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Abstract

The type I interferon (IFN) signaling response limits infection of many RNA and DNA viruses. To define key cell types that
require type I IFN signaling to orchestrate immunity against West Nile virus (WNV), we infected mice with conditional
deletions of the type I IFN receptor (IFNAR) gene. Deletion of the Ifnar gene in subsets of myeloid cells resulted in
uncontrolled WNV replication, vasoactive cytokine production, sepsis, organ damage, and death that were remarkably
similar to infection of Ifnar2/2 mice completely lacking type I IFN signaling. In Mavs2/26Ifnar2/2 myeloid cells and mice
lacking both Ifnar and the RIG-I-like receptor adaptor gene Mavs, cytokine production was muted despite high levels of
WNV infection. Thus, in myeloid cells, viral infection triggers signaling through MAVS to induce proinflammatory cytokines
that can result in sepsis and organ damage. Viral pathogenesis was caused in part by massive complement activation, as
liver damage was minimized in animals lacking complement components C3 or factor B or treated with neutralizing anti-C5
antibodies. Disease in Ifnar2/2 and CD11c Cre+Ifnarf/f mice also was facilitated by the proinflammatory cytokine TNF-a, as
blocking antibodies diminished complement activation and prolonged survival without altering viral burden. Collectively,
our findings establish the dominant role of type I IFN signaling in myeloid cells in restricting virus infection and controlling
pathological inflammation and tissue injury.
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Introduction

Type I interferons (IFN) are a family of antiviral cytokines that are

produced early in response to viral infection [1]. RNA intermediates

of viral replication are recognized by cytosolic and endosomal

pattern recognition receptors (PRR), such as RIG-I-like receptors

(RLR) or Toll-like receptors (TLR), which signal through adaptor

molecules (e.g., MAVS, TRIF, and MyD88) and transcription

factors (e.g., IRF-3 and IRF-7) to induce type I IFN expression and

secretion. Type I IFNs bind to a heterodimeric receptor (IFNAR)

and mediate pleiotropic effects downstream of a canonical Janus

kinase (JAK)-Signal transducers and activators of transcription

(STAT) signaling pathway. This results in the induction of antiviral

IFN-stimulated genes (ISGs), activation of antigen-presenting cells,

and regulation of cytokine and chemokine production (reviewed in

[2]). Although IFNAR is expressed on all nucleated cells, individual

cell types may respond differently to signaling by type I IFN, as

evidenced by overlapping yet distinct transcriptional programs [3,4].

CD11c+ cells are integral members of the mammalian innate

and adaptive immune response. In the mouse, CD11c is expressed

highly on dendritic cell (DC) subsets (CD4+, CD8a+, and

CD103+), some macrophage (MØ) populations, and on selected

CD8+ T cell subsets [5–7]. CD11c+ cells are professional antigen

presenting cells that respond to viral infection through a number of

PRR, including the RLRs. CD11c+ DCs process and present

antigens, express co-stimulatory molecules, and secrete cytokines

and chemokines that regulate cell migration, leukocyte recruit-

ment, and activation of adaptive immunity [7].

West Nile virus (WNV) is a member of the Flaviviridae family of

positive-stranded enveloped RNA viruses and causes neuroinva-

sive disease in humans and other vertebrate animals [8].

Mosquitoes transmit WNV and in the skin CD11c+ cells and

keratinocytes are believed to be initial targets of infection [9,10].

Infected DCs migrate to the draining lymph node (LN) where viral

replication ensues, resulting in viremia and spread to other

peripheral organs [11]. Viral replication in the skin and LN

induces a local and systemic type I IFN response, which is critical

for limiting WNV replication and preventing dissemination to the

brain and spinal cord. Indeed, subcutaneous WNV infection of

Ifnar2/2 mice results in a rapidly fatal infection, which is
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associated with high viremia and altered tissue and cellular tropism

compared to wild-type (WT) mice [12,13]. Analogously, Mavs2/2

mice, which lack RLR signaling, exhibit increased susceptibility to

WNV infection in many tissues [14]. Recent reports also have

observed that the control and regulation of WNV infection

requires IL-1ß production [15–17], and that inflammasome

activation synergizes with type I IFN signaling to suppress WNV

replication.

The significance of cell type-specific responses to IFN in vivo in

the context of the control of viral pathogenesis is not well

understood. Prior experiments with WNV infection suggested that

type I IFN signaling has distinct temporal functions in the

development of adaptive immunity [18]. The generation of cell

type-specific conditional deletions of Ifnar has allowed its role on

specific cell types to be analyzed in the context of infectious,

inflammatory, or neoplastic disease [19]. Studies have shown an

enhanced susceptibility to mouse hepatitis (MHV) and norovirus

(MNoV) infection in animals with conditional Ifnar deletions, and

this was associated with greater viral burden and decreased

survival compared to WT animals [20–22].

Here, we evaluated WNV pathogenesis in mice lacking Ifnar

expression in CD11c+ cells (CD11c Cre+Ifnarf/f mice) or MØ/

monocytes/granulocytes (LysM Cre+Ifnarf/f mice). Remarkably,

deletion of Ifnar in either CD11c+ or MØ/monocyte/granulocyte

cells resulted in severe WNV disease that essentially copied the

phenotype of the complete Ifnar2/2 mice. Thus, the dominant

antiviral effects in vivo of type I IFN signaling against WNV occur

in myeloid cell types. Analysis of WNV-infected mice revealed

preferential infection of Ifnar2/2 myeloid cells, and this resulted in

a syndrome of ‘‘cytokine storm’’, which was associated with liver

and kidney damage, and rapid death. Immunopathogenesis in

WNV-infected Ifnar2/2 and CD11c Cre+Ifnarf/f mice animals was

mitigated by exogenous administration of TNF-a blocking

antibodies, and the sepsis syndrome was associated with massive

alternative pathway complement activation as tissue damage was

improved in mice lacking the complement components C3 or

factor B. Our experiments suggest that high levels of viral

replication in WNV-infected Ifnar2/2 myeloid cells can trigger

uncontrolled production of proinflammatory cytokines and

pathological complement induction and activation, which together

contribute to a sepsis-like syndrome.

Results

CD11c Cre+Ifnarf/f, LysM Cre+Ifnarf/f, and Ifnar2/2 mice
are vulnerable to WNV infection

In vivo, WNV preferentially infects myeloid cells in peripheral

tissues and neurons in the brain and spinal cord [23–25]. Given

that DCs are targets of WNV infection, produce antiviral

cytokines, and shape adaptive immunity, we hypothesized that

type I IFN signaling in these cells orchestrates protection against

WNV. To assess the role of type I IFN receptor signaling on DCs,

we utilized CD11c Cre+Ifnarf/f mice, in which IFNAR expression

is markedly decreased on CD4+ and CD8a+ DCs but maintained

on other hematopoietic cells, including neutrophils, natural killer,

T and B cells ([26] and data not shown).

Infection of Ifnar2/2 mice with WNV resulted in 100%

mortality with a mean survival time of 3 days, as reported

previously [12]. Unexpectedly, infection of CD11c Cre+Ifnarf/f

mice resulted in essentially the same phenotype (Fig. 1A) with no

difference in the mean survival time compared to Ifnar2/2 mice.

Although WNV-infected Ifnar2/2 and CD11c Cre+Ifnarf/f mice

rapidly deteriorated, clinical signs of neuroinvasive disease

including limb paralysis, seizures, ataxia, or sustained tremors

were not apparent. Ifnar2/2 and CD11c Cre+Ifnarf/f mice were

more vulnerable to WNV infection than Cre2Ifnarf/f littermate

controls or CD19 Cre+Ifnarf/f mice, which lack IFNAR expression

only on B cells. The decreased expression of IFNAR on CD11c

Cre+Ifnarf/f cells was confirmed in mice following WNV infection

(Fig. 1B). Thus, the loss of IFNAR expression on CD11c+ cells

resulted in a clinical phenotype after WNV infection that was

nearly identical to a deletion of IFNAR on all cells. When we

repeated a subset of experiments with LysM Cre+Ifnarf/f mice,

which delete IFNAR expression on MØ, monocytes, and

granulocytes (data not shown), a similar rapid death phenotype

was observed after WNV infection (Fig. 1A), with a minimally

longer survival time (mean of 3.5 days) compared to the Ifnar2/2

or CD11c Cre+Ifnarf/f mice.

To determine whether the susceptibility phenotype of the

CD11c Cre+Ifnarf/f mice could be generalized to other arthropod-

borne viruses, we infected animals with chikungunya virus

(CHIKV), an unrelated arthritogenic alphavirus (Fig. 1C).

CHIKV preferentially targets myoblasts, fibroblasts, and some

MØ populations but is not reported to infect DCs [27]. As seen

previously [28], Ifnar2/2 mice infected with CHIKV succumbed

to infection within 4 to 5 days. In contrast, the CD11c Cre+Ifnarf/f,

LysM Cre+Ifnarf/f, or the Cre2Ifnarf/f littermate control mice failed

to develop lethal CHIKV infection. Thus, selective deletion of

IFNAR expression on CD11c+ or other myeloid cells did not make

mice vulnerable to other viruses, even if a complete gene deletion

did; these results are consistent with studies with the coronavirus

MHV, which showed a partial lethality phenotype in CD11c

Cre+Ifnarf/f mice [20].

We next assessed whether the loss of IFNAR expression on

CD11c+ cells impacted tissue viral burden to the same extent as

that of Ifnar2/2 mice. High titers (106 to 109 FFU/mg) of WNV

were detected in the spleen, liver, lung, kidney, brain, and heart of

Ifnar2/2 and CD11c Cre+Ifnarf/f mice at 48 hours post infection

(Fig. 2A–F). As expected, greater infection was observed in Ifnar2/

2 and CD11c Cre+Ifnarf/f mice compared to Cre2 Ifnarf/f

littermate controls. Similar trends in WNV infection were

observed in the serum of Ifnar2/2, CD11c Cre+Ifnarf/f, and LysM

Cre+Ifnarf/f mice at 48 hours (Fig. 2G). Flow cytometric analysis

Author Summary

Although it is well established that the interferon (IFN)
signaling pathway restricts infection by many viruses, the
key cell types in vivo that contribute to this process remain
poorly characterized. To address this question in the
context of West Nile virus (WNV) pathogenesis, we infected
mice that specifically delete the type I IFN receptor gene
(Ifnar) in subsets of myeloid cells, including dendritic cells
and macrophages. Remarkably, mice lacking Ifnar expres-
sion only in myeloid cell subsets rapidly developed a
sepsis-like syndrome that was characterized by enhanced
WNV infection and visceral organ injury and caused by
massive proinflammatory cytokine production and com-
plement activation. By using additional gene targeted
deletion mice, we show that WNV infection triggered
signaling through the RIG-I like receptor adaptor protein
MAVS to cause complement activation, sepsis, and tissue
damage. Indeed, liver damage was minimized in animals
lacking specific complement components, or treated with
neutralizing anti-complement or anti-TNF-a antibodies.
Our results establish how type I IFN signaling in dendritic
cells and macrophages restricts infection, controls inflam-
matory cascades, and prevents pathogenesis in vivo.

MAVS-Dependent Virus-Induced Sepsis
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of immune cells from the blood of infected Ifnar2/2 mice revealed

intracellular WNV antigen in CD11c+ CD8+ cells, CD11c+ CD4+

cells, CD11b+ cells, and some CD19+ cells (Fig. 2H), consistent

with an earlier report [12]. In infected CD11c Cre+Ifnarf/f mice,

WNV antigen was detectable in ,4 to 6 percent of CD11c+ cells,

and in ,8 to 13 percent of CD11b+ cells that co-expressed varying

amounts of CD11c. In WNV-infected Cre2 Ifnarf/f mice, viral

antigen in CD11c+ cells from the blood was near the threshold of

detection at 48 hours after infection. Thus, a loss of IFNAR

signaling in subsets of CD11c+ cells created a more permissive

intracellular environment for WNV replication.

Pathological analysis of tissues from WNV-infected CD11c
Cre+Ifnarf/f mice

Necropsy at 48 hours post infection revealed gross macroscopic

tissue damage including hemorrhages, infarcts, and edema in the

liver, spleen, and LN of Ifnar2/2 and CD11c Cre+Ifnarf/f mice that

was not evident in WNV-infected Cre2Ifnarf/f mice (data not

shown). Histological analysis of visceral organs from Ifnar2/2 and

CD11c Cre+Ifnarf/f mice showed increased cellular infiltrates,

coagulation necrosis, and tissue destruction after WNV infection of

the liver, spleen, and draining LN when compared to the

Cre2Ifnarf/f mice. However, little to no cellular infiltrate or tissue

destruction was observed in the brains of any of the mice at this

early time point (Fig. 3A–D). Terminal deoxynucleotidyl trans-

ferase dUTP nick end labeling (TUNEL) analysis confirmed

greater numbers of dead cells in the liver, spleen, and LN but not

in the brains of Ifnar2/2 and CD11c Cre+Ifnarf/f mice (Fig. 3E–
H). Immunohistochemistry (IHC) was performed to determine

whether these phenotypes correlated with cellular infection.

Despite the high titer (108 FFU/mg) of infectious virus in liver

homogenates (Fig. 2B), we observed relatively low levels of WNV

antigen staining in hepatic sections from Ifnar2/2 and CD11c

Cre+Ifnarf/f mice (Fig. 3I). We also failed to observe any obvious

brain pathology in mice at 48 hours and this correlated with a

paucity of viral antigen in tissue sections. In comparison, WNV

antigen staining was more apparent in the draining LN and the

spleen of Ifnar2/2 and CD11c Cre+Ifnarf/f mice compared to

Cre2Ifnarf/f mice (Fig. 3J and K). Combined with the flow

cytometry data on cell subsets (Fig. 2H), our analysis suggests that

the enhanced viral burden in Ifnar2/2 and CD11c Cre+Ifnarf/f

mice was attributable to preferential infection of Ifnar2/2 CD11c+

cells. The high viral titers in some organs (e.g., liver and brain)

showing little WNV antigen staining by IHC might be due to

infected CD11c+Ifnar2/2 cells that were retained in blood vessels;

these animals showed a deteriorating clinical phenotype and were

difficult to perfuse despite large volumes of saline administration.

Overall, the histology revealed a high degree of tissue injury in

lymphoid compartments of WNV-infected Ifnar2/2 and CD11c

Cre+Ifnarf/f mice that reflected enhanced infection of cells lacking

IFNAR expression. Tissue destruction in some organs, however,

did not appear commensurate with the level of viral antigen

present in the tissue parenchyma.

Blood chemistry reveals extensive liver and kidney injury
To understand why Ifnar2/2 and CD11c Cre+Ifnarf/f mice

succumbed so rapidly to WNV infection, we analyzed their blood

chemistries. At 48 hours after WNV inoculation we observed

Figure 1. CD11c Cre+ Ifnarf/f, LysM Cre+ Ifnarf/f and Ifnar2/2 mice are vulnerable to WNV infection. A. Survival of eight- to ten-week-old
mice after inoculation with 102 PFU of WNV by footpad injection. Survival differences were statistically significant between Ifnarf/f and CD11c Cre+

Ifnarf/f (***, P,0.0001), Ifnarf/f and LysM Cre+ Ifnarf/f (***, P,0.0001), and Ifnarf/f and Ifnar2/2 mice (***, P,0.0001) but not between Cre2 Ifnarf/f

(Ifnarf/f) and CD19 Cre+ Ifnarf/f (n = 20, CD11c Cre+ Ifnarf/f, n = 18, LysM Cre+ Ifnarf/fn = 15, Ifnarf/f, n = 15 Ifnar2/2, and n = 8 CD19 Cre+ Ifnarf/f). B.
Analysis of IFNAR expression from hematopoietic cells of Ifnar2/2, CD11c Cre+ Ifnarf/f, and Cre2 Ifnarf/f infected mice (n = 6 to 8 per group). Blood was
harvested 48 hours after WNV infection, and cells were stained with MAbs against IFNAR, CD11c, CD3, CD8, CD4, and CD19. The relative staining of
IFNAR on CD11c+CD8+CD32, CD11c+CD4+CD32 and CD19+CD11c2 CD32 is shown. The data is pooled from two independent experiments after
normalization of Ifnar expression on Cre2 Ifnarf/f cells within a given experiment. C. Survival of eight week-old mice infected with 10 PFU of CHIKV by
footpad injection. Survival differences were statistically significant between Ifnarf/f and Ifnar2/2 mice (***, P,0.0001) but not between Ifnarf/f and
CD11c Cre+ Ifnarf/f or Ifnarf/f and LysM Cre+ Ifnarf/f (n = 8, CD11c Cre+ Ifnarf/f, n = 8 LysM Cre+ Ifnarf/f, n = 12 Ifnarf/f, and n = 12 Ifnar2/2 mice). The
CD11c-Cre recombinase deletes Ifnar on greater than 95% of conventional CD11chigh dendritic cells and ,50% of plasmacytoid dendritic cells [88].
The LysM-Cre recombinase deletes Ifnar on mature MØ, granulocytes, and monocytes, with partial gene deletion (,16%) in CD11c+ splenic dendritic
cells [89].
doi:10.1371/journal.ppat.1004086.g001
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increased levels of blood urea nitrogen (BUN) in Ifnar2/2 and

CD11c Cre+Ifnarf/f mice (22.8 mg/dL and 32.4 mg/dL respec-

tively, versus 15.5 mg/dL, P,0.02; Fig. 4A), serum creatinine

(4.5 mg/L and 4.9 mg/L respectively, versus 1.5 mg/L, P,0.02;

Fig. 4B), alanine aminotransferase (ALT) (2,495 u/L and

1,110 u/L respectively, versus 334 u/L, P,0.02; Fig. 4C), and

aspartate aminotransferase (AST) (4,070 u/L and 1,676 u/L

respectively, versus 382 u/L, P,0.02; Fig. 4D), and decreased

levels of glucose (70 mg/dL and 77 mg/dL respectively, versus

334 mg/dL, P,0.004; Fig. 4E), compared to infected Cre2Ifnarf/

f mice. The elevated serum BUN and creatinine values indicate

that WNV-infected Ifnar2/2 and CD11c Cre+Ifnarf/f mice

experienced acute renal injury. The elevated liver enzymes

(ALT and AST) reflect acute hepatic injury, which could be due

to direct viral infection (although not seen by IHC), immune-

mediated injury, or ischemia. The observed hypoglycemia may be

secondary to depleted glycogen stores, impaired gluconeogenesis,

or increased peripheral glucose utilization that occurs during

infection or sepsis [29]. Similarly elevated serum levels of AST and

ALT and decreased levels of glucose were observed in WNV-

infected LysM Cre+Ifnarf/f mice, compatible with a syndrome of

acute hepatic injury (Fig. 4C–E).

‘‘Cytokine storm’’ in WNV-infected CD11c Cre+Ifnarf/f,
LysM Cre+Ifnarf/f, and Ifnar2/2 mice

To understand further the basis of organ damage in Ifnar2/2,

LysM Cre+Ifnarf/f, and CD11c Cre+Ifnarf/f mice after WNV

infection, we measured serum levels of 23 pro- and anti-

inflammatory cytokines and chemokines using a Bioplex assay

(Fig. 5A and Table 1). At 24 hours after infection, we detected

no difference in cytokine levels among Cre2Ifnarf/f, Ifnar2/2, and

CD11c Cre+Ifnarf/f mice. However, one day later, we observed

increased levels of most proinflammatory cytokines in the Ifnar2/2

and CD11c Cre+Ifnarf/f mice when compared to the Cre2Ifnarf/f

Figure 2. Viral infection in WNV-infected CD11c Cre+ Ifnarf/f, Cre2 Ifnarf/f, and Ifnar2/2 mice. A–G. Viral burden in peripheral and CNS
tissues after WNV infection. Eight- to ten-week-old mice were inoculated with 102 PFU of WNV by footpad injection. Levels of infectious virus in the
(A) spleen, (B) liver, (C) lung, (D) kidney, (E) brain, (F) heart, and (G) serum were determined from samples harvested 48 hours post-infection using
focus-forming assays. Data are shown as FFU per mg of tissue or per ml of serum for six to eight mice per time point. The dotted line represents the
limit of sensitivity of the assay and error bars indicate standard deviation (SD). Asterisks indicate values that are statistically significant (***, P,0.0001)
compared to Cre2 Ifnarf/f mice. H. Blood was harvested 48 hours after WNV infection, and cells were stained with MAbs against CD11c, CD11b, CD3,
CD8, CD4, GR-1, and CD19 followed by intracellular staining against the WNV E protein with a combination of two anti-WNV MAbs (WNV E16 and
WNV E18). A representative contour plot is provided and shows intracellular WNV antigen levels (red arrows) in cells at 48 hours after inoculation. The
percentage of WNV-infected cells for each cell population from each group is shown in the graphs immediately below.
doi:10.1371/journal.ppat.1004086.g002
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mice; 22 of the 23 cytokines in the panel were elevated in mice

lacking IFNAR expression on CD11c+ cells (Table 1). Examina-

tion of the cytokine profile in the serum of LysM Cre+Ifnarf/f

48 hours after WNV infection also revealed an increase in 20 of

the 23 measured cytokines and chemokines (Fig. 5A and
Table 1). We detected 2 to 1,600 fold increases (P,0.0001) in

levels of individual proinflammatory cytokines after WNV

infection, which included vasoactive (e.g., TNF-a) and inflamma-

some-generated (e.g., IL-1ß) cytokines. The massive increase in

multiple proinflammatory cytokines after WNV infection in

Ifnar2/2and CD11c or LysM Cre+Ifnarf/f mice coupled with renal

and hepatic injury and low viral antigen staining in tissues

Figure 3. Tissue analysis of WNV-infected CD11c Cre+ Ifnarf/f mice. A–C. Histological analysis of the (A) liver, (B) spleen, (C) LN, and (D) brain
of Cre2Ifnarf/f (Ifnarf/f), CD11c Cre+ Ifnarf/f, and Ifnar2/2 mice. Representative images are shown 48 hours after WNV infection of organs from five to six
mice for each group. Inset images show staining at a higher magnification (1006). E–H. TUNEL staining of (E) liver, (F) spleen (G) LN, and (H) brain of
Cre2Ifnarf/f (Ifnarf/f), CD11c Cre+ Ifnarf/f, and Ifnar2/2 mice 48 hours after WNV inoculation. Cells were counter stained with DAPI. Representative
images are shown from five or six mice for each group. I–L. Detection by IHC of WNV antigen in (I) liver, (J) spleen (K) LN, and (L) brain of Cre2Ifnarf/f

(Ifnarf/f), CD11c Cre+ Ifnarf/f, and Ifnar2/2 mice 48 hours after infection. Representative images are shown of sections from three or four mice for each
group. All sections were counterstained with hematoxylin; magnifications are 406. Insets at higher magnification also are shown.
doi:10.1371/journal.ppat.1004086.g003
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suggested a picture of sepsis due to ‘‘cytokine storm’’. In

comparison, relatively small increases in only six of the cytokines

were observed in CHIKV infected Ifnar2/2and Cre2Ifnarf/f mice

(Fig. S1 and Table S1).

We hypothesized that Ifnar2/2 myeloid cells produced the high

levels of proinflammatory cytokines in response to extensive viral

replication and RNA pathogen-associated molecular pattern

(PAMP) generation. To demonstrate that CD11c+ cells in vivo

induced pro-inflammatory cytokines, we performed qRT-PCR

analysis of CD11c+ cells isolated by antibody-coated magnetic

bead separation from the spleens of Ifnar2/2 mice; these cells had

higher levels of IL-1ß, IL-6 and TNF-a mRNA and viral RNA

compared to those isolated from Cre2Ifnarf/f mice (Fig. 5B).

MAVS-dependent induction of ‘‘cytokine storm’’
WNV-infected Ifnar2/2 CD11c+ cells produced proinflamma-

tory cytokines, which suggests a linkage between uncontrolled

virus replication and ‘‘cytokine storm’’. A recent study suggested

that in the context of LPS-priming, MAVS provides a second

signal for inflammasome assembly and conversion of pro- to

mature IL1-ß [30]. Consistent with our hypothesis that excessive

levels of viral RNA in Ifnar2/2 myeloid cells results in MAVS

signaling and inflammasome activation, WNV-infected Mavs2/2

6Ifnar2/2 double knockout (DKO) mice succumbed at a later

time point compared to Ifnar2/2 mice (4.3 days compared to 2.7

days, [13]) despite the absence of pathways that both sense and

control WNV infection [13,31–37]. Based on these results, we

predicted that the absence of MAVS signaling in WNV-infected

Mavs2/26Ifnar2/2 DKO mice would limit cytokine induction

despite high levels of infection and viral RNA generation in

permissive myeloid cells.

To test this hypothesis, we infected Ifnar2/2, Mavs2/2, Mavs2/2

6Ifnar2/2 DKO, and WT mice with WNV and harvested serum

at 48 hours. Analysis of viremia revealed ,103 to 106-fold higher

levels in Ifnar2/2 (1.66108 FFU/ml, P = 0.03), Mavs2/2

(4.46105 FFU/ml, P = 0.03), and Mavs2/26Ifnar2/2 DKO

(2.06108 FFU/ml, P = 0.03) mice compared to WT

(2.36102 FFU/ml) mice (Fig. 6A). Among CD11c+ cells isolated

from the spleen, a similar percentage of cells were infected with

WNV in Ifnar2/2, Mavs2/2, and Mavs2/26Ifnar2/2 DKO mice

compared to WT mice (Fig. 6B). We next measured cytokine

levels at 48 hours after WNV infection of Ifnar2/2, Mavs2/2,

Mavs2/26Ifnar2/2 DKO, and WT mice (Fig. 6C and Table 2).

Only serum from the Ifnar2/2 mice revealed the profile of elevated

cytokine levels. Microarray analysis from the spleens of WNV-

infected Ifnar2/2, Mavs2/2, Mavs2/26Ifnar2/2 DKO, and WT

mice (Fig. 6D) corroborated these findings. mRNA levels of

cytokines associated with NF-kB and inflammasome activation

(e.g., TNF-a, IL-6, IL-1ß, and IL-33) were elevated in the spleens

of Ifnar2/2 mice compared to Mavs2/2, Mavs2/26Ifnar2/2

DKO, or WT mice. To further define the linkage between

MAVS and cytokine production, we infected bone marrow

derived DCs (BMDCs) from Ifnar2/2, Mavs2/2, Mavs2/26If-

nar
2/2

DKO, and WT mice. As anticipated, higher levels of WNV

infection were observed in Ifnar2/2, Mavs2/2, Mavs2/26Ifnar2/2

DKO cells compared to WT cells (Fig. 6E). At 24 and 48 hours,

we detected lower amounts of phosphorylation of the p65 subunit

NF-kB in Ifnar2/2 BMDC (Fig. 6F). A deficiency of MAVS

alone, however, did not reduce p65 phosphorylation substantially

indicating the existence of MAVS-dependent and -independent

(yet IFNAR-dependent) pathways for NF-kB activation after

WNV infection. In the absence of both MAVS and IFNAR, there

was noticeably reduced p65 phosphorylation, as well as lower

levels of IL-1ß, IL-6, CCL5, and other ISGs (IFIT1, IFIT2, and

IFIT3) mRNA (Fig. S2); these results in BMDCs were consistent

with the decrease in NF-kB-dependent cytokines produced in

Mavs2/26Ifnar2/2 DKO compared to Ifnar2/2 mice. The

elevated expression of IFIT genes in WNV-infected Ifnar2/2 mice

Figure 4. Blood chemistry reveals hepatic and renal injury in mice lacking Ifnar expression on myeloid cells. (A) Blood urea nitrogen
(BUN), (B) creatinine (Cr), (C) Alanine aminotransferase (ALT), (D) aspartate aminotransferase (AST), and (E) glucose (GLU) levels were analyzed in the
serum of Ifnar2/2, CD11c Cre+ Ifnarf/f, LysM Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice (n = 8 to 12 for each group) 48 hours after inoculation with 102 PFU of
WNV. Data are pooled from four independent experiments (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1004086.g004
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was not unexpected; even though IFIT genes are ISGs, their

expression can be induced directly by IRF-3 [38,39]. In Ifnar2/2

BMDCs, the increase in WNV infection results in enhanced RNA

PAMP generation, MAVS signaling, and IRF-3 nuclear translo-

cation, which induces IFIT genes independently of the IFN

signaling pathway.

Inflammasome activation in Ifnar2/2 CD11c+ cells after
WNV infection

We observed higher levels of IL-1ß in the serum of Ifnar2/2

mice, which were absent in Mavs2/26Ifnar2/2 DKO mice

(Fig. 6B). This observation suggested that PRR signaling through

MAVS was required for inflammasome activation. Prior studies

had established that NLRP3 is the key Nod-like receptor inducing

IL-1b and restricting WNV infection in mice [17]. To test whether

the increase in IL-1b levels observed in WNV-infected Ifnar2/2

mice was due to excess triggering of the NLRP3 inflammasome,

we used a MAb (MAR1-5A3) to block IFNAR signaling in WT or

Nlrp32/2 BMDCs and mice. At 48 hours after WNV infection,

Western blot analysis revealed reduced amounts of cleaved IL-1ß

in the MAR1-5A3-treated Nlrp32/2 compared to MAR1-5A3

treated-WT BMDC (Fig. S3A) despite equivalent levels of viral

replication (Fig. S3B). Consistent with this, blockade of type I IFN

signaling resulted in enhanced mRNA expression of IL1ß (and

other cytokines, IL-6, and TNF-a) in WT but not Nlrp32/2

BMDCs infected with WNV (Fig. S3C). In vivo, serum cytokine

levels were higher in WNV-infected WT and Nlrp32/2 mice

treated with MAR1-5A3 compared to those receiving the isotype

control MAb (Fig. S3D). However, with the exception of IL-1ß

and possibly IL-6, cytokine levels in WNV-infected MAR1-5A3

treated Nlrp32/2 and WT mice were similar (Fig. S3D and data

not shown). Although inflammasome activation generates vasoac-

tive cytokines, in the context of the enhanced WNV replication in

Ifnar-signaling deficient animals, this did not contribute to visceral

organ injury. Consistent with this, inflammasome assembly or

signaling deficient animals (Nlpr32/2, IL1r2/2, or caspase-1/112/2

mice) that were treated with MAR1-5A3 sustained similar gross

and microscopic liver and renal injury compared to WT mice

treated with MAR1-5A3 or Ifnar2/2 mice (Fig. S3E–G, and data

not shown).

TNF-a blockade prolongs survival after WNV infection in
CD11c Cre+Ifnarf/f mice

To assess whether the inflammatory response contributed to the

multi-organ injury and lethality, we neutralized TNF-a activity

(Fig. 7A). Administration of a TNF-a blocking MAb (200 mg),

which inhibited both soluble and cell surface-associated forms

[40], one day prior to infection increased the median survival time

of Ifnar2/2 (from 3 to 5 days, P = 0.002) and CD11c Cre+Ifnarf/f

(from 3 to 8 days, P = 0.0009) mice. To support of our hypothesis

that the multi-organ failure induced by ‘‘cytokine storm’’

contributed to disease in the Ifnar2/2 and CD11c Cre+Ifnarf/f

mice, we measured viral titers in the serum of anti-TNF-a and

isotype control MAb treated mice (Fig. 7B). Viremia at 48 hours

post infection was not different suggesting that the beneficial effect

of anti-TNF-a therapy was not due to effects on viral replication.

Analysis of blood chemistries at 48 hours after infection of the

CD11c Cre+Ifnarf/f and Ifnar2/2 mice following anti-TNF-a
treatment revealed improved AST, ALT, and glucose levels that

were not different from WNV-infected Cre2Ifnarf/f control mice

Figure 5. Serum cytokine levels in WNV-infected mice. A. Ifnar2/2, CD11c Cre+ Ifnarf/f, LysM Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice (n = 13 for each
group) were infected 102 PFU of WNV. 48 hours later, serum was collected and the concentration of IL-1ß, IL-6, and TNF-a was determined. Mean
values 6 SD are shown. B. Forty-eight hours after WNV infection splenic CD11c+ cells were isolated from Ifnar2/2, CD11c Cre+ Ifnarf/f, and Cre2 Ifnarf/f

mice by positive selection with antibody-coated magnetic beads (n = 3 for each group). Total RNA was prepared and qRT-PCR was used to determine
the amount of IL-1ß, IL-6, TNF-a, and WNV E RNA. The mean values 6 SD are shown. The data is expressed as fold-increase in mRNA relative to
samples from WNV-infected Cre2 Ifnarf/f mice.
doi:10.1371/journal.ppat.1004086.g005
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(Fig. 7C and Table 3). Cytokine analysis at 48 hours after

infection showed reduced serum levels of 13 cytokines following

anti-TNF-a MAb treatment in both the Ifnar2/2 and CD11c

Cre+Ifnarf/f mice (Table 4). Although reduced levels of IL-1ß and

IL-6 were observed in Ifnar2/2 mice after anti-TNF-a MAb

treatment, five cytokines (IL-2, IL-12p40, GM-CSF, Rantes

(CCL5), and MIP1-ß (CCL4)) that were decreased in CD11c

Cre+Ifnarf/f mice were not altered in Ifnar2/2 mice. Thus, TNF-a
blockade can reduce induction of most but not all of the

proinflammatory cytokines, and this correlated with Cre+Ifnarf/f

and Ifnar2/2 animals succumbing to WNV infection less rapidly

(Fig. 7A).

Alternative pathway of complement activation
contributes to disease pathogenesis

Humans infected with Dengue virus, a closely related flavivirus,

develop vascular leakage and sepsis syndrome and have evidence

of extensive complement activation in their plasma and tissues

[41–43]. Prior studies also have established that TNF-a regulates

expression of complement genes in myeloid cells [44]. We

hypothesized that complement activation and production of

anaphylatoxins (e.g., C3a and C5a) might be induced by TNF-a
and contribute to disease pathogenesis in WNV-infected CD11c-

Cre+ Ifnarf/f mice. To evaluate this hypothesis, we first assessed

mRNA levels of individual complement components in the spleen

and liver of WNV-infected WT, Mavs2/2, Ifnar2/2, and Mavs2/2

6Ifnar2/2 DKO mice. Notably, C3 and factor B (fB) levels were

greater in WNV-infected Ifnar2/2 mice compared to the other

genotypes (Fig. 8A) suggesting that expression of key complement

components was regulated via a MAVS-dependent pathway. We

next examined complement activation in serum by assessing levels

of complement proteins and split products by Western blot and

ELISA. At 24 to 48 hours after WNV infection, levels of C3, fB,

and their cleaved products of (C3-a2 and Ba) were higher in

Ifnar2/2 and CD11c-Cre+ Ifnarf/f mice compared to WT mice

(Fig. 8B). These results confirm the induction of key complement

proteins and activation of the complement cascade in vivo. In

contrast, C3 and fB cleavage products were decreased or absent in

the serum of WNV-infected Mavs2/2 or Ifnar2/26Mavs2/2 DKO

mice at 48 hours (Fig. 8C), indicating that RLR signaling through

MAVS was required for complement induction and activation.

Consistent with a role for complement contributing to pathogen-

esis, liver injury at 48 hours was minimized in WNV-infected

C32/2 and fB2/2 mice given the IFNAR-blocking MAb MAR1-

5A3 compared to similarly-treated WT mice. Analysis of blood

chemistries after WNV infection of MAR1-5A3 treated C32/2

and fB2/2 mice revealed normal AST and ALT values, compared

to MAR1-5A3 treated C57BL/6 control mice (Fig. 8D), even

though viremia and cytokine levels remained elevated (Fig. 8E
and F). While liver injury persisted in MAR1-5A3-treated

Table 1. Cytokine levels in serum of Ifnar2/2, CD11c Cre+ Ifnarf/f, LysM Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice during WNV infection.

Cre-Ifnarf/f CD11c Cre+Ifnarf/f LysM Cre+Ifnar f/f Ifnar2/2

Cytokine pg/ml SD pg/ml SD P value pg/ml SD P value pg/ml SD P value

IL-1a 7.14 5.28 85.6 28.1 ,0.0001 130 64.3 ,0.0001 108 41.6 ,0.0001

IL-1b 125 102 434 121 ,0.0001 862 234 0.0001 690 248 0.0054

IL-2 7.03 5.45 26.2 20.9 0.0009 91.1 22.3 ,0.0001 39.7 36.5 0.0003

IL-3 1.41 1.29 10.9 7.92 ,0.0001 29.8 12.0 ,0.0001 19.8 16.2 ,0.0001

IL-4 27.8 19.2 113 59.3 0.0081 20.2 12.3 ns 154 54.6 0.0081

IL-5 6.04 5.20 109 49.8 ,0.0001 117 55.6 ,0.0001 103 100 ,0.0001

IL-6 5.16 5.58 1655 1358 ,0.0001 4434 3033 ,0.0001 11325 6322 ,0.0001

IL-9 384 160 957 226 0.0043 892 453 ns 1378 521 0.0043

IL-10 170 186 689 595 0.0012 303 127 ns 380 335 0.014

IL-12p40 607 415 4633 2873 ,0.0001 2542 888 0.0001 6832 2814 ,0.0001

IL-12p70 32.8 24.4 227 225 ,0.0001 873 379 ,0.0001 563 585 ,0.0001

IL-13 119 142 313 241 0.0044 449 175 0.0008 464 325 0.0008

IL-17 34 26.5 51.0 28.4 ns 114 81.1 0.0012 60.1 39.7 ns

Eotaxin 126 144 1651 1155 0.0007 1401 797 0.0055 2277 998 0.0005

g-CSF 291 319 1.34e6 5.69e5 ,0.0001 47988 25923 ,0.0001 2.25e5 193040 ,0.0001

GM-CSF 100 66.9 361 293 ,0.0001 1156 352 ,0.0001 604 607 ,0.0001

IFN-c 11.7 7.17 254 264 ,0.0001 52.3 39.3 0.0055 240 162 ,0.0001

KC 58.8 48.5 4919 2728 ,0.0001 4923 4014 ,0.0001 14352 11068 ,0.0001

MCP-1 140 132 37705 14601 ,0.0001 44084 20681 ,0.0001 25176 16768 ,0.0001

MIP-1a 8.49 5.87 177 62.3 ,0.0001 272 147 ,0.0001 181 82.5 ,0.0001

MIP-1b 24.1 31.6 492 288 ,0.0001 1404 568 ,0.0001 575 500 ,0.0001

RANTES 27 23.1 830 680 ,0.0001 1152 556 ,0.0001 1331 1400 ,0.0001

TNF-a 306 241 2144 1397 ,0.0001 995 519 0.0004 2345 816 ,0.0001

Ifnar2/2, CD11c or LysM Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice (n = 13 for each group) were infected with 102 PFU of WNV. Forty-eight hours later serum was collected and
cytokines were analyzed by bioplex assay. Mean (pg/ml) and standard deviations (SD) are shown and P values are compared to Cre2 Ifnarf/f mice. Data are pooled from
four independent experiments. Ns, indicates results that are not statistically different compared to infected Cre2 Ifnarf/f mice.
doi:10.1371/journal.ppat.1004086.t001
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Figure 6. Effect of MAVS signaling on cytokine induction. A–C. WT, Ifnar2/2, Mavs2/2, or Mavs2/26Ifnar2/2 DKO mice (n = 4 for each group)
were infected with 102 PFU of WNV and 48 hours later serum was collected. A. Viremia was determined using focus-forming assays. Data are shown
as FFU per ml of serum. The dotted line represents the limit of sensitivity of the assay. Error bars indicate the SD. B. At 48 hours after WNV inoculation,
splenocytes were gated on CD192CD11c+CD11blo followed by intracellular staining for WNV antigen. C. The concentration of IL-1ß, IL-6 and TNF-a in
serum was determined by cytokine bioplex assay. Mean values 6 SD are shown. The IL-1ß, IL-6 and TNF-a cytokine levels were equal between
Mavs2/2, Mavs2/26Ifnar2/2 DKO, and WT C57BL/6 control mice. D. A microarray was performed on RNA isolated from spleen of mock-infected mice
(n = 2) and WNV-infected WT (n = 3), Mavs2/2 (n = 3), Ifnar2/2 (n = 3), and Mavs2/26Ifnar2/2 DKO (n = 3) mice. A student’s t-test (P#0.01) was
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Mbl-a2/26Mbl-c2/2 DKO or C42/2 mice, indicating that disease

was induced primarily by the alterative and not classical or lectin

pathways of complement activation, glycemia was restored to

normal levels. A partial phenotype also was observed in MAR1-

5A3-treated C3aR2/2 mice, which delete the receptor for the

complement anaphylatoxin C3a: Cytokine (IL-1ß, IL-6, and TNF-

a) and liver enzymes levels remained elevated in the serum but

glucose levels normalized (Fig. S4). In comparison, treatment of

CD11c-Cre+ Ifnarf/f mice with neutralizing MAbs against C5

reduced liver injury and prevented hypoglycemia compared to

animals administered isotype control MAbs (Fig. 8G). To link our

findings showing TNF-a signaling and complement activation

contribute to WNV-induced disease and sepsis, we assessed

complement activation in WNV-infected CD11c-Cre+ Ifnarf/f

mice treated with blocking anti-TNF-a MAbs. Lower levels of

C3 and factor B split-products (C3-a2, C3a, and Ba) were

observed in the serum and plasma of mice administered blocking

TNF-a compared to isotype control MAbs (Fig. 8H and I). These

experiments place pathologic complement activation downstream

of viral infection, MAVS signaling, and TNF-a signaling and

indicate that it contributes to the sepsis-like syndrome.

Discussion

Although the contribution of type I IFN signaling to the control

of viral infection in vivo is established, its importance in specific cell

subsets remains less well understood. We evaluated the function of

type I IFN signaling in myeloid cells in vivo against WNV infection.

We targeted these cells because prior studies had indicated that

WNV replicated preferentially in CD11b+ and CD11c+ cells

[12,45]. A striking phenotype was observed after WNV infection

of CD11c or LysM Cre+ Ifnarf/f mice, as these animals succumbed

with a similar rate and kinetics compared to the complete gene

deletion Ifnar2/2 mice. In contrast, deletion of IFNAR expression

only on B cells (CD19 Cre+ Ifnarf/f) showed a phenotype after

WNV infection that resembled the Cre2 Ifnarf/f mice. Viral

burden in several organs of CD11c Cre+ Ifnarf/f mice was

markedly elevated and approached that seen in Ifnar2/2 mice.

performed to determine the genes that had different expression levels with infection compared to levels in mock infections for each of the four
mouse strains (1.5 fold change cut-off). Quantitative analysis of pro-inflammatory cytokines and chemokines is shown on the right. E. WT, Ifnar2/2,
Mavs2/2, Ifnar2/26Mavs2/2 DKO BMDCs were infected with WNV and 0, 24 or 48 hours later viral burden in the supernatant was measured. The data
are the mean of three independent experiments. Error bars indicate SD. Asterisks denote statistical significance relative to WT cells (*, P,0.05; **,
P,0.01). F. Western blot showing phospho-p65 and total (relative) p65 staining in WT, Mavs2/2, Ifnar2/2, Ifnar2/26Mavs2/2 DKO BMDCs at 0 (M,
mock), 24 or 48 after WNV infection. ß-actin staining is included as a loading control. The results are representative of two independent experiments.
doi:10.1371/journal.ppat.1004086.g006

Table 2. Cytokine and chemokine levels in serum of WNV-infected WT, Mavs2/2, Ifnar2/2, and Mavs2/26Ifnar2/2 DKO mice.

WT Mavs2/2 Ifnar2/2 Mavs2/26Ifnar2/2 DKO

Cytokine pg/ml SD pg/ml SD P value pg/ml SD P value pg/ml SD P value

IL-1a 12.8 3.64 15.7 0.97 ns 54.9 3.05 0.029 13.13 3.42 ns

IL-1b 117 16.2 163 38.8 ns 381 38.8 0.029 142 12.6 ns

IL-2 15.2 4.55 23.04 5.93 ns 36.3 1.89 0.029 14.8 1.43 ns

IL-3 9.58 2.46 10.8 0.69 ns 15.5 0.26 0.029 9.25 1.24 ns

IL-4 ND ND 16.9 3.53 ND

IL-5 22.3 5.77 23.7 2.30 ns 61.8 4.42 0.029 21.6 1.43 ns

IL-6 8.97 1.39 10.5 1.56 ns 4780 1128 0.029 13.6 2.44 ns

IL-9 46.4 17.4 11.7 0.00 ns 287 44.7 0.029 11.7 0.00 ns

IL-10 31.5 13.4 32.1 11.7 ns 115 5.13 0.029 4.70 0.00 ns

IL-12p40 332 57.7 412 33.1 ns 2211 594 0.029 519 158 ns

IL-12p70 25.7 12.4 54.5 3.80 ns 316 30.6 0.029 44.8 15.6 ns

IL-13 73.8 8.16 75.9 4.84 ns 162 16.7 0.029 77.7 15.7 ns

IL-17 38.2 3.48 71.5 12.0 ns 86.1 12.0 0.029 50.8 7.26 ns

Eotaxin 37.3 10.2 52.5 11.2 ns 868 141 0.029 45.3 7.33 ns

g-CSF 48.3 2.31 129 4.75 ns 19104 4844 0.029 282 122 ns

GM-CSF 61.3 17.4 79.8 8.53 ns 361 26.3 0.029 61.7 8.56 ns

IFN-c 2.45 1.52 3.65 0.66 ns 495 79.6 0.029 23.2 6.25 ns

KC 75.1 15.7 114 11.1 ns 5627 851 0.029 183 68.9 ns

MCP-1 175 8.78 279 14.2 ns 12743 1143 0.029 402 168 ns

MIP-1a 16.9 5.88 15.7 1.25 ns 71.5 7.85 0.029 9.86 2.42 ns

MIP-1b 18.1 1.26 32.2 5.04 ns 472 34.2 0.029 19.3 6.52 ns

RANTES 50.2 17.2 71.6 12.6 ns 405 45.9 0.029 69.7 24.3 ns

TNF-a 1156 376 1245 198 ns 2636 562 ns 661 188 ns

WT, Ifnar2/2, Mavs2/2, Ifnar2/26Mavs2/2 DKO (n = 4 for each group) were infected with 102 PFU of WNV. After 48 hours, serum was collected and the concentration of
cytokines was determined. Mean values, SD, and P values are compared to WT mice. Not detected (ND) indicates samples that were below the limit of detection for the
assay. ns, indicates results that are not statistically different from WT mice.
doi:10.1371/journal.ppat.1004086.t002
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Our experiments revealed a dominant antiviral effect in vivo of type

I IFN signaling in myeloid cells, either CD11c+ cells or MØ/

monocytes/granulocytes. Pathological analyses showed preferen-

tial WNV infection of Ifnar2/2 myeloid cells, and this resulted in

‘‘cytokine storm’’, which was associated with liver and kidney

damage, and rapid death. High levels of WNV RNA in Ifnar2/2

myeloid cells triggered uncontrolled production of proinflamma-

tory cytokines, pathological complement induction and activation,

which together caused a sepsis-like syndrome. This phenotype did

not occur universally: whereas 100% of Ifnar2/2 mice succumbed

to infection with the arthritogenic CHIKV alphavirus, no disease

or lethality was observed in CD11c or LysM Cre+ Ifnarf/f mice.

The phenotype after WNV infection of CD11c or LysM Cre+

Ifnarf/f mice varies from that observed after infection with MHV

[20] or MNoV [22]. In the MHV study, increased vulnerability

was observed in LysM Cre+ Ifnarf/f mice but it did not recapitulate

that seen in Ifnar2/2 mice. In comparison, deletion on Ifnar on

CD11c+ cells resulted in only a subset (,30%) of animals dying,

and this occurred almost a week later. In the MNoV study,

IFNAR-dependent responses in MØ and DCs limited viral

Figure 7. TNF-a blockade prolongs survival of WNV infected CD11c Cre+ Ifnarf/f and Ifnar2/2 mice. A. Eight- to ten-week-old CD11c Cre+

Ifnarf/f and Ifnar2/2 mice were injected via an intraperitoneal route with 200 mg of anti-TNF-a or isotype control MAbs one day prior to infection with
102 PFU of WNV by footpad injection. Survival differences were statistically significant between anti-TNF-a and isotype control MAb-treated CD11c
Cre+ Ifnarf/f mice (***, P,0.0001) and anti-TNF-a and isotype control MAb-treated Ifnar2/2 mice (***, P,0.0001). The data is pooled from two
independent experiments (n = 8 for all groups). B. Viral burden in serum. Eight- to ten-week-old CD11c Cre+ Ifnarf/f and Ifnar2/2 mice were injected
with 200 mg of anti-TNF-a or isotype control MAb and Cre2 Ifnarf/f were left untreated one day prior to infection with 102 PFU of WNV. Infectious
virus in the serum was determined from samples harvested at 48 hours post-infection. Differences were not statistically different. C. Eight- to ten-
week-old CD11c Cre+ Ifnarf/f and Ifnar2/2 mice were administered 200 mg of anti-TNF-a or isotype control MAb via an intraperitoneal route one day
prior to inoculation of 102 PFU of WNV by footpad injection. Glucose (GLU), AST, and ALT levels were analyzed from serum obtained 48 hours after
infection. The data are pooled from two independent experiments (n = 8 for all groups). Asterisks indicate differences that are statistically significant
(*, P,0.05; **, P,0.01).
doi:10.1371/journal.ppat.1004086.g007
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infection but were dispensable for preventing lethal infection, as all

MNoV-infected CD11c or LysM Cre+ Ifnarf/f animals survived in

contrast to Ifnar2/2 mice. Systemic cytokine levels were not

measured in either study. Related to these findings, cell type-

restricted deletion of Stat1 in MØ, monocytes, and granulocytes

(LysM Cre+ Stat1f/f) but not DCs (CD11c Cre+Stat1f/f) resulted in

enhanced lethality after Listeria monocytogenes infection [20,21].

Higher levels of cytokines and chemokines were observed in

Listeria-infected LysM Cre+ Stat1f/f mice, although they were lower

than in infected Stat12/2 mice. Analogous to our studies, Listeria-

infected mice lacking IFNAR expression on MØ also sustained

liver damage. Thus, loss of IFNAR expression in distinct

Table 3. Blood chemistry in MAb treated WNV-infected CD11c Cre+ Ifnarf/f and Ifnar2/2 mice.

AST ALT Glucose

Conc. (u/L) SD P value Conc. (u/L) SD P value Conc. (mg/dL) SD P value

CD11c Cre+ anti-
TNFa

199 91.1 0.032 194 93.6 0.004 314 130 0.008

CD11c Cre+

isotype
505 238 4422 913 50.8 23.4

Ifnar2/2

anti-TNFa
83.7 43.8 0.001 208 89.2 0.001 280 87.2 0.001

Ifnar2/2 isotype 6317 1320 5542 1192 82 25.7

CD11c Cre+Ifnarf/f and Ifnar2/2 mice were treated with either anti-TNF-a blocking or isotype control MAbs (200 mg/mouse) one day prior to infection (n = 6 for each
group). The mice were infected with 102 PFU of WNV. At 48 hours, serum was collected and AST, ALT and glucose levels were measured. Mean values 6 SD are shown.
P values are compared to isotype control treated samples for each group. Data are pooled from two independent experiments.
doi:10.1371/journal.ppat.1004086.t003

Table 4. Cytokine levels in serum of Ifnar2/2 and CD11c Cre+ Ifnarf/f mice after treatment with anti-TNF-a MAbs and WNV
infection.

CD11c Cre ifnarf/f+isotype MAb CD11c Cre ifnarf/f+anti-TNF-a MAb Ifnar2/2+isotype MAb Ifnar2/2+anti-TNF-a MAb

Cytokine pg/ml SD pg/ml SD P value pg/ml SD pg/ml SD P value

IL-1a 105.2 16.37 27.54 24.47 0.0121 132.9 28.06 48.79 27.63 0.0005

IL-1b 450.9 105.8 192.1 32.23 0.0238 773.6 223.7 163 72.89 0.029

IL-2 24.53 26.98 4.246 2.015 0.0064 41.68 43.16 20.66 21.26 ns

IL-3 15.14 5.938 5.445 4.047 0.0023 28.53 12.35 8.102 7.238 0.003

IL-4 ND ND ND ND

IL-5 113.1 57.82 220.6 329.3 ns 125.9 120.3 91.73 117.1 ns

IL-6 1852 1567 96.48 91.76 0.0002 13253 5772 447.4 289 0.0002

IL-9 ND ND ND ND

IL-10 416.3 172.1 70.3 58.5 0.0013 235.8 78.57 69.05 45.95 0.001

IL-12p40 4254 1284 1162 619.7 0.0003 7544 2620 7838 2539 ns

IL-12p70 255.3 285.3 28.02 14.58 0.0007 791.7 682 172.8 177.4 0.0426

IL-13 122.9 14.82 51.44 36.08 0.0079 270.7 213 58.37 24.89 0.0061

IL-17 53.38 27.99 41.7 25.3 ns 58.27 31.21 37.4 13.52 ns

Eotaxin 1673 1128 171.7 181 0.0079 2604 949.2 351.2 218.1 0.0095

g-CSF 76450 23739 6272 12199 0.0002 95226 25232 18248 13599 0.0002

GM-CSF 455.6 365 110.8 72.58 0.0011 815.8 692 316.8 316.6 ns

IFN-c 405.6 260.9 35.16 18.58 0.0002 331.9 132.2 131 142.9 0.028

KC 6449 2491 1022 435.7 0.0007 18053 11096 4760 2425 0.0002

MCP-1 42461 10809 5514 2526 0.0012 24715 14364 7493 7342 0.036

MIP-1a 196.6 49.52 53.02 30.35 0.0007 193.9 76.11 105.1 50.55 0.0225

MIP-1b 594.8 320.9 253.3 173.2 0.0426 698.8 587.1 445.1 206.5 ns

RANTES 974.5 754.5 163.6 87.58 0.0007 1245 1156 526.3 616.2 ns

CD11c Cre+Ifnarf/f and Ifnar2/2 mice were treated with either anti-TNF-a blocking or isotype MAb (200 mg/mouse) one day prior to infection (n = 8 for each group). The
mice were infected with 102 PFU of WNV and at 48 hours serum was collected and the concentration of cytokines was determined. Mean values 6 SD are shown. P
values are compared to the isotype control MAb treated samples for each group. Data are pooled from three independent experiments. ns indicates results that are not
statistically different compared to mice treated with isotype control MAb. Not detected (ND) indicates samples that were below the limit of detection for the assay.
doi:10.1371/journal.ppat.1004086.t004
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populations of cells can enhance pathogenesis of viral and bacterial

pathogens, although the level of mortality and cytokine production

can vary.

Our IHC and flow cytometric analysis of tissues and blood

revealed that a demonstrable fraction of infected cells in CD11c

Cre+ Ifnarf/f mice belonged to the CD11c+ subset. It remains

unclear why only a fraction (,5 to 10%) of CD11c+ cells were

targeted; this could reflect a difference in vulnerability of DC

subsets or a stochastic process. A similar phenomenon was

observed ex vivo after WNV infection of Ifnar2/2 BMDCs, in

which a maximum of 10 to 20% of cells was infected even at high

multiplicities of infection [35]. In comparison, CHIKV does not

target myeloid cells for infection in mice [28,46], and thus may not

gain the same replication advantage in CD11c Cre+ Ifnarf/f or

LysM Cre+ Ifnarf/f animals.

Prior studies in Ifnar2/2 mice with virulent or attenuated WNV

strains revealed enhanced infection and lethality [12,32–34].

While the susceptibility phenotype is related to the higher levels of

WNV replication, the contribution of cytokines was not assessed.

Although we measured high viral titers in the serum, organs, and

brains of CD11c Cre+ Ifnarf/f and Ifnar2/2 mice, IHC revealed less

viral antigen staining in the brain parenchyma than anticipated by

the viral titer data. This suggested to us that (a) the high levels of

WNV in brain homogenates could be due to infected cells in the

intravascular space that were not removed despite extensive

perfusion; and/or (b) although CD11c Cre+ Ifnarf/f, LysM Cre+

Ifnarf/f and Ifnar2/2 mice rapidly succumbed to WNV, it might

not be due to infection in the brain. Indeed, high levels of TNF-a
and IL-1ß and other proinflammatory cytokines were present in

the serum of CD11c or LysM Cre+ Ifnarf/f and Ifnar2/2 mice but

not in infected Cre2 Ifnarf/f mice at 48 hours. Vasoactive cytokines

affect blood vessel permeability and vascular tone [47,48], and

could have limited perfusion in the CD11c Cre+ Ifnarf/f and

Ifnar2/2 mice. Our results are most consistent with a model in

which cytokine-mediated changes to the vasculature limited organ

perfusion and resulted in high titers that reflect viral burden in

blood rather than replication within the parenchyma of some

tissues.

‘‘Cytokine storm’’ reflects excessive cytokine production that

occurs following infection with gram-negative bacteria or patho-

genic influenza A viruses (reviewed in [47,48]). Excessive cytokine

production with vascular permeability changes also has been

described for flaviviruses in the context of severe dengue virus

infection in humans or IFN-signaling-deficient mice [49–51]. Our

studies in CD11c Cre+Ifnarf/f and Ifnar2/2 mice revealed that

serum levels of twenty different inflammatory cytokines were

elevated at 48 hours after WNV inoculation. Loss of type I IFN

signaling on the CD11c+ or other myeloid cells affected viral

tropism and resulted in dysregulated cytokine responses after

WNV infection. Combining this with the likely changes in vascular

resistance that affected perfusion, our results are compatible with a

clinical picture of ‘‘cytokine storm’’.

WNV-infected CD11c or LysM Cre+ Ifnarf/f and Ifnar2/2 mice

developed marked elevations in serum liver enzymes and profound

hypoglycemia, consistent with hepatocellular injury. Histopatho-

logical analysis of the liver in CD11c Cre+ Ifnarf/f and Ifnar2/2

mice revealed zonal coagulative necrosis with apoptotic hepato-

cytes. Similarly, in the spleen and LN marked changes in the organ

architecture and cell viability were apparent. While viral antigen

staining was present in lymphoid organs, it was limited in the liver,

and suggested that end-organ damage was secondary to ischemia

and/or toxic effects of cytokines rather than direct virus-induced

apoptosis.

The high levels of IL-1ß in the serum of the WNV-infected

CD11c Cre+ Ifnarf/f, LysM Cre+ Ifnarf/f and Ifnar2/2 mice

indicated significant inflammasome activation. WNV activates

the NLRP3 inflammasome to produce mature IL-1ß, which helps

control infection in the brain through a pathway that synergizes

with type I IFN signaling [15,17]. Inflammasome activation

requires two signals: signal 1 induces transcription of IL-1b
(reviewed in [52]) and signal 2 promotes assembly of a multi-

protein complex that activates caspase-1 to cleave IL-1ß and IL-18

to their mature forms [53]. The high amount of IL-1ß detected in

the serum of the Ifnar2/2 and CD11c or LysM Cre+ Ifnarf/f mice

that indicates inflammasome activation during WNV infection

occurs independently of IFNAR signaling in infected myeloid cells.

The lower levels of cytokines in the serum of Mavs2/26Ifnar2/2

DKO mice establish that inflammasome activation following

WNV infection occurs in part, via a MAVS-dependent pathway.

Recent studies in the context of bacterial infection have

suggested a role for IFNAR signaling in inflammasome activation

[17,31,32,34,54–57] and production of vasocative cytokines,

including IL-1ß. Whereas in the context of Francisella tularensis

and Listeria monocytogenes infection IFNAR expression was required

for inflammasome activation [58], in our study, MAVS and not

IFNAR signaling played the dominant role. In animals lacking

IFNAR expression on CD11c+ cells, enhanced WNV replication

produces excessive viral RNA PAMPs that are recognized by the

cytosolic PRR, RIG-I and MDA5 [59–62]. This sensing event

signals through MAVS to induce proinflammatory cytokines

Figure 8. Complement activation contributes to liver injury after WNV infection. A. Microarray analysis of complement genes was
performed on RNA isolated from spleen and liver of WNV-infected WT, Mavs2/2, Ifnar2/2, and Mavs2/26Ifnar2/2 DKO mice. Genes that showed
statistically significant increases (P,0.05) compared to WT are colored in yellow. Red arrows denote C3 and factor B relative mRNA levels. B–C.
Analysis of C3 (left) and factor B (right) levels and split-products (labeled as C3-a2 and Ba) in the serum of Cre2 Ifnarf/f, CD11c+ Cre+ Ifnarf/f, and Ifnar2/

2 mice at 24, 36, and 48 hours after WNV infection (B) as determined by Western blotting. Similar experiments were performed on serum samples at
48 hours after WNV infection from Ifnar2/2, Mavs2/2, and Mavs2/26Ifnar2/2 DKO mice (C). The results are representative of samples from different
mice. D. Serum levels of glucose, AST, and ALT in WT, C32/2 and factor B2/2 mice after treatment with the IFNAR blocking MAb (MAR1-5A3) and
infection with WNV. The serum was harvested 72 hours after infection. For the WT mice, a comparison is made with treatment with the isotype
control MAb (GIR-208). The results are the average of two independent experiments with a total of 8 mice per group, and asterisks indicate
statistically significant differences (***, P,0.0001). E–F. Viremia and serum cytokines (IL-1ß, IL-6, and TNF-a) at 72 hours in WT, C32/2 and factor B2/2

mice after treatment with the IFNAR blocking MAb (MAR1-5A3) and infection with WNV. For the WT mice, a comparison is made with treatment with
an isotype control MAb (GIR-208) (*, P,0.05). G. Effect of treatment with C5 blocking MAb on liver injury in WNV-infected CD11c Cre+ Ifnarf/f. CD11c
Cre+ Ifnarf/f mice were treated with 1.25 mg (50 mg/kg) of BB5.1 anti-C5 antibody or isotype control (GIR-208) (at days 21 and +2) and infected with
102 PFU of WNV on day 0. At 48 hours, serum was harvested and glucose, ALT, and AST were measured. The results are the mean of two independent
experiments with n = 7 or 8 mice in total (**, P,0.01; ***, P,0.001). H. Western blotting analysis of C3 (left) and factor B (right) split-products (labeled
as C3-a2 and Ba) in the serum of CD11c+ Cre+ Ifnarf/f and Ifnar2/2 mice at 48 hours after WNV infection in animals treated with isotype or anti-TNF-a
MAbs. The results are representative of two independent experiments. I. ELISA showing C3a levels in plasma of CD11c+ Cre+ Ifnarf/f and Ifnar2/2 mice
at 48 hours after WNV infection in animals treated with isotype or anti-TNF-a MAbs. The results are the mean of two independent experiments with a
total of n = 6 mice and asterisks indicate significant differences (**, P,0.01).
doi:10.1371/journal.ppat.1004086.g008
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through inflammasome-dependent (IL-11) and -independent (e.g.,

NF-kB) pathways. Accordingly, the combined absence of IFNAR

and MAVS resulted in enhanced infection without early ‘‘cytokine

storm’’, with DKO mice succumbing to infection days later likely

due to massive virus infection in the central nervous system. The

importance of the NF-kB pathway in cytokine induction is

highlighted by WNV infection studies in Irf32/26Irf72/2 DKO

mice, which still showed evidence of liver injury (high serum AST

and ALT) and over-exuberant cytokine production (A. K. Pinto

and M. S. Diamond, unpublished results).

Consistent with our hypothesis that proinflammatory cytokines

contributed to WNV-induced lethality in CD11c Cre+ Ifnarf/f and

Ifnar2/2 mice, administration of a blocking TNF-a MAb

prolonged survival but did not affect viral replication. Moreover,

pre-treatment with anti-TNF-a MAbs resulted in lower systemic

cytokine levels and less end-organ tissue injury at 48 hours after

infection. Somewhat surprisingly, disruption of inflammasome

activation in Nlrp32/2, IL1r2/2, or caspase-1/112/2 mice did not

affect WNV-induced liver and renal injury when IFNAR signaling

was blocked. Analogous results were observed in Ifnar2/2 mice

treated with neutralizing anti-IL-1 ß and IL-6 MAbs (A. K. Pinto

and M. S. Diamond, unpublished results). Thus, even though

there was marked inflammasome activation in the context of

‘‘cytokine storm’’, these cytokines were not primarily responsible

for the severe clinical phenotype.

So how did TNF-a promote the sepsis-like syndrome associated

with enhanced WNV infection of myeloid cells? Although high

levels of serum TNF-a can have vasoactive effects that alter

endothelial cell barrier integrity [63–65], our experiments suggest

alternative pathway complement activation and possibly resultant

production of C5a anaphylatoxin contributed to the phenotype.

Liver injury was minimized in WNV-infected C32/2, fB2/2, and

C5-depleted mice lacking type I IFN signaling, indicating that

tissue damage required activation of the alternative complement

pathway. A survival benefit was not observed in WNV-infected

C32/2, fB2/2, and C5-depleted mice lacking type I IFN signaling

(A. Pinto and M. Diamond, unpublished results), likely because of

the rapid spread of virus to the central nervous system due to an

absence of the protective antiviral effects of complement [66] and

type I IFN [67]. Associated with WNV infection of CD11c Cre+

Ifnarf/f and Ifnar2/2 mice, we observed massive activation of

complement including accumulation of C3 and fB split products.

The induction of C3, fB, and other complement proteins in the

spleen and liver occurred after WNV infection in a MAVS-

dependent manner. Indeed, in the serum of mice lacking MAVS

alone or MAVS and IFNAR, we failed to observe the

accumulation of C3 and fB cleavage products after WNV

infection. These and other results place complement induction

and/or activation downstream of TNF-a, possibly through direct

actions on myeloid cells and/or hepatocytes. We propose a model

Figure 9. Model of sepsis after viral infection of CD11c+ DC or LysM+ myeloid cells. Myeloid cells that lack signaling (due to Ifnar gene
deletion, pharmacological blockade with anti-IFNAR MAbs, or IFN signaling antagonism by viruses) are more susceptible to infection. In the context
of WNV infection, increased viral replication results in enhanced RNA PAMP generation, which activates MAVS via recruitment to the mitochondria.
This results in downstream activation of IRF-3 and NF-kB and also assembly of the NLRP3 inflammasome. IRF-3 activation and nuclear translocation
promotes induction of a limited set of ISGs. NF-kB activation and nuclear translocation promotes expression of pro-inflammatory cytokines (e.g., IL-6
and TNF-a) and chemokines (CCL5 and CXCL10). Soluble TNF-a can modulate endothelial cells function and integrity and also induce complement
factor expression in myeloid and hepatic cells, including C3 and factor B. Higher levels of C3 and factor B in the context of increased WNV in plasma
results in excessive complement activation (via the alternative pathway), which can liberate the C3a and C5a anaphylatoxins. Along with TNF-a, these
promote changes to vascular permeability and tone that result in hypotension and visceral organ (e.g., liver and kidney) damage. Independently,
excessive virus infection in restricted tissues (e.g., spleen and LN) can cause organ damage. The pathological effects of this cascade can be mitigated
by administration of blocking MAbs to TNF-a or C5.
doi:10.1371/journal.ppat.1004086.g009
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for virus-induced sepsis-like syndrome (Fig. 9) in which infection

in myeloid cells results in excessive viral RNA production, RIG-I

and/or MDA5 recognition, MAVS signaling, NF-kB activation,

proinflammatory cytokine production (including TNF-a), comple-

ment protein induction, alternative pathway activation, and

complement anaphylatoxin production. Enhanced infection in

myeloid cells could occur because of experimental blockade or

genetic deficiency of IFNAR or through virus-induced immune

evasion mechanisms; many human viruses target and disenable

key components of the type I IFN signaling cascade [68–71]. As

recent studies with bacterial sepsis models also suggest key roles for

fB and complement peptides in mediating vascular leakage and

hemodynamic instability [72–74], pharmacological blockade of

C3a and C5a might mitigate the sepsis-like syndrome after viral

infections, including the more globally relevant flavivirus, Dengue

virus.

In summary, our data establishes that the selective loss of

IFNAR expression on myeloid cell subsets results in an unantic-

ipated rapid mortality following WNV infection, which was not

observed when IFNAR was removed from CD19 cells or in other

viral models, which still are restricted by IFNAR signaling

pathways in other cells. An absence of IFNAR signaling in

myeloid cells facilitated WNV infection and caused MAVS-

dependent dysregulated cytokine responses that promoted induc-

tion and activation of the alternative complement pathway, which

resulted in tissue injury. As different viruses antagonize IFNAR

function by targeting distinct steps in the downstream signaling

pathway including Jak1, Tyk2, Stat1, and Stat2 phosphorylation

(reviewed in [75]), this model of infection and inflammation may

be relevant in the context of other infections. Given these findings,

targeted anti-cytokine and/or immunomodulatory agents may be

a possible therapeutic option when sepsis is induced by massive

viral infection in subsets of myeloid cells.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocols were approved by the Institutional Animal Care and Use

Committee at the Washington University School of Medicine

(Assurance Number: A3381-01). Dissections and footpad injec-

tions were performed under anesthesia that was induced and

maintained with ketamine hydrochloride and xylazine, and all

efforts were made to minimize suffering.

Mice
Wild type C57BL/6 mice were purchased commercially

(Jackson Laboratories). Ifnar2/2 mice were obtained from J.

Sprent (Scripps Institute, San Diego CA) and backcrossed ten

times onto the C57BL/6 background. CD11c Cre+Ifnarf/f, LysM

Cre+Ifnarf/f, mice and Ifnarf/f were obtained from R. Schreiber (St.

Louis, MO) and U. Kalinke (Hannover, Germany). The Ifnarf/f

[76], CD19 Cre+, LysM Cre+, and CD11c Cre+ mice (Jackson

Laboratories) were backcrossed using speed congenic analysis so

they were 99% C57BL/6 as judged by microsatellite analysis.

Mavs2/2 and Mavs2/26Ifnar2/2 DKO mice have been described

previously [13]. Nlrp32/2, IL1r2/2, caspase-1/112/2 mice have

been reported previously [42]. C32/2, C3aR2/2 (gift of R. Wetsel,

Houston, TX), C42/2, factor B2/2, Mbl-a2/26Mbl-c2/2 DKO

mice have been reported previously [77,78]. All mice were housed

in a pathogen-free mouse facility at the Washington University

School of Medicine or the University of Washington and

experiments were performed in accordance and with approval

of federal and University regulations. Mice (8 to 12 week-old)

were inoculated subcutaneously via footpad injection with 102

plaque-forming units (PFU) of WNV-NY or 10 PFU of CHIKV-

LR.

Viruses and cells
The WNV-NY strain 3000.0259 (WNV-NY) used was isolated

in New York in 2000 [79] and passaged twice in C6/36 Aedes

albopictus cells. WNV isolate, TX 2002-HC (WNV-TX02), was

titered by a standard plaque assay on BHK21 cells and working

stocks were generated as previously described [14]. The CHIKV

strain was isolated from an infectious clone of CHIKV La

Reunion 2006 OPY-1 (strain 142, CHIKV-LR, gift from S. Higgs

(Manhattan, KS)) [80] and was passaged in C6/36 Aedes albopictus

cells. BMDCs were generated as previously described [81].

Analysis of IFNAR expression, cytokine production, and
WNV infection

Forty-eight hours after WNV infection, blood was obtained by

intracardiac heart puncture and spleens were recovered. Live cells

were stained with MAbs specific for CD11c, CD8, CD4, Ly6G,

CD11b, CD3, CD19, and IFNAR (Biolegend) to define cell types

and determine IFNAR expression. To determine which leukocytes

were infected with WNV, after incubating with MAbs against

specific leukocyte surface markers, cells were fixed and permea-

bilized with Fixation and Permeabilization buffers (eBioscience),

and stained with a combination of two mouse anti-WNV specific

MAbs (WNV E16 and WNV E18) and a MAb against IFN-c
(Biolegend) [82]. All samples processed on an LSRII or

LSRFortessa flow cytometer (BD Biosciences). The resulting data

was analyzed using FlowJo (Treestar).

Measurement of viral burden
Forty-eight hours after WNV infection, serum was obtained by

intracardiac heart puncture, followed by intracardiac perfusion

(20 ml of PBS), and organ recovery. Organs were weighed,

homogenized using a bead-beater apparatus, and titrated by focus-

forming assay [83] on Vero cells. Infected cell foci were stained

with a flavivirus-cross-reactive, chimeric mouse-human MAb

(WNV E18, 1 mg/ml) [84] for one hour at 37uC and then

washed. Foci were detected after the cells were incubated with a

1:2,000 dilution of horseradish peroxidase (HRP)-conjugated goat

anti-human IgG (Sigma) for one hour. Staining was visualized by

addition of TrueBlue detection reagent (KPL). Spots were analysis

with a Biospot counter (Cellular Technology) using Immunocap-

ture software.

Histology, IHC, and TUNEL staining
Eight to nine-week old Ifnar2/2, CD11c Cre+ Ifnarf/f, or Cre2

Ifnarf/f mice were infected with WNV. Forty-eight hours later,

mice were perfused sequentially with 20 ml PBS and 20 ml 4%

PFA in PBS, and tissues were harvested and fixed in 4% PFA in

PBS overnight at 4uC. Staining (hematoxylin and eosin or for

WNV antigen) of paraffin-embedded tissue sections was per-

formed as previously described [85]. After blocking non-specific

binding sites, sections were incubated overnight at 4uC with an

anti-WNV hyperimmune rat sera [24]. Primary antibodies were

detected with secondary HRP goat anti-mouse or rat IgG

(Molecular Probes). Nuclei were counter-stained with To-Pro3

(Molecular Probes). For TUNEL staining, sections were depar-

affinized and rehydrated by heating to 57uC for 5 minutes then

incubated with xylene, 100% ethanol, 95% ethanol, 70% ethanol
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and distilled water. Cells were permeabilized in proteinase K

(Roche) for 30 minutes. DNase (Sigma) treatment for 10 minutes

was used to introduce nicks into DNA as a positive control. In Situ

Cell Death Detection KIT, TMR Red (Roche) was used for Tdt-

mediated dUTP nick end labeling (TUNEL) and the manufac-

turer’s protocol was followed. Cells were counter-stained with

DAPI (Invitrogen) for five minutes. Slides were visualized using an

Axioscope (Zeiss) microscope. Images were captured with an

AxioCam HRm (Zeiss) and Axiovision Rel4.8 (Zeiss) software was

used. The control and experimental images were collected and

processed using the same instrument settings.

Cytokine bioplex assay
WT, Ifnar2/2, LysM Cre+ Ifnarf/f, CD11c Cre+ Ifnarf/f, Cre2

Ifnarf/f, Mavs2/2, Mavs2/26Ifnar2/2, Mbl-a2/26Mbl-c2/2,

C42/2, C32/2, fB2/2, or C3aR2/2 mice were infected with

WNV, and at specified times blood was collected and serum was

isolated. The BioPlex Pro Assay was performed according to the

manufacturer’s protocol (BioRad). The cytokine screen included

IL-1a, IL-1ß, IL-2, IL-3 IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p40,

IL-12p70, IL-13, IL-17, Eotaxin, G-CSF, GM-CSF, IFN-c, KC,

MCP-1 MIP-1a, MIP-1ß, RANTES (CCL5), and TNF-a.

Blood chemistry analysis
Ifnar2/2, LysM Cre+Ifnarf/f, CD11c Cre+Ifnarf/f, or Cre- Ifnarf/f

mice were infected with WNV. At specified times, blood was

collected by intracardiac heart puncture and serum was isolated.

Prior to analysis all samples were treated with 1/2,000 dilution of

ß-propiolactone (Sigma) for 30 minutes to inactivate infectious

viral particles. Control experiments confirmed that b-propiolac-

tone did not impact chemistry results (data not shown). The

Diagnostic Laboratory in the Division of Comparative Medicine at

Washington University performed the blood chemistry analysis.

Complement activation analysis
To obtain mouse serum, whole blood was clotted on ice for

20 minutes before centrifugation (10,000 g610 min at 4uC). Fresh

serum (15 ml, diluted 1/100) was mixed with an equal volume of

26 SDS-PAGE Sample Buffer containing b-mercaptoethanol

(Sigma). After a 4 minute incubation at room temperature (RT)

the samples were heated at 65uC for 4 minutes. The samples were

subjected to 10% SDS-PAGE using Tris-Glycine running buffer

and then transferred to nitrocellulose membranes. The mem-

branes were blocked overnight with 5% nonfat dried milk in Tris-

borate saline (TBS) buffer. Primary goat anti-mouse C3 (1/10,000

dilution; MP Biomedicals) or goat anti-human factor B (1/5,000

dilution; Complement Technology, Inc.) antibodies were incubat-

ed with the membranes for 1.5 hours at RT. After three washes

with TBS containing 0.05% Tween 20, HRP-conjugated rabbit

anti-goat IgG (Sigma) was incubated for 1 h at 37uC. After three

washes with TBS-Tween 20, membranes were visualized using a

SuperSignal West Kit (Pierce).

C3a ELISA
Anti-TNF-a or isotype control MAb treated CD11c Cre+Ifnarf/f

mice were infected with WNV. At 48 hours after infection, blood

was collected by intracardiac heart puncture into EDTA-coated

tubes. Plasma was isolated and immediately added to microtiter

plates that had been coated overnight with C3a capture antibody

(4 mg/ml, BD Biosciences) and blocked with PBS and 1% BSA

(Sigma) for one hour. Plates were incubated for two hours at room

temperature, and after washing, C3a detection antibody (0.5 mg/

ml, BD Biosciences) was added for two hours at room

temperature. After washing, streptavidin-HRP (Invitrogen) was

added for 30 minutes at room temperature, and the plates were

developed with tetramethylbenzidine substrate (Dako) and H2SO4.

The adjusted OD450 was determined by subtracting the OD450

value for each sample on blocked control wells analyzed in

parallel. Titers represent the serum dilution yielding an adjusted

OD450 value equivalent to three standard deviations above the

background of the assay.

qRT-PCR
RNA was isolated from serum using an RNA isolation Kit

(Qiagen) and measured by fluorogenic qRT-PCR using primers

and probes (sequences available upon request) to the WNV

envelope gene, IFIT1, IFIT2, IFIT3, IL-1ß, IL-6, TNF-a, and

CCL5 using the One-Step RT-PCR Master Mix, and a 7500 Fast

Real-Time PCR System (Applied Biosystems).

MAb treatments
The anti-mouse TNF-a MAb CNTO-5048 and the isotype

control MAb CNTO-1322 are rat/mouse chimeric monoclonal

MAbs and were the generous gift of D. Shealy (Janssen R&D,

Spring House, PA). The CD11c Cre+ Ifnarf/f, or Cre2 Ifnarf/f mice

were treated with a single intraperitoneal dose of 200 mg

(,10 mg/kg) one day prior to infection with 102 PFU of WNV-

NY. Anti-TNF-a and the isotype control MAb treated mice were

monitored for survival or serum and organs harvested at 48 hours

for further analysis. To block IFNAR signaling, WT or specific

KO mice were treated with a single 1 mg (40 mg/kg) dose of

MAR1-5A3 or isotype control MAb (GIR-208) one day prior to

infection, as described previously [18]. To block C5 function,

CD11c Cre+ Ifnarf/f mice were treated with two 1.25 mg (50 mg/

kg) doses of BB5.1 or isotype control MAb (GIR-208) at days 21

and +2 relative to WNV infection, as described previously [86].

Microarray analysis
Expression oligonucleotide arrays were performed on RNA

isolated from spleen and liver tissues from strain and time-matched

mock infected mice and WNV-infected WT, Mavs2/2, Ifnar2/2,

and Mavs2/26Ifnar2/2 DKO mice. RNA was prepared as

previously described [13]. Raw data were loaded into a custom-

designed laboratory information management system (LIMS).

Data were warehoused in a Labkey system (Labkey, Inc., Seattle,

WA) and analyzed using GeneData Analyst 2.2.1 software

(GeneData Solutions In Silico, San Francisco, CA), and TIBCO

Spotfire with Integromics. Raw microarray data have been

deposited in NCBI’s Gene Expression Omnibus under GEO

Series accession number GSE39259 and also are accessible via the

Katze Laboratory website (www.viromics.washington.edu) in

accordance with proposed Minimum Information About a

Microarray Experiment (MIAME) standards. A student’s t-test

was performed to determine the genes that had different

expression levels after WNV infection compared to mock infection

for each of the four mouse strains.

Western blotting
WT, Mavs2/2, Ifnar2/2, and Mavs2/26Ifnar2/2 DKO

BMDCs were infected with WNV at an MOI of 2.5 and harvested

and lysed 48 hours later. WT and Nlrp32/2 BMDC were treated

for 30 minutes prior to infection with 25 mg/ml of MAR1-5A3 or

GIR-208 [87] and this was maintained throughout the assay.

BMDC were lysed in RIPA buffer (10 mM Tris, 150 mM NaCl,

0.02% sodium azide, 1% sodium deoxycholate, 1% Triton X-100,

and 0.1% SDS, pH 7.4), with protease inhibitors (Sigma). Samples
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were resolved by electrophoresis on 10% SDS-polyacrylamide

gels. Following transfer of proteins, membranes were blocked with

5% non-fat dried milk and probed with the following panel of

primary antibodies: anti-WNV NS3 (R&D Systems), anti-mouse

tubulin (Sigma), anti-mouse Ifit2 (gift of Dr. G. Sen, Cleveland,

OH), anti-mouse STAT1 (Cell Signaling), anti-mouse IL-1ß (pro

and cleaved forms, Abcam), anti-phospho-p65 (Ser536; Cell

Signaling), and anti-ß-actin (Cell Signaling).

Data analysis
All data was analyzed using Prism software (GraphPad4, San

Diego, CA). Kaplan-Meier survival curves were analyzed by the

log rank test. Differences in viral burden, cytokine levels and blood

chemistries were analyzed by the Mann-Whitney test.

Supporting Information

Figure S1 Serum cytokine levels in CHIKV-infected
mice. Ifnar2/2, CD11c Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice

(n = 6 for each group) were infected with 10 PFU of CHIKV.

Seventy-two hours later, serum was collected and the concentra-

tion of IL-1ß, IL-6, and TNF-a present was determined. Mean

values and SD are shown. Asterisks indicate differences that are

statistically significant (*, P,0.05).

(PDF)

Figure S2 Levels of cytokines, ISGs, and chemokines in
WT and KO DCs after WNV infection. qRT-PCR of WT,

Mavs2/2, Ifnar2/2, and Mavs2/26Ifnar2/2 DKO DCs 24 and

48 hours after WNV infection. Relative RNA levels of IL-1ß, IL6,

CCL5, IFIT1, IFIT2, and IFIT3 are shown and compared to

uninfected cells. Mean values 6 SD are shown. Asterisks indicate

differences that are statistically significant (*, P,0.05; **, P,0.01).

(PDF)

Figure S3 Effects of the NLRP3 inflammasome on
cytokine induction. BMDCs (n = 3) from C57BL/6 or

Nlrp32/2 mice were pretreated with 25 mg/ml of the IFNAR

receptor blocking antibody MAR1-5A3 or an isotype control GIR-

208 for 30 minutes prior to infection with WNV and at 48 hours

cells were collected. A. Western blot showing the expression of

STAT1, the ISG IFIT2, the WNV protein NS3, and IL-1ß

cleavage. B. Viral titers from the treated BMDCs were determined

by a focus-forming assay. Data are shown as FFU per ml. Error

bars indicate SD. C. Relative cytokine mRNA levels at 48 hours

from WT or Nlrp32/2 BMDCs infected with WNV after

treatment with MAR1-5A3 or an isotype control MAb. Gene

expression was measured by qRT-PCR and normalized to Gapdh

levels. Data is displayed as the fold increase compared to untreated

cells on a log2 scale. Data represent the average of three

independent experiments. Error bars indicate SD. The limit of

detection was assigned as a value log2 DDCt of 22. D. The

concentration of IL-1b, IL-6 and TNF-a in serum from the treated

WT and Nlrp32/2 mice was determined by cytokine bioplex assay.

Mean values 6 SD are shown. E–G. WT, Nlrp32/2, caspase-1/

112/2 or IL-1R2/2 mice were pretreated one day prior to WNV

infection with 1 mg (40 mg/kg) of the IFNAR receptor blocking

antibody MAR1-5A3 or isotype control MAb (GIR-208) prior. At

72 hours after infection, serum was collected and analyzed for

ALT (E), AST (F), and glucose (G).

(PDF)

Figure S4 Impact of targeted deletion of mannose
binding lectins, C4, or C3a receptor on cytokine levels,
liver injury, and glycemia in mice lacking IFNAR
signaling and infected with WNV. WT, Mbl-a2/26Mbl-c2/

2 (MBL/AC2/2), C42/2 or C3aR2/2 mice were pretreated with

1 mg (40 mg/kg) of the IFNAR receptor blocking antibody

MAR1-5A3 for one day prior to infection with WNV. At

72 hours, serum was collected and analyzed for proinflammatory

cytokines (IL-1ß, IL-6, and TNF-a) and levels of glucose, AST,

and ALT. The results are the average of at least two independent

experiments for each genotype with n = 6 to 8 mice per group.

Error bars and asterisks indicate SD and differences that are

statistically significant (*, P,0.05; ***, P, ,0.001), respectively.

(PDF)

Table S1 Cytokine levels in serum of Ifnar2/2, CD11c
Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice during CHIKV
infection. Ifnar2/2, CD11c Cre+ Ifnarf/f, and Cre2 Ifnarf/f mice

(n = 13 for each group) were infected with 10 PFU of CHIKV.

Seventy-two hours later, serum was collected and the concentra-

tion of cytokines was determined by bioplex assay. Mean (pg/ml)

6 SD are shown and P values are compared to Cre2 Ifnarf/f mice.

Data are pooled from two independent experiments. ns indicates

data that are not statistically different.

(DOCX)

Acknowledgments

We gratefully acknowledge Ulrich Kalinke and Robert Schreiber for

providing the Ifnarf/f, CD11c Cre+ Ifnarf/f, and LysM Cre+ Ifnarf/f mice.

Author Contributions

Conceived and designed the experiments: AKP HJR XW MSS JPA MG

MSD. Performed the experiments: AKP HJR XW SA BS MG KYK MSS.

Analyzed the data: AKP HJR XW MG MSS JPA MG MSD. Wrote the

paper: AKP MSS JPA MG MSD.

References

1. Isaacs A, Lindenmann J (1957) Virus Interference. I. The Interferon.

Proceedings of the Royal Society of London Series B - Biological Sciences

147: 258–267.

2. Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207: 2053–

2063.

3. Cho H, Proll SC, Szretter KJ, Katze MG, Gale M, Jr., et al. (2013) Differential

innate immune response programs in neuronal subtypes determine susceptibility

to infection in the brain by positive-stranded RNA viruses. Nat Med 19: 458–

464.

4. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A

diverse range of gene products are effectors of the type I interferon antiviral

response. Nature 472: 481–485.

5. Corbi AL, Lopez-Rodriguez C (1997) CD11c integrin gene promoter activity

during myeloid differentiation. Leuk Lymphoma 25: 415–425.

6. Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, et al. (1990)

The distinct leukocyte integrins of mouse spleen dendritic cells as identified with

new hamster monoclonal antibodies. J Exp Med 171: 1753–1771.

7. Vinay DS, Kwon BS (2010) CD11c+CD8+ T cells: Two-faced adaptive immune

regulators. Cellular Immunology 264: 18–22.

8. Suthar MS, Diamond MS, Gale M, Jr. (2013) West Nile virus infection and

immunity. Nat Rev Microbiol 11: 115–128.

9. Byrne SN, Halliday GM, Johnston LJ, King NJC (2001) Interleukin-1[bgr] But

Not Tumor Necrosis Factor is Involved in West Nile Virus-Induced Langerhans

Cell Migration from the Skin in C57BL//6 Mice. 117: 702–709.

10. Lim PY, Behr MJ, Chadwick CM, Shi PY, Bernard KA (2011) Keratinocytes are

cell targets of West Nile virus in vivo. J Virol 85: 5197–5201.

11. Johnston LJ, Halliday GM, King NJ (2000) Langerhans cells migrate to local

lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol

114: 560–568.

12. Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal

West Nile virus infection by restricting cellular tropism and enhancing neuronal

survival. J Virol 79: 13350–13361.

13. Suthar MS, Brassil MM, Blahnik G, McMillan A, Ramos HJ, et al. (2013) A

Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is

MAVS-Dependent Virus-Induced Sepsis

PLOS Pathogens | www.plospathogens.org 18 April 2014 | Volume 10 | Issue 4 | e1004086



Regulated by Antiviral Genes and Innate Immune Cellular Processes. PLoS
Pathog 9: e1003168.

14. Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, et al. (2010) IPS-1 Is

Essential for the Control of West Nile Virus Infection and Immunity. PLoS
Pathog 6: e1000757.

15. Durrant DM, Robinette ML, Klein RS (2013) IL-1R1 is required for dendritic

cell-mediated T cell reactivation within the CNS during West Nile virus
encephalitis. J Exp Med 210: 503–516.

16. Kumar M, Roe K, Orillo B, Muruve DA, Nerurkar VR, et al. (2013)

Inflammasome Adaptor Protein Apoptosis-Associated Speck-Like Protein
Containing CARD (ASC) Is Critical for the Immune Response and Survival

in West Nile Virus Encephalitis. J Virol 87: 3655–3667.

17. Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, et al. (2012) IL-1beta
signaling promotes CNS-intrinsic immune control of West Nile virus infection.

PLoS Pathog 8: e1003039.

18. Pinto AK, Daffis S, Brien JD, Gainey MD, Yokoyama WM, et al. (2011) A
temporal role of type I interferon signaling in CD8+ T cell maturation during

acute West Nile virus infection. PLoS Pathog 7: e1002407.

19. Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, et al. (2008)
Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit

autoimmunity in the central nervous system. Immunity 28: 675–686.

20. Cervantes-Barragan L, Kalinke U, Zust R, Konig M, Reizis B, et al. (2009) Type

I IFN-mediated protection of macrophages and dendritic cells secures control of

murine coronavirus infection. J Immunol 182: 1099–1106.

21. Kernbauer E, Maier V, Stoiber D, Strobl B, Schneckenleithner C, et al. (2012)

Conditional Stat1 ablation reveals the importance of interferon signaling for

immunity to Listeria monocytogenes infection. PLoS Pathog 8: e1002763.

22. Thackray LB, Duan E, Lazear HM, Kambal A, Schreiber RD, et al. (2012)

Critical Role for Interferon Regulatory Factor 3 (IRF-3) and IRF-7 in Type I

Interferon-Mediated Control of Murine Norovirus Replication. J Virol 86:
13515–13523.

23. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile virus infection: A
balance between virulence, innate and adaptive immunity, and viral evasion.

J Virol 80: 9349–9360.

24. Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by
West Nile encephalitis virus. J Virol 77: 13203–13213.

25. Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB (2001) West

Nile virus infection in the golden hamster (Mesocricetus auratus): a model for
West Nile encephalitis. Emerg Infect Dis 7: 714–721.

26. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, et al. (2011)

Type I interferon is selectively required by dendritic cells for immune rejection of
tumors. J Exp Med 208: 1989–2003.

27. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, et al.

(2007) Characterization of Reemerging Chikungunya Virus. PLoS Pathog 3:
e89.

28. Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, et al. (2008) A Mouse

Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling
Are Risk Factors for Severe Disease. PLoS Pathog 4: e29.

29. Miller SI, Wallace RJ, Jr., Musher DM, Septimus EJ, Kohl S, et al. (1980)

Hypoglycemia as a manifestation of sepsis. Am J Med 68: 649–654.

30. Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN (2013)

The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and
Inflammasome Activation. Cell 153: 348–361.

31. Daffis S, Samuel MA, Keller BC, Gale M, Jr., Diamond MS (2007) Cell-specific

IRF-3 responses protect against West Nile virus infection by interferon-
dependent and -independent mechanisms. PLoS Pathog 3: e106.

32. Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M, Jr., et al. (2008)

Interferon regulatory factor IRF-7 induces the antiviral alpha interferon
response and protects against lethal West Nile virus infection. J Virol 82:

8465–8475.

33. Daffis S, Suthar MS, Gale M, Jr., Diamond MS (2009) Measure and
countermeasure: type I IFN (IFN-alpha/beta) antiviral response against West

Nile virus. J Innate Immun 1: 435–445.

34. Daffis S, Suthar MS, Szretter KJ, Gale M, Jr., Diamond MS (2009) Induction of
IFN-beta and the innate antiviral response in myeloid cells occurs through an

IPS-1-dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog 5:
e1000607.

35. Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, et al. (2013) IRF-3,

IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid
Dendritic Cells Downstream of MAVS Signaling. PLoS Pathog 9: e1003118.

36. Lazear HM, Pinto AK, Vogt MR, Gale M, Jr., Diamond MS (2011) Beta

interferon controls West Nile virus infection and pathogenesis in mice. J Virol
85: 7186–7194.

37. Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, et al. (2013) Development

of a Highly Protective Combination Monoclonal Antibody Therapy against
Chikungunya Virus. PLoS Pathog 9: e1003312.

38. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, et al. (2002)

Transcriptional profiling of interferon regulatory factor 3 target genes: direct
involvement in the regulation of interferon-stimulated genes. J Virol 76: 5532–

5539.

39. Diamond MS, Farzan M (2013) The broad-spectrum antiviral functions of IFIT
and IFITM proteins. Nat Rev Immunol 13: 46–57.

40. Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS (2008) Tumor

necrosis factor alpha protects against lethal West Nile virus infection by

promoting trafficking of mononuclear leukocytes into the central nervous system.
J Virol 82: 8956–8964.

41. Yamanaka A, Hendrianto E, Mulyatno KC, Susilowati H, Ginting AP, et al.

(2013) Correlation between complement component levels and disease severity
in dengue patients in Indonesia. Jpn J Infect Dis 66: 366–374.

42. Bokisch VA, Top FH, Jr., Russell PK, Dixon FJ, Muller-Eberhard HJ (1973)

The potential pathogenic role of complement in dengue hemorrhagic shock
syndrome. N Engl J Med 289: 996–1000.

43. Bokisch VA, Muller-Eberhard HJ, Dixon FJ (1973) The role of complement in

hemorrhagic shock syndrome (dengue). Trans Assoc Am Physicians 86: 102–
110.

44. Goring K, Huang Y, Mowat C, Leger C, Lim TH, et al. (2009) Mechanisms of

human complement factor B induction in sepsis and inhibition by activated
protein C. Am J Physiol Cell Physiol 296: C1140–1150.

45. Purtha WE, Chachu KA, Virgin HWt, Diamond MS (2008) Early B-cell

activation after West Nile virus infection requires alpha/beta interferon but not
antigen receptor signaling. J Virol 82: 10964–10974.

46. Tang BL (2012) The cell biology of Chikungunya virus infection. Cell Microbiol

14: 1354–1363.

47. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, et al. (2012) Into the

Eye of the Cytokine Storm. Microbiology and Molecular Biology Reviews 76:
16–32.

48. Wang H, Ma S (2008) The cytokine storm and factors determining the sequence

and severity of organ dysfunction in multiple organ dysfunction syndrome. The
American Journal of Emergency Medicine 26: 711–715.

49. Dong T, Moran E, Vinh Chau N, Simmons C, Luhn K, et al. (2007) High pro-

inflammatory cytokine secretion and loss of high avidity cross-reactive cytotoxic
T-cells during the course of secondary dengue virus infection. PLoS One 2:

e1192.

50. Hober D, Delannoy AS, Benyoucef S, De Groote D, Wattre P (1996) High levels
of sTNFR p75 and TNF alpha in dengue-infected patients. Microbiol Immunol

40: 569–573.

51. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E (2006) Murine model
for dengue virus-induced lethal disease with increased vascular permeability.

J Virol 80: 10208–10217.

52. Davis BK, Wen H, Ting JP-Y (2011) The Inflammasome NLRs in Immunity,
Inflammation, and Associated Diseases. Annu Rev Immunol 29: 707–735.

53. Martinon F, Burns K, Tschopp J (2002) The Inflammasome: A Molecular

Platform Triggering Activation of Inflammatory Caspases and Processing of
proIL-b. Molecular Cell 10: 417–426.

54. Arjona A, Ledizet M, Anthony K, Bonafé N, Modis Y, et al. (2007) West Nile
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