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RESEARCH Open Access

Sexually dimorphic effect of aging on skeletal
muscle protein synthesis
Gordon I Smith, Dominic N Reeds, Angela M Hall, Kari T Chambers, Brian N Finck and Bettina Mittendorfer*

Abstract

Background: Although there appear to be no differences in muscle protein turnover in young and middle aged
men and women, we have reported significant differences in the rate of muscle protein synthesis between older
adult men and women. This suggests that aging may affect muscle protein turnover differently in men and
women.

Methods: We measured the skeletal muscle protein fractional synthesis rate (FSR) by using stable isotope-labeled
tracer methods during basal postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic-
euglycemic clamp in eight young men (25–45 y), ten young women (25–45 y), ten old men (65–85 y) and ten old
women (65–85 y).

Results: The basal muscle protein FSR was not different in young and old men (0.040±0.004 and 0.043±0.005%�h-1,
respectively) and combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR
both in young (to 0.063±0.006%�h-1) and old (to 0.051±0.008%�h-1) men but the increase (0.023±0.004 vs.
0.009±0.004%�h-1, respectively) was ~60% less in the old men (P=0.03). In contrast, the basal muscle protein FSR
was ~30% greater in old than young women (0.060±0.003 vs. 0.046±0.004%�h-1, respectively; P< 0.05) and
combined insulin, glucose and amino acid infusion significantly increased the muscle protein FSR in young (P< 0.01)
but not in old women (P=0.10) so that the FSR was not different between young and old women during the
clamp (0.074±0.006%�h-1 vs. 0.072±0.006%�h-1, respectively).
Conclusions: There is sexual dimorphism in the age-related changes in muscle protein synthesis and thus the
metabolic processes responsible for the age-related decline in muscle mass.

Keywords: Muscle protein turnover, Aging, Sarcopenia, Amino acid

Background
Understanding how aging affects muscle protein metab-
olism is important in order to devise adequate counter-
measures for the age-related loss of muscle mass. It is
well known that there is sexual dimorphism with regards
to body composition. Healthy adult women have less
lean body and muscle mass and more fat than men [1-3]
and the age-related decrease in muscle mass is slower in
women than in men [1,4-6]. Insight into the mechanism
(s) responsible for these differences in phenotype is lim-
ited, however. Several studies indicate that there is no
difference in the basal rate of muscle protein synthesis
[7-11] or muscle protein breakdown [8] or the anabolic

responses to nutritional stimuli [11] and resistance exer-
cise [7] in young and middle-aged adult men and
women. On the other hand, we have recently found that
the basal rate of muscle protein synthesis is greater in
obese, old women than in obese, old men [12]. In
addition, we found that obese, old women, but not
obese, old men, failed to significantly increase the rate of
muscle protein synthesis in response to mixed meal in-
gestion [12]. This suggests that differences in muscle
protein turnover between men and women might be
most apparent when muscle mass is changing (i.e., dur-
ing aging vs. earlier adulthood when muscle mass is
steady) and that aging affects muscle protein turnover
differently in men and women. To our knowledge, only
one study so far has evaluated the effect of both sex and
aging on basal muscle protein turnover [13]. However,
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this study was limited to basal, postabsorptive conditions
only and included only old men with hypogonadism and
old women who had very low serum androgen concentra-
tions, which may have confounded the results. Hypoan-
drogenemia is associated with a reduced lean body mass
[14] and treatment with testosterone increases the muscle
protein synthesis rate [15-20].
The primary purpose of our study therefore was to

evaluate the effect of aging on the basal rate of muscle
protein synthesis and the anabolic response to combined
hyperaminoacidemia and hyperinsulinemia in men and
women. We hypothesized that: i) the anabolic response
to increased amino acid and insulin availability would be
reduced in old compared with young subjects (both men
and women), ii) the age-related decline in the anabolic
response would be greater in women than in men, and
iii) the basal rate of muscle protein synthesis would be
greater in old compared with young women. We also
measured the concentrations of myostatin and follistatin
in plasma and the expression of the genes encoding
myostatin, myoD and follistatin in muscle to gain infor-
mation of potential differences in cellular factors that
regulate protein synthesis in men and women and young
and old subjects. Myostatin is a muscle growth inhibitor
which is produced primarily in skeletal muscle cells, cir-
culates in the blood and acts on muscle tissue by block-
ing genes induced during differentiation (e.g., myoD and
myogenin, which are myogenic growth factors [21]) and
by inhibiting the anabolic signaling cascade and muscle
protein synthesis [22-26]. Follistatin is ubiquitously
expressed, circulates in the blood and binds to and thereby
inhibits myostatin [27,28]. We therefore hypothesized
that: i) muscle myostatin gene expression and myostatin
concentration in plasma would be greater in old than
young subjects and greater in old men than old women
whereas ii) muscle myoD and follistatin mRNA expression
and plasma follistatin concentration would be greater in
young than old subjects and greater in old women than
old men.

Methods
Subjects
Thirty-eight non-obese subjects (8 men and 10 women
who were between 25 and 45 y old and 10 men and 10
women who were between 65 and 85 y old) participated
in this study. Data from 8 young men and 8 young
women have previously been reported [11]. None of the
subjects engaged in regular physical activities (i.e., they
exercised ≤1.5 h�wk-1) or took medications (including
hormonal contraceptives or hormone replacement ther-
apy), and none reported excessive alcohol intake or con-
sumed tobacco products. All subjects were considered
to be in good health after completing a comprehensive
medical evaluation, which included a history and physical

examination, standard blood tests, and an oral glucose
(75 g) tolerance test (Table 1). Written informed consent
was obtained from all subjects before their participation in
the study, which was approved by the Human Research
Protection Office at Washington University School of
Medicine in St. Louis, MO.

Experimental protocol
Approximately two weeks before the protein metabolism
study, subjects' total body mass, fat mass, fat-free mass
(FFM) and appendicular muscle mass (Table 1) were
measured by using dual-energy X-ray absorptiometry
(Delphi-W densitometer, Hologic, Waltham, MA) [29].
The appendicular muscle mass index, a measure of
muscle mass adjusted for individual differences in height
was calculated by dividing total appendicular muscle
mass (kg) by height squared (m2) [30]. Subjects were
instructed to adhere to their usual diet and to refrain
from vigorous physical activities for three days before
the protein metabolism study. We did not control for
menstrual cycle phase in our young women because
Miller et al. [31] demonstrated that the rate of muscle
protein synthesis is not different during the follicular
and luteal phases of the menstrual cycle and we [11]
have found that there is no relationship between plasma
estradiol or progesterone concentrations and the muscle
protein FSR in young women. The evening before the
study, subjects were admitted to the Clinical Research
Unit at Washington University School of Medicine. At
2000 h, they consumed a standard meal providing
50.2 kJ per kg body weight (15% as protein, 55% as car-
bohydrates and 30% as fat). Subjects then rested in bed
and fasted (except for water) until completion of the
study the next day. At ~0600 h on the following morn-
ing, a cannula was inserted into a vein in the forearm or
the antecubital fossa of one arm for the infusion of
stable isotope labeled tracers, insulin, glucose, and
amino acids; another cannula was inserted into a vein of
the contralateral hand (which was warmed to 55°C) to
obtain arterialized blood samples. At ~0800 h, primed,
constant infusions of [ring-2H5]phenylalanine (priming
dose: 2.8 μmol�kg FFM-1, infusion rate: 0.08 μmol�kg
FFM-1�min-1) and [6,6-2H2]glucose (priming dose:
18 μmol�kg body wt-1, infusion rate: 0.22 μmol�kg body
wt-1�min-1), both purchased from Cambridge Isotope La-
boratories Inc. (Andover, MA), were started and main-
tained for seven hours. Four hours after the start of the
tracer infusions, a hyperinsulinemic-hyperaminoacidemic-
euglycemic clamp was started and maintained for three
hours. Human insulin (Novolin R, Novo Nordisk, Prince-
ton, NJ) was infused at a rate of 20 mU�m-2 body sur-
face area (BSA)�min-1 (initiated with priming doses of
80 mU�m-2 BSA�min-1 for the initial 5 minutes and
40 mU�m-2 BSA�min-1 for an additional 5 minutes).
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Plasma amino acid availability was increased by providing
an intravenous amino acid mixture (Travasol 10%, Baxter,
Deerfield, IL) infused at a rate of 105 mg amino acids�kg
FFM-1�h-1 (priming dose: 35 mg amino acids�kg FFM-1).
During the insulin infusion, euglycemia at a blood glucose
concentration of ~5.5 mM was maintained by variable rate
infusion of 20% dextrose solution (Baxter, Deerfield, IL)
which was enriched (2.5%) with [6,6-2H2]glucose. To ad-
just for the increased plasma amino acid availability and
reduced hepatic glucose production during the clamp pro-
cedure, the [ring-2H5]phenylalanine and [6,6-2H2]glucose
infusion rates were increased to 0.12 μmol�kg FFM-1�min-1

(phenylalanine) and decreased to 0.11 μmol�kg body
wt-1 min-1 (glucose), respectively.
Blood samples (~3 ml each) were obtained before be-

ginning the tracer infusion and at 60, 90, 180, 210, 220,
230, 240, 270, 300, 330, 360, 390, 400, 410, and 420 min
to determine phenylalanine and glucose tracer-to-tracee
ratios (TTR) in plasma and plasma concentrations of in-
sulin, glucose, myostatin, follistatin, phenylalanine, and
leucine (thought to be a major regulator of muscle pro-
tein synthesis [32]). Additional blood samples (~1 ml
each) were obtained every 10 minutes during the clamp

procedure to monitor plasma glucose concentration.
Muscle tissue (~50-100 mg) was obtained under local
anesthesia (lidocaine, 2%) from the quadriceps femoris
by using a Tilley-Henkel forceps [33] at 1 h, 4 h and 7 h
after starting the tracer infusion to determine the muscle
protein fractional synthesis rate (FSR) during basal con-
ditions (1 h – 4 h) and during the hyperinsulinemic-
hyperaminoacidemic-euglycemic clamp (4 h – 7 h) and
the mRNA expressions (initial biopsy at 1 h only) of
myostatin, myoD, and follistatin.

Sample processing and analyses
To determine plasma glucose concentration, blood was
collected in pre-chilled tubes containing heparin, plasma
was separated immediately by centrifugation and glucose
concentration was measured immediately. All other
blood samples were collected in pre-chilled tubes con-
taining EDTA, plasma was separated by centrifugation
within 30 min of collection and then stored at −80°C
until final analyses. Muscle samples were rinsed in ice-
cold saline immediately after collection, cleared of visible
fat and connective tissue, frozen in liquid nitrogen and
stored at −80°C until final analyses were performed.

Table 1 Subjects’ anthropometric and basic metabolic characteristics at the time of screening

MEN WOMEN ANOVA

Young Old Young Old Sex Age Interaction

Age (years) 40 ± 2 69 ± 1 37± 2 73± 2 0.84 <0.001 0.10

Body mass (kg) 81 ± 4 81 ± 3 69± 2 61± 4 <0.001 0.22 0.25

Body mass index (kg/m2) 26.5 ± 1.0 25.9 ± 0.8 25.0 ± 0.8 24.0 ± 1.3 0.09 0.44 0.84

Fat mass (kg) 18 ± 2 21 ± 2 22± 1 23± 3 0.16 0.34 0.61

Fat mass (% body mass) 21 ± 2 25 ± 2 32± 1 36± 2 <0.001 0.055 0.97

Fat free mass (kg) 63 ± 2 60 ± 2 47± 2 38± 1 <0.001 0.002 0.17

Fat free mass (% body mass) 79 ± 2 75 ± 2 68± 1 64± 2 <0.001 0.055 0.97

Appendicular muscle mass (kg) 27.5 ± 1.1 24.9 ± 0.7 18.0 ± 0.9 14.1 ± 0.5 <0.001 <0.001 0.46

Appendicular muscle mass index (kg/m2) 9.0 ± 0.2 8.0 ± 0.2 6.5 ± 0.2 5.5 ± 0.2 <0.001 <0.001 0.99

Fasting plasma glucose (mg/dl) 93 ± 1 95 ± 3 87± 1 90± 1 0.005 0.18 0.54

2 h post OGTT plasma glucose (mg/dl) 94 ± 7 111 ± 8 93± 4 106 ± 7 0.66 0.03 0.77

HOMA-IR 1.46 ± 0.32 1.59 ± 0.27 1.08 ± 0.22 1.16 ± 0.23 0.13 0.69 0.91

Systolic blood pressure (mm Hg) 109± 3 119 ± 5 105 ± 3 126 ± 6 0.69 <0.001 0.21

Diastolic blood pressure (mm Hg) 69 ± 2 74± 3 65± 3 68± 4 0.14 0.21 0.70

Plasma triglycerides (mg/dl) 88 ± 18 102± 12 66 ± 8 72 ± 13 0.04 0.43 0.75

Total plasma cholesterol (mg/dl) 170± 10 193 ± 7 172 ± 8 197 ± 8 0.74 0.01 0.89

LDL-cholesterol (mg/dl) 106± 9 125 ± 6 97± 7 109 ± 8 0.09 0.03 0.61

HDL-cholesterol (mg/dl) 47 ± 4 49 ± 3 62± 4 73± 4 <0.001 0.09 0.25

Testosterone (ng/ml) 4.8 ± 0.5 5.7 ± 0.5 0.9 ± 0.1 0.8 ± 0.1 <0.001 0.26 0.18

Estradiol (pg/ml) 25 ± 2 18 ± 2 62± 9a 8 ± 3b 0.01 <0.001 <0.001

Progesterone (ng/ml) 0.24 ± 0.10 0.28 ± 0.08 5.08 ± 1.53a 0.23 ± 0.07 <0.01 <0.01 <0.01

Values are means ± SEM. HOMA-IR: Homeostasis model assessment of insulin resistance. OGTT: oral glucose tolerance test.
a Value significantly different from values in men and old women (P< 0.01).
b Value significantly different from values in men (P< 0.05).
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Plasma glucose concentration was measured on an
automated glucose analyzer (Yellow Spring Instruments,
Yellow Springs, OH). Plasma insulin concentration was
determined by radioimmunoassay (Linco Research, St.
Louis, MO). Commercially available ELISA kits were
used to determine the concentrations of testosterone, es-
tradiol, progesterone (all IBL America, Minneapolis,
MN), myostatin (ALPCO Diagnostics, Salem, NH) and
follistatin (R&D Systems, Minneapolis, MN) in plasma.
To determine the labeling of plasma glucose, plasma

proteins were precipitated with ice-cold acetone, and
lipids were extracted with hexane. The aqueous phase,
containing glucose, was dried by speed-vac centrifuga-
tion (Savant Instruments, Farmingdale, NY), glucose was
derivatized with heptafluorobutyric acid and the TTR
was determined by using gas-chromatography/mass-
spectrometry (GC-MS, Hewlett-Packard MSD 5973 sys-
tem with capillary column) as previously described [34].
To determine plasma concentrations of leucine and

phenylalanine and the labeling of plasma phenylalanine,
known amounts of nor-leucine and [1-13 C]phenylalan-
ine were added to an aliquot of each plasma sample,
plasma proteins were precipitated, and the supernatant,
containing free amino acids, was collected to prepare
the t-butyldimethylsilyl (t-BDMS) derivative of leucine
and phenylalanine to determine their TTRs by GC-MS
(MSD 5973 System, Hewlett-Packard) [35,36]. To deter-
mine phenylalanine labeling in muscle proteins and in
tissue fluid, samples (~20 mg) were homogenized in
1 ml trichloroacetic acid solution (3%w/v), proteins were
precipitated by centrifugation, and the supernatant, con-
taining free amino acids, was collected. The pellet con-
taining muscle proteins was washed and then
hydrolyzed in 6 N HCl at 110°C for 24 h. Amino acids
in the protein hydrolysate and supernatant samples were
purified on cation-exchange columns (Dowex 50 W-X8-
200, Bio-Rad Laboratories, Richmond, CA), and the t-
BDMS derivative of phenylalanine prepared to determine
its TTR by GC-MS (MSD 5973 System, Hewlett-Packard
) analysis [35,36]. The extent of phenylalanine labeling
in plasma (from arterialized blood samples), muscle tis-
sue fluid, and muscle protein were calculated based on
the simultaneously measured TTR of standards of
known isotope labeling.
Muscle myostatin, myoD and follistatin gene expres-

sion was evaluated by using RT-PCR. RNA was isolated
in RNA-Bee reagent (Tel-Test, Inc, Friendswood, TX),
quantified spectrophotometrically (NanoDrop 1000,
Thermo Scientific, Waltham, MA) and reverse tran-
scribed (Taqman Reverse Transcription Kit, Applied Bio-
systems, Foster City, CA) by using the SYBR Green
Master Mix (Applied Biosystems, Carlsbad, CA) on an
ABI 7500 real-time PCR system (Applied Biosystems,
Carlsbad, CA) using the following primer sequences (all

5' to 3'). Myostatin forward: ACC TGT TTA TGC TGA
TTG TTG CT, reverse: GAG CTG TTT CCA GAC
GAA GTT TA. MyoD forward: CGC CAT CCG CTA
TAT CGA GG, reverse: CTG TAG TCC ATC ATG
CCG TCG. Follistatin forward: GTA ATC GGA TTT
GCC CAG AGC, reverse: GCA GGC AGG TAG CCT
TTC T. Results were normalized to the 36B4 housekeep-
ing gene.

Calculations
The muscle protein FSR was calculated from the rate of
[ring-2H5]phenylalanine incorporation into muscle pro-
tein, using a standard precursor-product model as fol-
lows: FSR = ΔEp/Eic × 1/t× 100; where ΔEp is the change
between two consecutive biopsies in extent of labeling
(TTR) of protein-bound phenylalanine. Eic is the mean
labeling over time of the precursor for protein synthesis
and t is the time between biopsies. The free phenylalan-
ine labeling in muscle tissue fluid was chosen to repre-
sent the immediate precursor for muscle protein
synthesis (i.e., aminoacyl-t-RNA) [37].
Glucose rates of appearance (Ra) in plasma during

basal conditions and during the clamp procedure were
calculated by dividing the glucose tracer infusion rate by
the average plasma (from arterialized blood samples)
glucose TTR during the last 30 min of the basal period
and the last 30 min of the clamp, respectively. Glucose
Ra during basal conditions represents endogenous glu-
cose Ra and thus an index of hepatic glucose production
rate. During the clamp procedure, glucose Ra represents
the sum of endogenous glucose Ra and the rate of
infused glucose. Endogenous glucose Ra during the
clamp was therefore calculated by subtracting the glu-
cose infusion rate from glucose Ra; glucose rate of dis-
appearance (Rd) was assumed to be equal to glucose Ra
plus the tracer infusion rate. The homeostasis model as-
sessment of insulin resistance (HOMA-IR) score was
calculated by dividing the product of basal glucose and
insulin concentrations (expressed in mM and mIU/l, re-
spectively) by 22.5 [38].

Statistical analysis
All data sets were normally distributed. Two-way ana-
lysis of variance (ANOVA; with age and study condition,
i.e., basal vs. clamp as factors) was used to compare the
muscle protein FSR, and substrate and hormone concen-
trations in young and old men and in young and old
women, respectively. In addition, 2-way ANOVA with
age and sex as factors was used to compare the basal
muscle protein FSR, the anabolic response to increased
amino acid and insulin availability, plasma substrate,
hormone and myogenic regulatory factor concentrations,
and muscle gene expression amongst all four groups
(young men, old men, young women, and old women).
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When significant interactions were found, Tukey’s post-hoc
procedure was used to locate the differences. A P-value of
≤0.05 was considered statistically significant. Data are pre-
sented as means±SEM unless otherwise noted (i.e.,
Figure 1). Statistical analyses were carried out by using the
PASW statistical software package 18 (IBM, Armonk, NY).

Results
Plasma hormone, glucose and amino acid concentrations
Plasma testosterone concentration was significantly
greater in men than women (P< 0.001) and was not
affected by aging (Table 1). Plasma progesterone concen-
tration was significantly lower in men and old women
than in young women (P< 0.01). Plasma estradiol con-
centration was greatest in young women (P< 0.01 com-
pared with all other groups) and lowest in old women
(P< 0.01 vs. young and old men and young women)
(Table 1).
Aging had no effect on plasma glucose, insulin, leucine

and phenylalanine concentrations – neither during basal,
postabsorptive conditions nor during combined insulin,

glucose and amino acid infusion (Tables 2, 3 and 4).
Plasma glucose, insulin and phenylalanine concentra-
tions were not different between men and women but
plasma leucine concentration was ~15% (P <0.01)
greater in men than in women (Tables 2, 3 and 4).

Plasma myostatin and follistatin concentrations and
muscle myoD, myostatin and follistatin gene expression
Plasma myostatin concentration was not different in
men and women and was not affected by aging (Table 5).
Plasma follistatin concentration was ~30% greater in old
compared with young subjects but was not significantly
different in men and women (Table 5). Muscle myoD,
myostatin, and follistatin mRNA expressions were not
affected by age or sex (Table 5).

Muscle protein synthesis
The basal, postabsorptive muscle protein FSR was not dif-
ferent in young and old men and young women
(0.040± 0.004, 0.043 ± 0.005, and 0.046± 0.004%�h-1, re-
spectively) but was ~30% greater in old women
(0.060± 0.003%�h-1) than in young and old men and young
women (Figure 1, top panel and Figure 2; P< 0.05). Com-
bined insulin, glucose and amino acid infusion signifi-
cantly increased the muscle protein FSR both in young
and old men but the increase was ~60% less in the old
men (P< 0.05); consequently, the muscle protein FSR
during the clamp was significantly greater (P< 0.01) in
young than in old men (Figure 2, top panel). Combined
insulin, glucose and amino acid infusion also significantly
increased the muscle protein FSR in young (P< 0.01) but
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Figure 1 Skeletal muscle protein fractional synthesis rate (FSR)
during basal, post-absorptive conditions (top) and the increase
in muscle protein FSR in response to the hyperinsulinemic-
hyperaminoacidemic-euglycemic clamp procedure (bottom) in
young and old men and young and old women. Data are
median (central horizontal line), inter-quartile range (box), and
minimum and maximum values (vertical lines). Bars not sharing the
same letter are significantly different from each other (P< 0.05).

Table 2 Plasma glucose, insulin, leucine and
phenylalanine concentrations during basal,
postabsorptive conditions and during the
hyperinsulinemic-hyperaminoacidemic-euglycemic clamp
procedure

Young Old

Basal Clamp Basal Clamp

MEN

Glucose (mM) 5.0 ± 0.1 5.4 ± 0.1a 5.1 ± 0.1 5.4 ± 0.1a

Insulin (mU�l-1) 6.5 ± 1.4 29.1 ± 2.0a 7.1 ± 1.2 31.3 ± 3.2a

Leucine (μM) 123± 7 166 ± 12a 118 ± 7 176± 10a

Phenylalanine (μM) 56± 7 98± 12a 64 ± 8 111± 12a

WOMEN

Glucose (mM) 4.8 ± 0.1 5.4 ± 0.1a 4.9 ± 0.1 5.5 ± 0.1a

Insulin (mU�l-1) 5.2 ± 1.2 32.3 ± 5.9a 5.2 ± 1.0 32.3 ± 2.2a

Leucine (μM) 99± 7b 131± 12a,b 104 ± 5b 137 ± 9a,b

Phenylalanine (μM) 61± 3 119 ± 10a 61 ± 3 109 ± 4a

Values are mean ± SEM.
a Value significantly different from corresponding value during basal
conditions (P< 0.001).
b Value significantly different from corresponding value in men (P< 0.01).
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not in old women; consequently, the muscle protein FSR
during the clamp was not different between young and
old women (Figure 2, bottom panel). Overall, the anabolic
response (increase in muscle protein FSR above basal
values) was greater in young than old subjects but was not
different in young men and young women and not differ-
ent in old men and old women (Figure 1, bottom panel).

Glucose kinetics
Basal glucose Ra was not different in young and old sub-
jects but was significantly lower in men compared with
women (9.4 ± 0.3 and 9.6 ± 0.3 μmol�kg body wt-1�min-1

in young and old men; 9.9 ± 0.4 and 11.3 ± 0.6 μmol�kg
body wt-1�min-1 in young and old women; main effect of
sex; P< 0.05). During the clamp, glucose Ra decreased
(P< 0.01) to the same extent in all groups (i.e., by 71 ± 3,
70 ± 4, 73 ± 5, and 68 ± 6% in young and old men, and
young and old women, respectively). The insulin
mediated increase in glucose Rd during the clamp
(144 ± 17, 133 ± 23, 168 ± 18 and 145 ± 22% in young and
old men and young and old women, respectively) was
also not affected by age (P = 0.44) or sex (P = 0.40).

Discussion
Nutritional stimuli (amino acids and insulin) along with
physical activity are the major acute physiological regula-
tors of muscle protein turnover and are responsible for
its diurnal oscillations and overall muscle protein net
balance [39]. In the present study, we examined how
aging in men and women affects the rate of muscle pro-
tein synthesis during basal, postabsorptive conditions
and during a hyperaminoacidemic-hyperinsulinemic-
euglycemic clamp. We discovered that both old men
and old women exhibit anabolic resistance to nutritional
stimuli; in addition, the basal rate of muscle protein syn-
thesis is increased in old women compared with young
women and young and old men. Aging therefore affects
muscle protein synthesis differently in men and women,
and men and women need to be considered separately
when evaluating the effect of aging on muscle protein
synthesis.
Only a limited number of studies have been conducted

to investigate potential sexual dimorphism in muscle
protein turnover to date. Most of them were limited to
young men and women only and found, as we did in the
present study, no differences in muscle protein turnover

Table 3 Plasma phenylalanine concentrations and enrichments and muscle free and protein-bound phenylalanine
enrichments during basal, postabsorptive conditions and during the hyperinsulinemic-hyperaminoacidemic clamp in
young and old men

Time (min) Concentration Enrichment

(μM) Muscle protein bound TTR Muscle free TTR Plasma TTR

Young Old Young Old Young Old Young Old

Basal conditions

60 59 ± 8 64± 9 0.000033± 0.000007 0.000101 ± 0.000026 0.0488 ± 0.0037 0.0545± 0.0044 0.0921 ± 0.0055 0.0929 ± 0.0066

90 48 ± 6 67± 8 — — — — 0.1030 ± 0.0077 0.0993 ± 0.0090

120 58 ± 9 63± 8 — — — — 0.1032 ± 0.0056 0.1119 ± 0.0093

150 53 ± 9 61± 9 — — — — 0.1118 ± 0.0119 0.1130 ± 0.0067

180 56 ± 10 63 ± 9 — — — — 0.1088 ± 0.0034 0.1129 ± 0.0056

210 60 ± 7 66± 8 — — — — 0.1093 ± 0.0031 0.1155 ± 0.0078

240 59 ± 8 64± 9 0.000099± 0.000009 0.000186 ± 0.000029 0.0589 ± 0.0027 0.0686± 0.0048 0.1065 ± 0.0032 0.1194 ± 0.0079

Δ (240 – 60 min) 0.000067 ±0.000009 0.000085± 0.000013

Mean 56± 7 64± 8 0.0539± 0.0028 0.0615± 0.0041 0.1050± 0.0051 0.1093± 0.0071

Hyperinsulinemic-hyperaminoacidemic clamp

270 93 ± 14 97 ± 10 — — — — 0.0969 ± 0.0031 0.1108 ± 0.0045

300 88 ± 12 97 ± 10 — — — — 0.0958 ± 0.0034 0.1028 ± 0.0042

330 116 ± 18 107 ± 14 — — — — 0.0942 ± 0.0022 0.1005 ± 0.0050

360 85 ± 10 121 ± 14 — — — — 0.0950 ± 0.0025 0.1000 ± 0.0044

390 98 ± 12 128 ± 16 — — — — 0.0937 ± 0.0013 0.1021 ± 0.0055

420 108 ± 14 116 ± 17 0.000235± 0.000023 0.000310 ± 0.000038 0.0719 ± 0.0030 0.0806± 0.0033 0.0960 ± 0.0019 0.0952 ± 0.0055

Δ (420 – 240 min) 0.000136 ±0.000015 0.000124± 0.000020

Mean 98± 12 111± 12 0.0654± 0.0027 0.0746± 0.0038 0.0953± 0.0021 0.1019± 0.0043

Values are means ± SEM.

Smith et al. Biology of Sex Differences 2012, 3:11 Page 6 of 11
http://www.bsd-journal.com/content/3/1/11



between them [7-11]. In another study we conducted,
we found major differences in muscle protein synthesis
rates between old men and women [12]; however, the
fact that subjects in this study were obese has been criti-
cized as a major confounding variable. Only one study
so far evaluated the effect of both sex and age on muscle
protein turnover [13] and found no age by sex inter-
action in the basal rate of muscle protein synthesis.
However, this study [13] was limited to basal, postab-
sorptive conditions only and included only old men with

hypogonadism and old women with low serum dehy-
droepiandrosterone concentration, which may have con-
founded the results. Hypoandrogenemia is associated
with a reduced lean body mass [14] and treatment with
testosterone increases the muscle protein synthesis rate
[15-20]. In the present study, plasma androgen concen-
trations were within the normal range for all subjects.
Consistent with the results from many earlier studies

which focused on the effect of aging but included only
men or both men and women without analyzing them

Table 4 Plasma phenylalanine concentrations and enrichments and muscle free and protein-bound phenylalanine
enrichments during basal, postabsorptive conditions and during the hyperinsulinemic-hyperaminoacidemic clamp in
young and old women

Time (min) Concentration Enrichment

(μM) Muscle protein bound TTR Muscle free TTR Plasma TTR

Young Old Young Old Young Old Young Old

Basal conditions

60 63 ± 3 60± 3 0.000057± 0.000015 0.000062 ± 0.000017 0.0602 ± 0.0032 0.0622 ± 0.0052 0.0906 ± 0.0038 0.0862 ± 0.0027

90 64 ± 6 61± 2 — — — — 0.0986 ± 0.0048 0.0893 ± 0.0039

120 56 ± 3 54± 2 — — — — 0.1009 ± 0.0015 0.0952 ± 0.0040

150 56 ± 5 64± 3 — — — — 0.0998 ± 0.0031 0.0967 ± 0.0043

180 59 ± 2 60± 4 — — — — 0.1038 ± 0.0034 0.1013 ± 0.0038

210 63 ± 3 62± 4 — — — — 0.1041 ± 0.0029 0.1020 ± 0.0043

240 66 ± 2 65± 4 0.000147± 0.000015 0.000176 ± 0.000020 0.0722 ± 0.0040 0.0673 ± 0.0045 0.1023 ± 0.0024 0.1026 ± 0.0039

Δ (240 – 60 min) 0.000090± 0.000014 0.000114± 0.000012

Mean 61± 3 61± 3 0.0662± 0.0035 0.0648± 0.0044 0.1000±0.0027 0.0962± 0.0035

Hyperinsulinemic-hyperaminoacidemic clamp

270 111 ± 10 92 ± 4 — — — — 0.1027 ± 0.0045 0.1013 ± 0.0086

300 108± 8 111± 7 — — — — 0.0950 ± 0.0024 0.1026 ± 0.0065

330 122 ± 16 106± 7 — — — — 0.0926 ± 0.0020 0.0894 ± 0.0069

360 124 ± 14 122± 9 — — — — 0.0944 ± 0.0032 0.0922 ± 0.0035

390 128 ± 11 109± 5 — — — — 0.0970 ± 0.0029 0.0838 ± 0.0063

420 120± 5 114± 3 0.000305± 0.000020 0.000348 ± 0.000027 0.0752 ± 0.0019 0.0782 ± 0.0033 0.0971 ± 0.0026 0.0929 ± 0.0038

Δ (420 – 240 min) 0.000157± 0.000016 0.000171± 0.000017

Mean 119± 10 109± 4 0.0737± 0.0028 0.0727± 0.0034 0.0965±0.0024 0.0937± 0.0046

Values are means ± SEM.

Table 5 Plasma follistatin and myostatin concentrations and muscle myoD, myostatin, and follistatin gene expression
in young and old men and women

MEN WOMEN ANOVA

Young Old Young Old Sex Age Interaction

Plasma (ng/mL)

Myostatin 3.12 ± 0.30 3.36 ± 0.24 3.29 ± 0.34 3.54 ± 0.42 0.61 0.47 0.99

Follistatin 1.58 ± 0.12 1.87 ± 0.12 1.22 ± 0.08 1.81 ± 0.12 0.07 0.005 0.19

Muscle mRNA (arbitrary units)

Myostatin 1.00 ± 0.28 0.73 ± 0.17 0.82 ± 0.12 0.95 ± 0.17 0.92 0.70 0.28

Follistatin 1.00 ± 0.32 0.68 ± 0.19 1.40 ± 0.46 1.55 ± 0.59 0.15 0.85 0.58

MyoD 1.00 ± 0.39 1.21 ± 0.21 1.26 ± 0.38 1.12 ± 0.28 0.68 0.97 0.68

Values are means ± SEM. Muscle mRNA data were obtained from muscle biopsies collected during basal conditions.
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separately [30,40-47], we found no difference in the
basal, postabsorptive muscle protein FSR in healthy
young and old men and a blunted anabolic response to
nutritional stimuli in old compared with young subjects
(both men and women). The basal rate of muscle pro-
tein synthesis, however, was greater in our old compared
with our young women and young and old men. This is
consistent with what we have previously observed in
obese older adults [12] but contradicts the only other
study we are aware of that specifically evaluated the ef-
fect of aging on muscle protein synthesis in women [48].
Chevalier et al. [48] report no difference between young
and old women in the basal rate of muscle protein synthe-
sis and the muscle protein synthesis rate during a simu-
lated fed state. The reason(s) for the discrepancy are not
entirely clear but could be related to the amount of amino
acids provided. Chevalier et al. [48] raised the plasma leu-
cine concentration during the clamp to ~250% above
basal values, which is equivalent to the peak increase after
a maximally stimulating dose of protein (30 g) [49] or

amino acids [40]. The clamp in our study, on the other
hand, was designed to achieve plasma insulin and amino
acid concentrations equivalent to those seen after inges-
tion of ~22 g of casein or soy protein or consumption of a
2300–3300 kJ mixed nutrient meal containing ~26 g pro-
tein and ~70 to 90 g carbohydrates [50-52]; plasma leu-
cine concentration during the clamp in our study was
therefore increased to only ~ 40% above basal values. If
this is indeed the main reason for the difference in results
between our study and the one by Chevalier et al. [48], it
would suggest that old women may require a large
amount of protein to respond adequately to nutritional
stimuli. Old men, on the other hand, seem to be unable to
benefit from the consumption of more protein/amino
acids [40]. It has also been proposed that differences in
the availability of leucine per se, which is thought to be a
major regulator of muscle protein synthesis [32], might be
a key factor responsible for whether or not there is ana-
bolic resistance in older adults [53]. However, plasma leu-
cine concentration in our study was not different between
young and old men and not different between young and
old women and can therefore not help explain the ana-
bolic resistance of muscle in older adults. Moreover,
plasma leucine concentration was ~20% lower in women
(both young and old) than in men, which is consistent
with earlier work from our own group [12] and by others
[54] but again does not help explain the differences in
muscle protein synthesis rates between groups in our
study. The reason(s) for the difference in plasma leucine
concentration is currently unclear.
The mechanism(s) responsible for the faster basal

muscle protein FSR in our old women and why aging
affects the basal muscle protein synthesis rate differently
in men and women is unclear. One potential explanation
may be that the menopause-induced decline in estradiol
and progesterone concentrations leads to an increase in
the basal rate of muscle protein synthesis. In rodents,
surgically-induced menopause (ovariectomy) increases the
rate of muscle protein synthesis and replacement of either
estrogen or progesterone prevents this effect [55].
Whether the age-related declines in estrogens and/or pro-
gesterone similarly affect muscle protein turnover in
women is not known; accordingly, it is also not known
whether estrogens and/or progesterone are potentially im-
portant regulators of muscle protein metabolism in men.
In line with the muscle protein synthesis data in the

present study, we have recently reported no difference in
anabolic signaling between young men and young
women [11] and several other investigators have
reported a blunted nutrient-induced increase in mTOR
signaling in old compared with young subjects [40,42].
In the present study, we therefore chose to focus on fac-
tors that could potentially help explain the greater basal
rate of muscle protein synthesis in old women compared
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Figure 2 Skeletal muscle protein fractional synthesis rate (FSR)
during basal, post-absorptive conditions and during the
hyperinsulinemic-hyperaminoacidemic-euglycemic clamp
procedure in young and old men (top) and young and old
women (bottom). Data are means ± SEM. For both men and
women, ANOVA revealed a significant age x clamp interaction
(P< 0.05). Within each group (i.e., men or women), bars not sharing
the same letter are significantly different from each other (P< 0.05).
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with young women and young and old men and possibly
provide some insight into the anabolic resistance of
older adults. To this end, we evaluated the muscle
mRNA expression of the myogenic regulatory factor
myoD, and the plasma concentration and muscle mRNA
expression of the muscle growth inhibitor myostatin and
follistatin. Myostatin is a muscle growth inhibitor which
is produced primarily in skeletal muscle cells, circulates
in the blood and acts on muscle tissue by blocking genes
induced during differentiation (e.g., myoD [21]) and by
inhibiting the anabolic signaling cascade and muscle
protein synthesis [22-26]. Follistatin is ubiquitously
expressed, circulates in the blood and binds to and thereby
inhibits myostatin [27,28]. We found that plasma follista-
tin concentration was, paradoxically, greater in old than
young subjects but not different in men and women
whereas plasma myostatin concentration and muscle
myoD, myostatin and follistatin mRNA expressions were
not different in men and women and not affected by
aging. These findings are generally consistent with those
reported by others [56-59] and do not match the differ-
ences in muscle protein turnover between young and old
men and women. We recognize that our muscle mRNA
expression data may provide only limited information;
however, in pilot experiments, we were not able to identify
antibodies specific for myoD and myostatin that passed
rigorous quality control criteria. The exact mechanism(s)
of myostatin action (e.g., via plasma or locally within
muscle or both) are not entirely clear and few studies have
compared muscle and plasma myostatin concentrations.
Nevertheless, those that did, show good qualitative agree-
ment between the plasma myostatin concentration and
myostatin protein expression in human muscle [60,61].
The higher basal muscle protein FSR in old women is

not inconsistent with a reduced muscle mass in old
compared with young women because muscle mass is
determined by the net balance between muscle protein
synthesis and muscle protein breakdown. In fact, very
high muscle protein synthesis rates are often observed in
extremely catabolic conditions such as major burns be-
cause both muscle protein synthesis and muscle protein
breakdown rates are upregulated but the increase in
muscle protein breakdown exceeds the increase in
muscle protein synthesis resulting in net muscle protein
loss despite an increase in muscle protein synthesis [62].
Our data therefore suggest that accelerated muscle pro-
tein breakdown may be a major contributor to the age-
associated loss of muscle mass in older women.
We measured the global/mixed muscle protein synthe-

sis rate and it is therefore possible, but unlikely, that our
results are not applicable to myofibrillar proteins, which
account for the bulk of muscle proteins. During basal,
postabsorptive conditions at rest, there is very good cor-
relation between the mixed and the myofibrillar protein

FSR in both young and older subjects [63-65]. Furthermore,
the increases in myofibrillar, sarcoplasmic and mitochon-
drial protein synthesis rates in response to hyperaminoaci-
demia/hyperinsulinemia mirror each other [40,66-68].
In summary, we report that healthy aging is associated

with an increase in the basal rate of muscle protein syn-
thesis in women and resistance to the anabolic effect of
nutritional stimuli in both men and women. These find-
ings indicate that there is sexual dimorphism in the age-
related changes in muscle protein synthesis and the
metabolic processes responsible for the age-related de-
cline in muscle mass.

Conclusion
There are no differences in the rates of muscle protein
synthesis in young men and young women but there is
sexual dimorphism in the age-related changes in muscle
protein synthesis. Men and women therefore need to be
considered separately when evaluating muscle protein
synthesis rates in older adults.
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