponding cells after IFN-� treatment. (D to F) Expression of three ISGs was assayed in shRNA-transduced
WT and Irf3�/� � Irf7�/� DKO MEFs at 72 h post-WNV infection. Relative expression levels of Ifi44 (D), Irf1 (E), and Rsad2 (F) were normalized to scrambled
shRNA-transduced cells. The results are the averages of three independent experiments performed in triplicate, and asterisks indicate differences from the
scrambled shRNA control that are statistically significant (***, P � 0.001; **, P � 0.01; *, P � 0.05; n.s., not significant).
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viral genes may not have been expressed at sufficient amounts at
baseline to yield a phenotype. Overall, gene silencing and ectopic
expression approaches likely identify different but overlapping
sets of antiviral proteins because they screen for ISGs with neces-
sary or sufficient activity, respectively. Ultimately, combining data
from these two approaches will help identify ISGs with the greatest
inhibitory activity against individual and multiple viruses and be-
gin to suggest possible mechanisms of action.

Our experiments identified a function of ASCC3, to dampen
the IFN-�-induced antiviral response by modulating IRF-3- and
IRF-7-dependent transcriptional signals, suggesting a novel neg-
ative regulatory mechanism of the pathways. This counterregula-
tory mechanism was supported by the following data: (i) silencing
of ASCC3 resulted in increased expression of several ISGs (as de-
fined by qRT-PCR and RNA-seq), which conferred antiviral ac-
tivity against RNA viruses from different families; (ii) the virolog-
ical and gene expression effects conferred by gene silencing of
Ascc3 were abolished in Irf3�/� � Irf7�/� DKO cells. These stud-
ies are most consistent with a model of ASCC3 acting as a negative
regulator of the antiviral host response, which depends on the
integrity of IRF-3 and IRF-7 transcriptional pathways. As ectopic
expression of other ISGs (ADAR, FAM46C, LY6E, and MCOLN2)
resulted in enhanced viral replication (20), additional negative
regulatory pathways may exist.

The putative domain structure of ASCC3 suggests that it is
comprised of two predicted superfamily II helicase regions
(amino acids 440 to 1244 and 1327 to 2056). In vitro helicase
activity assay experiments demonstrated that the region compris-
ing amino acids 1301 to 2202 could unwind double-stranded
DNA (41). Consistent with this function, preliminary cellular lo-
calization studies indicate that the full-length ASCC3 is present
predominantly in the cytoplasm with a small fraction in the nu-
cleus (J. Li and M. Diamond, unpublished results). These data
suggest two possible models for ASCC3 function: (i) ASCC3 is
induced after viral infection or type I IFN signaling, translocates
into the nucleus, and either binds and unwinds DNA or recruits
other transcriptional or epigenetic regulators (42); or (ii) ASCC3
binds other partner proteins in the cytoplasm or nucleus to mod-
ulate IRF-3- and IRF-7-dependent transcriptional activity. Stud-
ies are under way to address these unresolved mechanistic ques-
tions.

In summary, our shRNA-based screen identified a novel set of
ISGs with antiviral activity against multiple RNA viruses. Future
studies are planned with additional RNA (e.g., negative-strand
viruses and retroviruses) and DNA viruses to determine the
breadth of their inhibitory activities, their mechanisms of action,
and their physiological role in restriction of pathogenesis in the
context of targeted deletion of the murine orthologs. Our experi-
ments also defined ASCC3 as an ISG with negative regulatory
activity of IFN-dependent gene induction pathways; this finding
provides an example of the delicate balance required for restric-
tion of microbial infection and the need to mitigate host defense
responses that could result in immune pathology or autoimmu-
nity. Further investigation on the function of ASCC3 and possibly
other newly discovered counterregulatory ISGs will clarify the
host-pathogen interface and may provide novel avenues for phar-
macological modulation to control excessive tissue damage medi-
ated by the virus or host.

MATERIALS AND METHODS
Antibodies. The following antibodies were used for immunoblotting and
immunofluorescence experiments: rabbit horseradish peroxidase (HRP)-
conjugated anti-HA tag (Roche), mouse HRP-conjugated anti-
glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH) (Sigma),
goat Alexa Fluor 488-anti-mouse IgG (Life Technologies), mouse anti-
Flag (Sigma), and HRP-conjugated goat anti-rabbit or goat anti-mouse
antibody (Jackson ImmunoResearch Laboratories).

Cells. Vero T144, NIH 3T3, HEK293T, and HeLa cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM) (Sigma) supplemented
with 10% fetal bovine serum (FBS) (Omega Scientific), 100 IU/ml peni-
cillin, 100 �g/ml streptomycin, 10 mM HEPES (pH 7.3), and 10 mM
nonessential amino acids (Cellgro) at 37°C and 5% CO2. Parental WT and
Irf3�/� � Irf7�/� DKO MEFs were prepared according to a previously
published protocol (43, 44). Primary MEFs derived from Ikk��/� mice
were a generous gift of B. tenOever (Mount Sinai School of Medicine,
New York, NY).

Cytokines. Human and murine IFN-� were purchased commercially
(PBL InterferonSource) and used at concentrations of 10 IU/ml for viral
growth curve experiments.

Viruses. The WNV-NY strain was isolated in New York in 2000 (45)
and passaged once in C6/36 Aedes albopictus cells. DENV serotype 2 strain
16681 was propagated in C6/36 Aedes albopictus cells according to previ-
ously described protocols (46). EMCV strain K was grown in L929 cells,
and Chikungunya virus (LR2006 OPY-1) was isolated from an outbreak
in La Reunion (47), obtained from S. Higgs (Manhattan, KS), and pas-
saged once in C6/36 Aedes albopictus cells.

Plasmids, oligonucleotides, and transfections. pCAGGS-ASCC3-
HA was generated by subcloning ASCC3 with a C-terminal HA tag down-
stream of the chicken �-actin promoter. ISGs appended with 3� Flag tags
were cloned into pcDNA4.0, and transfections into HeLa cells were per-
formed with FuGENE HD (Roche) according to the manufacturer’s in-
structions. The primers used for cloning are listed in Table S5 in the
supplemental material.

shRNA library and the ISG screen. The lentivirus-based shRNAmir
library against the 245 human ISGs was custom generated and purchased
commercially (Open Biosystems). The seed sequences for shRNA target-
ing each gene are listed in Table S1 in the supplemental material. The
bicistronic vector coexpresses shRNA and GFP driven downstream of a
cytomegalovirus (CMV) promoter. Individual shRNA constructs were
packaged into lentiviral vectors in 96-well plates according to the manu-
facturer’s instructions. HeLa cells were transduced with lentiviruses, and
48 h later, cells were treated with 10 IU/ml of IFN-�. Six hours later, cells
were infected with WNV at an MOI of 5. After 48 h, cells were harvested,
fixed with 1% paraformaldehyde in phosphate-buffered saline (PBS) for
10 min, permeabilized with 0.1% (wt/vol) saponin, and incubated with an
anti-WNV monoclonal antibody (MAb) (10 �g/ml of E16 [48]) and an
Alexa Fluor 647-conjugated goat anti-mouse (1/500 dilution) secondary
antibody. Cells were analyzed using a FACSArray flow cytometer (BD
Biosciences). Viral infection was determined based on the percentage of
WNV envelope protein-positive cells in shRNA-transduced (GFP�) and
untransduced (GFP�) populations. The relative infectivity in each well
was normalized to the wells containing a control scrambled shRNA se-
quence to obtain Z scores. Independent lentivirus stocks were used to
validate the primary screen results in three independent replicates. Initial
lead hits were defined as those Z scores greater than 2 or less than �2.

Viral growth kinetics. HeLa (human), MEF, or NIH 3T3 (mouse)
cells transduced with shRNA-containing lentivirus in 24-well plates were
treated with 10 IU/ml of human or murine IFN-� for 6 h before infection
with WNV at an MOI of 0.05. Supernatants were harvested at specified
times, and viral titer was determined by a focus-forming assay performed
on Vero cells as previously described (49).

Infectivity assays by fluorescence imaging. HeLa cells in 96-well
plates were transfected with individual ISGs tagged with 3� Flag. After
24 h, cells were infected with WNV at an MOI of 0.3 for another 24 h and
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then fixed, permeabilized, and costained for WNV envelope protein
(MAb E18) and the nucleus using 4=,6-diamidino-2-phenylindole (DAPI;
Life Technologies). Images were captured and processed using a Celigo
cytometer (Cyntellect). Infected and uninfected populations were gated
separately, and infectivity was measured as the percentage of infected cells
from the total cell counts.

RNA-seq analysis. HeLa cells were transduced with scrambled shRNA
or shRNA targeting ASCC3 and treated with 10 IU/ml of human IFN-�
for 6 h. Total RNA was harvested using an RNeasy minikit (Qiagen) fol-
lowed by mRNA extraction using a Dynal mRNA Direct kit. mRNA was
then fragmented and reverse transcribed to double-stranded cDNA. Se-
quencing was performed in a single lane with Illumina HiSeq 2000 se-
quencing instrument with a 50-nucleotide read length. Short reads were
aligned and assembled using the TopHat and Cufflinks package. Differ-
ential expression and interaction of genes were detected with Ingenuity
Pathway Analysis.

Statistical analysis. Virological data sets were compared using an un-
paired, two-tailed Student t test or analysis of variance (ANOVA) for
multiple comparisons to determine statistical significance. Analysis of vi-
rological data was performed with Prism software (GraphPad Software).
RNA-seq data were analyzed using an ANOVA with a Benjamini and
Hochberg algorithm false discovery rate correction. Statistical signifi-
cance was determined when P values were �0.05.
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