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Cooperative Role of Antibodies against Heat-Labile Toxin and the
EtpA Adhesin in Preventing Toxin Delivery and Intestinal
Colonization by Enterotoxigenic Escherichia coli

Koushik Roy,a David J. Hamilton,b and James M. Fleckensteina,c,d*

Departments of Medicine,a Comparative Medicine,b and Molecular Sciences,c University of Tennessee Health Sciences Center, Memphis, Tennessee, USA, and Medicine
Service, Veterans Affairs Medical Center, Memphis, Tennessee, USAd

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in developing countries, where it is responsi-
ble for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of
known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to
explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC
heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonization in vivo and toxin delivery to
epithelial cells in vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this ad-
hesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against
either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intesti-
nal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be
used to enhance current approaches to ETEC vaccine development.

Enterotoxigenic Escherichia coli (ETEC) strains comprise a ge-
netically and phenotypically diverse group of organisms that

share the ability to produce and effectively deliver heat-labile (LT)
and/or heat-stable (ST) toxins to effector sites in the small intes-
tine (14). Effective delivery of these toxins results in increases of
intracellular concentrations of cyclic nucleotides, cyclic AMP
(cAMP) and cGMP, respectively. Both toxins stimulate cellular
kinases responsible for the phosphorylation of the cystic fibrosis
transmembrane regulatory channel (CFTR) in the cell membrane
(7, 17). Activation of the CFTR in turn leads to efflux of chloride
into intestinal lumen with commensurate salt and water losses
responsible for the watery diarrhea associated with these patho-
gens.

ETEC strains are a leading cause of diarrheal illness in devel-
oping countries, where they are responsible for hundreds of thou-
sands of deaths, largely among young children. Although ETEC
strains were discovered more than 40 years ago, the development
of a broadly protective vaccine has been hampered by a number of
factors (5, 35), including (i) the lack of complete sustained pro-
tection afforded by anti-LT immunity, (ii) the poor inherent im-
munogenicity of ST molecules, typically short peptides, and (iii)
the antigenic heterogeneity of plasmid-encoded fimbrial coloni-
zation factors (20), one of the principle targets of ETEC vaccines
to date.

Despite these challenges, the development of immunity fol-
lowing either a naturally occurring (4, 34) or an experimental (22)
infection with ETEC has suggested that the development of an
ETEC vaccine is technically feasible. In addition, recent molecular
(30, 31) and immunoproteomic (26) studies have demonstrated
that the pathogenesis of these organisms is considerably more
complex than previously appreciated, and consequently addi-
tional antigens have emerged that might be targeted in develop-
ment of a broadly protective vaccine.

In essence, ETEC vaccines must prevent the delivery of toxins
to their cognate epithelial cell receptors. Theoretically, this might

be accomplished by direct toxin neutralization or by interrupting
steps that facilitate effective delivery of these molecules, an ap-
proach similar to that used in acellular subunit vaccines for per-
tussis (11, 18), which stimulate antibodies against both adhesins
of Bordetella pertussis and pertussis toxin (36).

Interestingly, pertussis toxin, which, like LT, possesses ADP-
ribosylating activity, plays a clear role in promoting mucosal in-
fection (2, 6). Similarly, previous studies have suggested that in
addition to stimulating fluid efflux into the lumen of the small
intestine, LT likely plays a complex role in ETEC pathogenesis
since it facilitates adherence to intestinal epithelial cells in vitro
(21) and promotes small-intestinal colonization in vivo (1, 3).

Also similar to B. pertussis, ETEC produces multiple potential
adhesins. The recently identified EtpA adhesin is a large extracel-
lular protein belonging to the two-partner secretion family of
molecules (16), for which filamentous hemagglutinin from B. per-
tussis is the prototype. Although vaccination with EtpA has been
shown to induce significant protection against intestinal coloni-
zation (27, 28), further studies are needed to investigate the utility
of EtpA as a component of subunit vaccines for ETEC. We dem-
onstrate here that vaccination with LT and EtpA provides robust
protection against intestinal colonization in a murine model, that
EtpA is required for optimal delivery of LT to epithelial cells, and
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likewise that antibodies against EtpA enhance LT neutralization in
vitro compared to antitoxin alone.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The strains used in these studies
are outlined in Table 1. Strains were grown in Luria broth with antibiotics
as appropriate. Strain jf1668 containing a chloramphenicol resistance cas-
sette interrupting the etpA gene (EtpA::Cmr) was grown in chloramphen-
icol (15 �g/ml). Strain jf876 containing a kanamycin resistance cassette in
the lacZYA locus (LacZYA::Kmr) was grown in kanamycin, (25 �g/ml).
Strains containing recombinant plasmids were grown in the presence of
ampicillin (100 �g/ml). EtpA expression from plasmid pJY019 was in-
duced at a final concentration of 0.0002% arabinose as previously de-
scribed (15).

Antibody purification. Polyclonal rabbit antisera against the A and B
subunits of LT were provided by John Clements of Tulane University.
Polyclonal rabbit anti-EtpA antibodies were produced against a recombi-
nant 110-kDa fragment (16) as previously described. Antibodies were
purified from nonimmune sera (control) and from immune polyclonal
rabbit antisera using agarose-immobilized protein A-beads (Protein A
Plus Agarose; Pierce). Briefly, 100 �l of 50% agarose slurry was added
to 100 �l of sera, and the suspension was incubated at 4°C for 1 h.
Antibodies were eluted from beads in 500 �l of 1 M Tris (pH 8.8),
dialyzed with phosphate-buffered saline (PBS; pH 7.2), and concen-
trated to a final volume of �100 �l, resulting in antibody concentra-
tions of 200 to 400 �g/ml.

In vitro assessment of toxin delivery. Caco-2 epithelial cell monolay-
ers were infected with ETEC H10407, etpA mutant, or complemented
mutants at multiplicity of infection of �100 (bacteria/cell). Briefly, cul-
tures of bacteria grown overnight in Luria broth from frozen glycerol
stocks were diluted 1:100 and grown for 1 h. Then, 5 �l of each culture
with or without antibodies as indicated was then added to confluent
Caco-2 monolayers seeded into 96-well plates. For mutants comple-
mented with expression plasmids, the medium was supplemented with
0.0002% arabinose. Two hours after inoculation, the monolayers were
washed three times with tissue culture medium, and the medium was
replaced with 100 �l of fresh medium/well and returned to the incubator
(37°C, 5% CO2) for 1 h. cAMP competitive enzyme-linked immunosor-
bent assay (ELISA; Amersham/GE Healthcare) was then used to examine
the efficiency of toxin delivery as previously described (10).

LT and production of recombinant EtpA. The heat-labile toxin used
in these studies was kindly provided by John Clements. Recombinant
EtpA-myc-His was prepared as previously described from Top10(pJL017;
pJL030) (15). Briefly, Top10(pJL017; pJL030) was grown overnight in
ampicillin (100 �g/ml), diluted 1:100 into fresh medium, and grown to an
optical density at 600 nm of �0.5, and then the culture was induced with
0.0002% arabinose for an additional 2.5 h. The supernatant was recovered
and sterile-filtered through a 0.22-�m-pore-size low-protein-binding fil-

ter, concentrated by ultrafiltration using a 100K molecular-weight-cutoff
filter, and equilibrated with metal affinity chromatography equilibration
buffer (50 mM sodium phosphate, 300 mM NaCl [pH 7.0]) before bind-
ing to cobalt metal affinity resin (Talon; Clontech). Protein was eluted in
150 mM imidazole buffer as previously described and dialyzed against
PBS in the presence of protease inhibitors (Sigma).

Mouse immunization with LT and LT-EtpA. In LT dose-ranging
studies, groups of 10 mice (CD-1; Charles River) each were immunized
intranasally as previously described (28) with either 2.5 or 1 �g of LT or an
equal volume of PBS (controls) on days 0, 7, and 21. To evaluate EtpA
combined with LT, mice were immunized intranasally on days 0, 7, and 21
with 1 �g of LT with or without 20 �g of EtpA-myc-His. The Institutional
Animal Care and Use Committees of the University of Tennessee Health
Sciences Center and the VA Medical Center approved the studies de-
scribed here. All procedures involving mice complied with Public Health
Service guidelines and the Guide for the Care and Use of Laboratory Ani-
mals.

Assessment of immune responses to LT and EtpA vaccination. Im-
mune responses to LT and EtpA were determined by kinetic ELISA (37) as
previously described (19). Briefly, ELISA wells were incubated at 4°C
overnight with proteins at a final concentration of 4 �g/ml in 0.1 M
NaHCO3 buffer (pH 8.6), washed the following day with Tris-buffered

FIG 1 EtpA is required for optimal delivery of heat-labile toxin to intestinal
epithelial cells. The strains used in these experiments were as follows: wt,
H10407; etpA, jf1668 isogenic deletion mutant; etpA(pBAD/myc-HisA), trans-
formed with cloning vector alone; etpA(pJY019), etpA mutant complemented
with etpA locus expression plasmid. The graph depicts the mean cAMP values
(n � 3) � the standard errors of the mean.

TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid Descriptiona Source or reference

Strains
H10407 Wild-type ETEC strain O78:H11; CFA/1; LT�/ST�; EtpA� 12, 13
jf876 �lacZYA::Kmr derivative of H10407 10
jf1668 Isogenic etpA mutant of H10407; etpA::Cmr 27
jf1697 jf1668 complemented with pJY019 expression plasmid 30
jf1700 jf1668 transformed with pBAD/myc-HisA vector control plasmid 30
jf1696 Top10(pJL017; pJL030): EtpA-myc-His expression strain 15, 30

Plasmids
pJY019 pBAD/myc-HisA-based etpBAC locus expression plasmid 16
pBAD/myc-HisA Arabinose-inducible expression plasmid Invitrogen

a Cmr, chloramphenicol resistance; Kmr, kanamycin resistance.
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saline containing 0.005% Tween 20 (TBS-T), and blocked with 1% bovine
serum albumin (BSA) in TBS-T for 1 h at 37°C prior to the addition of the
samples. Sera were diluted 1:500 in TBS-T with 1% BSA, and 100 �l was
added to each ELISA well, followed by incubation at 37°C for 1 h. After
three washes with TBS-T, horseradish peroxidase-conjugated secondary
antibody (goat anti-mouse IgA, IgM, and IgG) was added at a final dilu-
tion of 1:5,000, followed by incubation for an additional hour before
washing and development with TMB (3,3=,5,5=-tetramethylbenzidine)-
peroxidase substrate (KPL).

Intestinal colonization studies in mice. The murine intestinal colo-
nization model of ETEC infection (1) was used to examine the potential
utility of LT and EtpA as immunogens. Briefly, mice were treated with
streptomycin (5 g/liter of drinking water) to eliminate competing flora. At
12 h prior to challenge with bacteria, food was withheld, and streptomycin
solution was replaced with sterile water. To reduce gastric acidity, mice
received famotidine at 50 mg/kg via intraperitoneal injection 2 h prior to
administration of bacteria. The mice then received 104 to 105 CFU of
strain jf876 containing a Kmr marker in the lacZYA locus by gavage. At 24
h after challenge, the mice were sacrificed, and the small intestines were
harvested. Ileal segments were treated with 5% saponin solution for 10
min, followed by plating of serial dilutions in PBS onto Luria agar plates

containing 25 �g of kanamycin/ml. Each experiment used 10 mice in each
experimental group, and challenge studies were performed on day 42 after
the first immunization.

RESULTS
EtpA is required for optimal delivery of LT to epithelial cells.
Although the cellular effects of LT and the structurally similar
cholera toxin have been carefully detailed, less is known about the
mechanism by which LT is delivered efficiently to host epithelial
cells. Studies to date have demonstrated that etpA is essential for
the efficient adherence of EtpA-producing ETEC strains in vitro
and for intestinal colonization in a murine model of infection (16,
28, 30). Although both bacterial adhesion and intestinal coloniza-
tion are felt to be important prerequisites for efficient toxin deliv-
ery (14), the precise role of EtpA in toxin delivery was previously
unknown. However, as shown in Fig. 1, etpA deletion mutants
were less efficient at stimulating cAMP responses in target intes-
tinal epithelial cells relative to wild-type ETEC (H10407) or the
complemented mutant. These data support earlier assumptions
regarding the importance of bacterial adhesion and provide fur-
ther evidence that toxin delivery is a complex process involving
multiple virulence genes (10, 31).

Antibodies against LT and EtpA impair toxin delivery by
ETEC. The involvement of EtpA in toxin delivery by ETEC suggests
that generating antibodies against this adhesin could complement
existing approaches, including the direct neutralization of toxin. In-
terestingly, there is scant existing data regarding whether anti-LT an-
tibodies can neutralize toxin as delivered by the bacteria, and earlier
published reports had suggested that ETEC can deliver toxin in a way
that circumvents neutralization (23, 39). Therefore, we conducted
additional in vitro experiments to examine the utility of both anti-
EtpA and anti-LT antibodies in mitigating toxin delivery to target
intestinal epithelial cells. As shown in Fig. 2a, antibodies against either
subunit of the heat-labile toxin inhibited the LT-mediated activation
of cAMP in target epithelial cells in a dose-dependent fashion, up to a
dilution of 1:50 (dilution factor of 0.02). Interestingly, anti-EtpA an-
tibody exhibited a similar dose-dependent inhibition of toxin deliv-
ery that was significantly enhanced by the addition of subinhibitory
concentrations of either anti-LTA or anti-LTB antibodies (Fig. 2b).

Immunization with purified heat-labile toxin impairs intes-
tinal colonization. In earlier studies, we demonstrated that vacci-
nation with outer membrane vesicles or commercial preparations

FIG 2 Additive role of anti-EtpA and anti-LT antibody in preventing toxin
delivery by ETEC in vitro. (a) cAMP activation in Caco-2 cells infected with
ETEC H10407 in the presence of antibodies against the heat-labile toxin A
(LTA) and B (LTB) subunits. (b) cAMP activation in target Caco-2 cells after
infection with H10407 in the presence of anti-EtpA antibody with or without
subinhibitory concentrations (0.02 dilution factor) of anti-LTA or anti-LTB
antibody. Comparisons between groups using unpaired (two-tailed, Welch’s
correction) t testing are indicated: *, P � 0.02; **, P � 0.004; and ***, P �
0.001.

FIG 3 Immunization with heat-labile toxin impairs colonization in a murine model of ETEC infection. (a) Determination of total (IgG, IgM, and IgA) anti-LT
serum antibody after intranasal administration of heat-labile toxin by kinetic ELISA expressed in mU/min. Dashed horizontal lines represent geometric mean
values. (b) Anti-LT fecal IgA antibody after vaccination. (c) Reduction in intestinal colonization with ETEC (jf876) after immunization with either 2.5 or 1 �g
of LT per dose (statistical comparisons by Mann-Whitney two-tailed nonparametric testing for n � 10 mice in all groups).
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of LT delivered intranasally at doses of 5 or 2.5 �g significantly
impaired intestinal colonization with ETEC (29). To examine the
ability of LT to inhibit intestinal colonization at lower doses and to
investigate its potential use as an adjuvant for other antigens, we
conducted additional dose ranging studies with highly purified
LT, followed by challenge with ETEC to examine the effect of
immunization on intestinal colonization. As shown in Fig. 3, im-
munization with either 2.5- or 1-�g doses of purified LT resulted
in both serum and fecal antibodies directed against the heat-labile
toxin (Fig. 3a and b), with the higher dose of LT engendering
correspondingly higher anti-LT fecal IgA (geometric mean kinetic
ELISA values of 3.43 mU/min) compared to the 1-�g dose (1.94
mU/min). Similarly, the degree of intestinal colonization in these
studies paralleled the mucosal antibody responses to LT in each
group (Fig. 3c), with the higher dose affording significant protec-
tion against colonization relative to controls.

Vaccination with LT-adjuvanted EtpA prevents ETEC intes-
tinal colonization. One potential approach to the development of
ETEC vaccines is the identification of candidate immunogens that

could be combined in a recombinant subunit approach. The in
vitro studies included here would suggest that combining an
EtpA-based anti-adhesin strategy with LT-antitoxin could prove
beneficial. To investigate this possibility, we vaccinated mice with
either LT alone at the 1-�g dose or this dose of LT combined with
EtpA. As shown in Fig. 4, vaccination of mice with either LT or the
combination of antigens stimulated significant serum (Fig. 4a), as
well as mucosal (Fig. 4b and c), antibody responses to the toxin.
Likewise, vaccination with LT-adjuvanted EtpA stimulated signif-
icant serum (Fig. 4d) and fecal (Fig. 4e and f) antibody responses
to the adhesin. Finally, vaccination with LT-adjuvanted EtpA
yielded significant protection against ETEC infection (Fig. 4g) rel-
ative to unimmunized controls.

DISCUSSION

Now more than 40 years after their discovery (32), the enterotoxi-
genic E. coli remain a leading cause of death due to diarrheal illness
in developing countries, and an essential target for vaccine devel-
opment (38). Although most vaccinology efforts for these patho-

FIG 4 Vaccination with EtpA adjuvanted by LT stimulates mucosal immune responses to both proteins and protects against intestinal colonization with ETEC.
(a to f) Antibody responses determined by kinetic ELISA after vaccination with either LT alone (1 �g/dose), a combination of LT (1 �g) and EtpA (20 �g/dose),
or PBS controls. Horizontal lines indicate geometric means. (a) Total anti-LT serum antibody (IgG, IgM, and IgA). (b) Total fecal antibody responses to LT. (c)
Anti-LT fecal IgA. (d) Serum anti-EtpA (IgG, IgM, and IgA). (e) Anti-EtpA total fecal antibody. (f) Anti-EtpA fecal IgA. (g) Intestinal colonization with ETEC
strain jf876 after immunization with LT or EtpA/LT. Statistical comparisons by Mann-Whitney two-tailed nonparametric testing for n � 10 mice/group are
indicated.
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gens have to date focused on a relatively small number of antigens,
namely, colonization factors and heat-labile toxin (5, 38), techno-
logical advances, including proteomics (26) and genomics (33),
have permitted the identification of additional antigens for con-
sideration in ETEC vaccines.

Given the underlying plasticity of E. coli genomes in general, it
is likely that success in formulating a broadly protective ETEC
vaccine will rely on the inclusion of multiple antigens to achieve
broad representation. Similar to other E. coli pathotypes and other
pathogens (25), the genome of ETEC is considered to be “open”
(24), in that sequencing new ETEC genomes will theoretically add
an unlimited number of genes to the ETEC pangenome. Never-
theless, of the ETEC sequences available to date, some genes ap-
pear to be represented in a diverse population of ETEC (33).

Among the genes that appear to be relatively conserved in the
ETEC pathovar, based on currently available sequence data, are
those encoding the EtpA two-partner secretion system, which ap-
pears in six of eight (75%) ETEC genomes sequenced to date (8,
24, 33). Likewise, EtpA was recently shown to be present in a
diverse population of ETEC obtained in Chile, suggesting that
EtpA is both conserved and geographically dispersed among these
pathogens (9). Importantly, EtpA appears to be significantly im-
munogenic since it was detected both in immunoproteomic stud-
ies using convalescent-phase sera from patients with ETEC (26)
and after experimental infection in mice. In addition, data have
demonstrated that EtpA affords protection in a murine model of
ETEC infection and is required for efficient intestinal colonization
(27, 28).

The studies here further demonstrate that effective pathogen-
host interactions are paramount in directing toxin delivery. Ad-
hesion of bacteria to the target epithelium is felt to be an essential
prerequisite for toxin delivery by ETEC (39) and, indeed, earlier in
vitro studies demonstrated that both flagellar motility and the in-
timate interaction of ETEC with host cells were strict require-
ments for LT-mediated activation of cAMP (10). The present ex-
periments demonstrate that EtpA, thought to mediate adhesion
by acting as a molecular bridge between ETEC flagella and host
cells (30), likewise plays an important role in the delivery of heat-
labile toxin. Interestingly, EtpA antibodies exhibited at least an
additive inhibitory effect on cAMP activation in intestinal epithe-
lial cells when combined with antibodies directed against either
the A or the B subunit of the toxin, suggesting that a multivalent
strategy designed to interdict delivery of toxin at multiple levels
could be used in the rational design of ETEC vaccines.

Likewise, the animal infection studies reported here appear to
support this concept. Because earlier data suggested that LT plays
a significant role in bacterial adhesion (21), as well as in intestinal
colonization (1, 3), both important steps in ETEC pathogenesis,
we sought to determine whether LT could be combined with EtpA
to act both as a mucosal adjuvant and an immunogen. Together,
the data from the present study suggest that LT-based vaccine
strategies could serve as a platform for adopting additional novel
antigens for inclusion in a multivalent approach that yields broad-
based protection against ETEC.
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