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Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrumofmetabolic abnormalities ranging from simple hepatic steatosis
(accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in
obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of
liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover,
hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in
hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in
experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to
NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge
on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.

1. Introduction

Overwhelming evidence links obesity with increased risk for
several chronic diseases including insulin resistance, diabetes
mellitus, dyslipidemias, and nonalcoholic fatty liver disease
(NAFLD).The condition, NAFLD, encompasses both hepatic
steatosis (the accumulation of neutral lipid within the cytosol
of hepatocytes) and the more severe nonalcoholic steatohep-
atitis (NASH; hepatic inflammation and fibrosis associated
with steatotic lesions). With the epidemic of obesity in
the USA, the occurrence of NAFLD has risen exuberantly,
becoming the most common cause of liver disease [1, 2]. It is
now estimated that 14–24% of the general population and up
to 80% of morbidly obese subjects have contracted NAFLD
[3–6].

Although hepatic steatosis is extremely prevalent, only a
subset of afflicted individuals experience severe liver damage
and progress to cirrhosis. Hepatic steatosis promotes an
inflammatory state including augmented production of reac-
tive oxygen species (ROS) and proinflammatory cytokines.
This “second hit” is believed to be required to drive the
transition from simple steatosis to steatohepatitis [5, 7–9].

Although the exact cause of the inflammation is difficult to
pinpoint, hepatic steatosis is linked to heightened production
of ROS [7, 10–13], which are known to cause mitochon-
drial damage. Mitochondrial injury further exacerbates ROS
production, diminishes the capacity to oxidize excess fatty
acids, and is also linked to apoptotic death [11]. A vicious
feedforward cycle involving mitochondrial impairment and
ROS production is thought to induce hepatocyte necrosis and
apoptosis and drive the progression from steatosis to NASH.

2. Perturbed Lipid Homeostasis in Obesity and
Its Role in the Pathogenesis of NAFLD

The pathogenic mechanisms linking obesity to NAFLD and
the sources of the fat that accumulate in the liver are likely
manifold. Susceptibility is also strongly influenced by both
genetic and environmental factors. Consuming diets rich in
fat or simple sugars can certainly be linked to development
of NAFLD in a variety of murine systems. Adipose tissue
insulin resistance, which is common in obese individuals,
may also contribute because insulin normally suppresses

Hindawi Publishing Corporation
Advances in Hepatology
Volume 2014, Article ID 498369, 14 pages
http://dx.doi.org/10.1155/2014/498369

http://dx.doi.org/10.1155/2014/498369


2 Advances in Hepatology

LD

FA

DAG

G3P FA

FA

FA

LD

LD

LD

ATGL
FATG

FA

DAG

MAG

LPA

PA

LDP

Hepatocyte

ER
 lu

m
en

FA

MAGGlycerol
MAGL

P

ER

GPAT

AGPAT

Lipin

MGAT

DAG
HSL

DGAT LTG

Figure 1: The pathways for triglyceride synthesis and hydrolysis
are shown. Fatty acid (FA), phosphate (P), glycerol-3-phosphate
(G-3-P), G-3-P acyltransferase (GPAT), lysophosphatidic acid
(LPA), acylglycerol-3-phosphate acyltransferase (AGPAT), phos-
phatidic acid (PA), monoacylglycerol (MAG), MAG acyltransferase
(MGAT), diacylglycerol (DAG), DAG acyltransferase (DGAT),
triglyceride (TG), lipid droplet (LD), LD protein (LDP), adipose
tissue triglyceride lipase (ATGL), hormone sensitive lipase (HSL),
MAG lipase (MAGL), and endoplasmic reticulum (ER).

adipose tissue lipolysis and, when insulin signaling is defec-
tive, lipolytic rates in adipose tissue increase [14–17]. High
levels of free fatty acids are released into circulation and
accrete in tissues not normally involved in fatty acid storage,
including the liver. Despite evidence that rates of fatty acid
oxidation and very low density lipoprotein secretion are
increased in obese individuals [18, 19], the chronic oversupply
of fatty acids outstrips the capacity of liver to deal with these
lipids, leading to fat accumulation within the cytosol of hepa-
tocytes.Moreover, hepatic lipid accumulation leads to insulin
resistance, which further exacerbates fatty acid oversupply by
increasing de novo hepatic lipogenesis [20].

Triglyceride (triacylglycerol) is the primary storage form
of intracellular lipid and this glycerolipid is solely generated
from acylation of DAG. As indicated by its name, triacylglyc-
erol is composed of three acyl chains (fatty acids) esterified
to a glycerol backbone. In most cells of the body, triglyceride
is produced primarily from the sequential acylation and
dephosphorylation of glycerol-3-phosphate in the endoplas-
mic reticulummembrane (Figure 1) [21, 22]. However, recent
evidence from other types of cells has suggested that enzymes
involved in this pathwaymay also be localized to nascent lipid
droplets to cause the enlargement of the lipid droplets via
progressive lipidation [23]. It is not known whether this also

occurs in hepatocytes. Glycerol-3-phosphate acyltransferase
(GPAT) enzymes catalyze the addition of the first fatty acid to
form lysophosphatidic acid (LPA). Acylglycerol-3-phosphate
acyltransferase (AGPAT) or LPA acyltransferase (LPAAT)
enzymes acylate LPA to form phosphatidic acid (PA),
which is the substrate for the PA phosphohydrolase (PAP)
enzymes commonly known as lipin proteins. The removal
of the phosphate group from PA by lipins generates dia-
cylglycerol (DAG) that is acylated by DAG acyltransferase
(DGAT) enzymes to form triglyceride. Whereas dephospho-
rylation of PA is the principal pathway for generating DAG in
most cell types, there are also alternative pathways for synthe-
sizingDAG, including acylation ofmonoacylglycerol (MAG),
which is catalyzed by monoacylglycerol acyltransferase
(MGAT) enzymes (Figure 1). The importance of the ability
to store triglyceride for survival of the organism is evi-
denced by the existence of multiple isoforms of enzymes
with functional redundancy for each step in the triglyceride
synthesis pathway in higher organisms.While this is adaptive
for organismal survival, it greatly complicates our ability to
tease apart the role that each enzyme plays in intermediary
metabolism and dysregulation of these pathways in disease
states likely contributes to the pathology of the disease
(Table 1).

Triglycerides and other complex glycerolipids are
hydrophobic and to store these lipids in the aqueous cytosol,
they are packaged and stored in lipid droplets (LD). Unlike
adipocytes, which usually contain one large unilocular LD,
hepatic steatosis is often characterized by accumulation of
multiple LD in the cytosol. Hepatic steatosis can also be
categorized as macrovesicular steatosis, where the accu-
mulated lipid displaces and distorts the nucleus, or micro-
vesicular steatosis. Macrovesicular steatosis is usually
associated with chronic or advanced stages of fatty liver
disease including steatohepatitis, fibrosis, and cirrhosis
[24, 25], whereas microvesicular disease is often secondary
to mitochondrial dysfunction [26–28] or in acute forms of
hepatic steatosis [29]. However, the mechanisms driving
these two patterns of lipid accumulation are not known.
Lipid droplets are composed of a triglyceride-rich core
with a phospholipid coat. A number of proteins also coat
the surface of the lipid droplet to buffer the LD, regulate
lipolysis, and modulate LD trafficking. The most well-known
classes of lipid droplet proteins (LDP) are the perilipin family
(perilipin 1, 2, 3, 4, and 5 proteins) and the cell death-inducing
DFFA-like effector family (CIDEA, CIDEB, and CIDEC).
As discussed further below, loss of these proteins blunts the
ability of the cell to efficiently store lipid, suggesting that this
coating of the lipid droplet is required for cytosolic storage.

Steady state lipid levels are highly influenced by rates of
hydrolysis. The principal triglyceride lipase is known as the
adipose tissue triglyceride lipase (ATGL). Hormone sensitive
lipase (HSL), once considered the primary triglyceride lipase,
is now known to act primarily as a DAG lipase. It should
also be noted that a number of phospholipases and other
categories of lipases and hydrolases may also play a role in
lipid turnover and disposal. For example, patatin-like phos-
pholipase domain containing 3 (PNPLA3) is a lipase with
sequence similarity to ATGL and genetic variation in the
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Table 1: Effects of modulating expression of triglyceride metabolism enzymes on hepatic steatosis and insulin sensitivity.

Protein Function Normal chow diet High fat diet ob/ob

GPAT1
GOF ↑HSv ↓ISv [36]
LOF ↓HSg ↑ISg [37–39] ↓HSg ↑ISg [37–39] ↓HSg ↔ISg [40]

GPAT4 LOF ↓HSg [44] ↓HSg [44]
AGPAT2 LOF ↑HSg [47]

Lipin 1
GOF ↑HSv [51] ↑ISv [56]∗

LOF ↑HSg ↓ISg [143, 144]
LS-LOF ↔HSg [55] ↓HSr ↑ISr [62]

Lipin 2
GOF ↔HSv ↔ISv [66] ↑HSv ↓ISv [66]
LOF ↔HSr ↔ISr [66]
LS-LOF ↓HSr ↑ISr [66]

Lipin 3 LOF ↓HSg [145]
MOGAT1 LS-LOF ↓HSg ↑ISr,a [71, 72] ↓HSa ↑ISa [72]
MOGAT2 LOF ↓HSg ↑ISg [73]

DGAT1
LOF ↔HSg ↑ISg [75, 76] ↓HSg ↑ISg [76, 77] ↔HSa [79]

↓HSg,a [76]
LS-LOF ↔HSa [76] ↔HSa ↔ISa [78]

DGAT2
LOF Lethalg [82]
LS-LOF ↓HSa ↑ISa [78] ↓HSa ↑ISa rat [78]

↓HSa ↔ISa mice [83]

Perilipin 2
(ADRP)

GOF
LOF ↓HSg [93, 94] ↓HSg [94] ↓HSg ↑ISg [95]
LS-LOF ↓HSa ↑ISa [96, 97]

Perilipin 5 GOF ↑TGv in cells [98]

CIDEA
LOF ↔HSg [100] ↑ISg ↓HSg [100] ↑ISg [103]# ↓HSg [100]
LS-LOF ↓HSr [100]

CIDEB LOF ↔HSg ↑ISg [104] ↓HSg ↑ISg [104]
CIDEC
(Fsp27)

GOF ↑TGv in cells [110] ↑HSv [110]
LOF ↓HSr [110]

ATGL

GOF ↓HSv [116, 120]
LOF ↑HSg,r ↔ISg,r [114, 116, 117]
LS-LOF ↑HSg [115] ↑HSr ↑ISg,r [114, 117]

↑HSg [115]

HSL
GOF ↓HSv [120]
LOF ↑HSg [123] ↓HSg [125, 126] ↑HSg [123] ↓HSg [125, 126]

↔ISg [125, 126] ↑ISg [125]
MAGL LOF ↑ISg [127] ↑ISg [127]

PNPLA3
LS-GOFI148 ↔HSoe ↔ISoe [141] ↔HSoe [141]
LS-GOFI148M ↑HSg ↔ISg [141] ↔HSg [141]
LOF ↔HSg ↔ISg [139] ↔HSg ↔ISg [139]

HS: hepatic steatosis; IS: whole-body insulin sensitivity; GOF: gain of function (oe: transgenic overexpression; v: adenoviral overexpression); LOF: loss of
function (g: gene knockout; r: RNAi-based disruption; a: ASO); LS-LOF: liver-specific loss of function; LS-GOF: liver-specific gain of function; ∗UCP-DTA
mice used.
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PNPLA3 gene is strongly associated with development of
NAFLD and progression to NASH.

3. Pathogenic Mechanisms Linking
Hepatic Glycerolipid Metabolism and
Chronic Disease

Although triglyceride is the most abundant lipid storage
form, this lipid is not commonly believed to be a pathogenic
mediator of NAFLD. Triglyceride is relatively inert and is the
preferred storage form of lipid. However, other intermediates
in this pathway and complex lipids derived from these
intermediates have been linked to liver inflammation, injury,
and insulin resistance. For example, PA has been linked to
impaired insulin signaling in hepatocytes via regulation of
signaling cascades that feedback to inhibit insulin signaling
pathways [30]. Similarly, DAG content has been associated
with activation of protein kinase C isoforms that inhibit
proximal insulin signaling components [31, 32]. Ceramides
and various sphingolipids can be derived from intermediates
in the glycerolipid synthesis pathway and have been shown to
have cytotoxic effects on cultured cells. Thus, there is abun-
dant rationale for potentially targeting this pathway as a
therapeutic approach once a comprehensive understanding
of the pathogenic mediators has been gained.

Below, evidence for the roles that these enzymes and
other related factors play in the pathogenesis of NAFLD
will be discussed. One of the benefits of studying liver
metabolism is the feasibility of overexpressing or knocking
down the expression of genes by using adenoviral vectors
or antisense oligonucleotides (ASO). This has allowed the
field to selectively activate or suppress these factors in a
liver-specific manner to test the effects on intermediary
metabolism (Table 1). While it would seem straightforward
that targeting the activity of these anabolic enzymes would
attenuate or prevent hepatic steatosis, a number of surprising
and conflicting outcomes in tractable model systems have
revealed that modulating the activity of these enzymes does
not always result in the predicted effects on the upstream or
downstream lipids of these enzymes in liver.

4. Pathways for Triglyceride Synthesis

The work of Eugene Kennedy and others elucidated and
characterized the enzymatic reactions that were required to
convert glycerol-3-phosphate and three free fatty acids into
triglyceride several decades ago. However, the cloning of
the enzymes that catalyze these reactions is a much more
recent development. The relatively recent identification of
lipin proteins as PAP enzymes in 2006 [33] seems to have
completed the process of identifying the enzymes responsible
for these reactions. Although a number of other biosynthetic
pathways are also tightly linked to triglyceride synthesis, for
the purposes of this review, we will limit the discussion to
enzymes in the committed pathways.

4.1. Glycerol-3-Phosphate Acyltransferase. The first commit-
ted step of converting glycerol-3-phosphate to triglyceride

is its acylation by GPAT enzymes to form lysophosphatidic
acid (LPA). As with many biological pathways, it is likely
that this first step is rate-limiting for triglyceride synthesis
in many contexts. Four GPAT family members (GPAT1, 2,
3, 4) are found in higher organisms [34]. All GPATs are
integral membrane proteins, but GPAT1 and GPAT2 are
mitochondrial isoforms of the enzymewhileGPAT3 and 4 are
localized to the ER [34]. Our current knowledge suggests that
GPAT1 and GPAT4 play important roles in hepatic glyc-
erolipid synthesis. GPAT2 may not be highly involved in this
process and GPAT3 is expressed only at low levels in that
tissue.

Several studies have demonstrated via overexpression,
knockdown, or knockout of GPAT1 that this GPAT family
member is important for triglyceride synthesis. Overexpres-
sion ofGPAT1 provokes amarked increase in cellular TG con-
tent in primary hepatocytes [35]. GPAT1 overexpression was
also sufficient to cause hepatic steatosis and insulin resistance
in lean rats [36]. Conversely, mice lackingGPAT1 are lean and
exhibit diminished hepatic DAG and triglyceride content,
especially in the context of high fat diet [37–39] or in an ob/ob
genetic background [40]. Likewise, shRNA-mediated knock-
down of GPAT1 in liver of ob/ob mice markedly reduced
hepatic triglyceride content in just a few days [41]. The atten-
uation of hepatic steatosis was accompanied by improved
hepatic insulin sensitivity in mice fed high fat diet [37].
Interestingly, the protection against hepatic steatosis in ob/ob
mice did not result in improved insulin sensitivity [40], but
the differences between the effects of GPAT1 knockout in the
high fat diet and ob/ob models are unclear. It is likely that the
inability to esterify fatty acids into nascent triglyceride and
other lipids causes the hepatocyte to direct free fatty acids to
an oxidative fate, since GPAT1 knockout mice exhibit strong
elevations in fatty acid oxidation [35, 39].

GPAT4 is an ER-localized GPAT family member that also
likely accounts for about 50% of total hepatic GPAT activity
[42, 43]. GPAT4 null mice are lean, exhibit reduced hepatic
triglyceride content on a chow diet, and are protected from
high fat diet-induced hepatic steatosis [44]. However, rela-
tively little about the physiologic and metabolic functions of
GPAT4 is known at this point.

4.2. Acylglycerol-3-Phosphate Acyltransferase. AGPAT
enzymes (alternatively notated as LPA acyltransferases
(LPAAT)) convert LPA to PA by acylating this phospho-
glycerolipid intermediate. Myriad enzymes that can catalyze
this reaction have been identified. Based on sequence
homology, ten AGPAT family members have been proposed,
but at least two of these (AGPAT6 and 8) are now known
to likely be members of the GPAT family (GPAT3 and 4).
Additionally, PNPLA3, which is strongly linked to hepatic
steatosis in human populations, may also catalyze this
enzymatic reaction [45], but PNPLA3will be discussed below.
Many members of this family of AGPAT enzymes have been
incompletely characterized and a great deal of the research
on this topic has been focused on AGPAT2, which is relevant
to the liver and development of hepatic steatosis.

Biochemical analyses of AGPAT2 have suggested that
this member of the AGPAT family may harbor the highest
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intrinsic AGPAT activity of all family members [46] and
AGPAT2 is expressed in several metabolically important
tissues. AGPAT2 knockout in mice or mutations in human
subjects lead to severe congenital lipodystrophy (lack of
adipose tissue) and hepatic steatosis that is likely secondary to
the inability to appropriately store fatty acids in adipose tissue
[47, 48]. Hepatic AGPAT activity is reduced 90% in AGPAT2
knockout mice compared to WT controls despite increased
expression of other AGPAT family mRNAs [47]. Given this
marked decrement in hepatic AGPAT activity, the profound
hepatic steatosis in these mice is somewhat surprising.
It is possible that the residual AGPAT activity is sufficient for
high rates of PA synthesis. Alternatively, marked activation
of MGAT pathway (discussed below) in livers of these mice
could suggest compensatory activation of another pathway
for DAG and triglyceride synthesis [47]. The effects of liver-
specific inactivation of AGPAT2 have, to our knowledge,
not been performed to determine whether inhibition of
this enzyme in hepatocytes could affect the development or
progression of NAFLD.

4.3. Lipin Proteins. Lipin proteins are unique in this pathway
as they are lipid phosphatases rather than acyltransferases
and are also not integral membrane proteins. Lipin 1, lipin
2, and lipin 3 dephosphorylate PA to form DAG (PAP
activity) [33, 49] and associate with the ER membranes tran-
siently through a polybasic domain that binds to membrane-
embedded PA via electrostatic interactions [50]. Lipins are
also unique in that they can translocate into the nucleus of
the cell and directly regulate gene transcription [51]. All three
lipin proteins are expressed to some extent in the liver [52, 53].
Our present understanding is that both lipin 1 and lipin 2
encode significant hepatic PAP activity [53].

Lipin 1 is moderately expressed in normal liver, but its
expression is strongly induced by several stimuli associated
with increased PAP activity. For example prolonged fasting
[51], glucocorticoid administration [51], and experimental
ethanol feeding [54] are all associated with increased lipin 1
expression and PAP activity. Since lipin 1 is the lipin protein
with the highest intrinsic PAP activity, thismakes physiologic
sense. Loss of lipin 1 in liver reduces hepatic PAP activity
by 25–50% [49, 52, 53, 55]. Interestingly, mice constitu-
tively deficient in lipin 1 (fld mice) exhibit lipodystrophy
and marked hepatic steatosis similar to that exhibited by
AGPAT2−/− mice. The capacity for triglyceride synthesis in
mouse hepatocytes is not impaired by loss of lipin 1 [56] due
to high expression of lipin 2 in hepatocytes [53]. However,
mutations in the human gene encoding lipin 1 do not result in
lipodystrophy and fatty liver but instead result in acute
recurrent rhabdomyolysis [57–59].

Two recent studies have identified links between genetic
variation in the lipin 1 gene and development of NAFLD in
pediatric subjects [60, 61] and lipin 1 is induced in high fat
diet fed or ob/ob mice [62]. Additionally, acute knockdown
of lipin 1 may attenuate fatty liver and associated insulin
resistance [62]. However, it should also be noted that other
mouse studies found that lipin 1 expression was diminished
in obesity-related NAFLD [56] and studies conducted in

obese human subjects found that lipin 1 expression increased
with marked weight loss when hepatic steatosis was resolved
[63]. In addition, liver-specific lipin 1 knockout may actually
exacerbate alcoholic liver disease [55]. Further work will be
needed to clarify some of these discrepancies.

Lipin 2 is the most abundantly expressed lipin family
protein in liver [53, 64] and knockdown of lipin 2 in
liver markedly reduced hepatic PAP activity [53]. However,
constitutive knockout of lipin 2 actually increases hepatic
PAP likely due to increased lipin 1 abundance [65]. Lipin 2
protein abundance is controlled independently of the level
of its RNA due to regulation of its rate of translation [53].
Indeed, in several models of hepatic steatosis, lipin 2 protein
levels are increased without corresponding changes in lipin
2 mRNA levels [53]. Lipin 2 knockdown reduced insulin
resistance and hepatic steatosis in high fat diet fed mice and
lipin 2 overexpression was sufficient to impair insulin sig-
naling [66]. Collectively, these data suggest that therapies
to inhibit lipin 1 and lipin 2 may have value for treating
NAFLD, but additional work is needed to investigate this
further. Clarification is also required on whether inhibition
of cytosolic and nuclear functions of lipin are both beneficial
or whether one activity should be preferentially targeted.

4.4. Monoacylglycerol Acyltransferase. Like lipin proteins, the
product of the enzymatic reaction catalyzed by MGAT pro-
teins is DAG, but the substrate is monoacylglycerol (MAG)
rather than PA (Figure 1). The human and mouse genomes
each contain three MGAT family genes (Mogat1, 2, and 3),
but mouseMogat3 gene is a pseudogene and is not analogous
to the human MOGAT3 [67]. The MGATs are important for
dietary fat absorption by intestinal enterocytes and Mogat1
andMogat2 are most highly expressed in the gastrointestinal
system [68–70]. Relatively little is known about the effects of
MGATs in extraintestinal tissues. Recent work has suggested
that human liver exhibits significant MGAT activity and the
expression of MOGAT genes is markedly induced in human
patients with NAFLD [68] as well as rodent models of obesity
[71, 72] and lipodystrophy [47]. Moreover, marked weight
loss led to downregulation of MOGAT2 and MOGAT3 in
human liver biopsies [68]. Recent work has suggested that
MOGAT genes are targets of the peroxisome proliferator-
activated receptor 𝛾 [71], which is activated in liver inNAFLD
and likely drives expression ofMOGAT genes in this context.

Since the cause and effect relationship between Mogat
expression and NAFLD was not clear from the human
observational studies above, we and others have taken a loss
of function approach to knockdown Mogat gene expression
in experimentally tractablemodels. Lee and colleagues used a
liver-specific shRNA against Mogat1 delivered via adenovirus
to inhibit its expression in high fat diet fed mice and
found that just 5 days of Mogat1 knockdown led to reversal
of hepatic steatosis and correction of associated metabolic
abnormalities [71]. We have used antisense oligonucleotides
(ASO) to knockdownMogat1 and also found that glucose tol-
erance and insulin sensitivity were improved in diet-induced
obese and ob/ob mice. However, we found no effect on hep-
atic triglyceride and have demonstrated that the ASO actually
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increased hepatic DAG content [72]. In follow-up studies,
we have also found that liver injury on a diet that causes
NASH was not corrected by Mogat1 knockdown despite
the insulin sensitization (unpublished observation). This
suggests a disconnect between the ability ofMogat1 inhibition
to insulin sensitize and to correct these abnormalities. Our
recent work has suggested that the human MOGAT1 mRNA
transcript is subject to extensive alternative splicing and
that very little full length coding transcript is actually present
[68]. Nonetheless, the studies conducted in mice still argue
that targetingMGAT activity in liver, possibly by modulating
MGAT3, could have utility for treating NAFLD and hepatic
insulin sensitivity.

Important roles for Mogat2 in metabolic homeostasis
have also been identified.MOGAT2 expressionwas increased
in humanNAFLDpatients compared to nonsteatotic controls
and MOGAT2 expression declined after marked weight loss
caused by gastric bypass surgery [68]. Yen and colleagues
used Mogat2 null mice to show that loss of this protein in a
global manner prevented hepatic steatosis and weight gain in
mice on a high fat diet [73]. It is likely that the bulk, but not all,
of this phenotype is due to loss ofMogat2 in intestinal entero-
cytes [74]. Future work with liver-specific deletion or inhibi-
tion of Mogat2 is needed to clarify whether Mogat2 has liver
autonomous effects on metabolism.

Mouse Mogat3 is a pseudogene [67]. The rat Mogat3
gene encodes a protein, but it is not analogous to human
MGAT3, since the rodent gene was generated by duplication
of Mogat2 while human MOGAT3 arose from duplication of
the DGAT2 gene [67]. As a result, human MGAT3 exhibits
both MGAT and DGAT activity [68]. Virtually nothing is
known about rodentMGAT3. HumanMOGAT3 is expressed
in liver and hepatic MGAT activity is strongly correlated
with hepaticMOGAT3 expression [68].MOGAT3 expression
is also induced in patients with NAFLD compared to non-
steatotic controls [68]. However, the lack of analogous
MGAT3 activity in genetically tractable systems has made it
difficult to examine the effects ofmodulatingMGAT3 activity
on hepatic steatosis.

4.5. Diacylglycerol Acyltransferase. The terminal step in
triglyceride synthesis, using DAG produced from either
PAP activity or MGAT activity, is catalyzed by DGAT1 and
DGAT2. DGATs are well expressed in liver and have been
targeted for gene deletion or knockdown by a number of
studies. DGATs are integral membrane proteins of the ER
and are therefore poised to direct the synthesis of triglyceride
for lipidation of the core of nascent LD. Both DGAT1 and
DGAT2 have been targeted by pharmaceutical companies as
a potential treatment for obesity and related metabolic dis-
eases, but no drug specifically targeting these enzymes has yet
reached market.

DGAT1 knockout mice are viable, lean, and resist diet-
induced obesity [75]. DGAT1 mice also exhibit reduced rates
of triglyceride synthesis, but due to the existence of DGAT2,
are able to synthesize triglyceride. Mice with global or liver-
specific DGAT1 knockout were strongly protected from high
fat diet-induced hepatic steatosis [76, 77]. Furthermore, liver-
specific gene knockout and ASO-mediated knockdown of

DGAT1 reduced liver triglyceride due to esterification of
exogenous fatty acids [76].However, another study found that
ASO-mediated knockdown of DGAT1 in liver did not affect
hepatic accumulation of triglyceride, even though hepatic
DGAT activity was markedly reduced [78]. The lack of
effect on hepatic triglyceride content was also observed in a
second study that used ob/obmice fed amethionine/choline-
deficient (MCD) diet [79]. DGAT1 inhibition did not affect
insulin sensitivity in the high fat diet fed rats [78], but DGAT1
knockdown reduced hepatic fibrosis likely by reducing stel-
late cell activation and production of profibrotic factors in
mice fed the MCD diet [79].

Hepatitis C virus (HCV) infection is also associated with
development of hepatic steatosis. Interestingly, core protein
components of HCV associate with LD and DGAT1 in
hepatocytes and DGAT1 is required for HCV to traffic to
LD [80]. DGAT1 is also required for the development of
hepatic steatosis in response to HCV core proteins in mice
and the steatosis associated with HCV infection may be due
to inhibition of triglyceride turnover by HCV proteins [81].
Could DGAT1 inhibitors have value for inhibiting HCV-
mediated hepatic steatosis and viral replication?This intrigu-
ing idea for addressing anundertreated public health problem
may have potential.

DGAT2 knockout mice die during the perinatal period
due to lipid and skin barrier integrity abnormalities [82].
However, ASO-mediated knockdown has been used to assess
the effects of DGAT2 inhibition on hepatic steatosis [78, 83].
These studies showed that DGAT2 knockdown reduced hep-
atic lipid accumulation and improved hepatic andwhole body
insulin sensitivity.The improvement in insulin sensitivity was
correlated with a reduction in hepatic content of DAG, which
activates PKC enzymes linked to insulin resistance, and a
corresponding reduction in PKC𝜀 activity [78]. Inhibition of
DGAT2 in ob/ob mice fed an MCD diet reduced hepatic
triglyceride content but exacerbated liver inflammation and
injury [84], which contrasts the effects of DGAT1 inhibition
[79] discussed above. One interpretation of these data is
that appropriate storage of lipid in triglyceride is actually a
protective mechanism and that interfering with this process
at the wrong step could produce hepatic injury. Liver-
specific overexpression of DGAT2 in transgenic mice led to
an accumulation of DAG and TAG but, interestingly, did
not affect insulin sensitivity [85]. Subsequent analyses of these
mice suggested that hepatic insulin sensitivity was impaired
[86], but the discrepant results between the two studies have
not yet been explained.

5. Lipid Droplet Proteins

The lipid droplet was once considered an inert structure
within the cell that served as a reservoir for neutral lipid
storage. While it is true that LDs serve this purpose, we now
know that the LD is also an organelle that plays important
roles in regulating lipid storage, trafficking, and lipolysis. One
of the major regulatory nodes controlling LD function is the
coat of proteins that decorate the surface of lipid droplets.
Knockout mouse models have provided strong evidence that
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these proteins are required for proper lipid storage and that
LDP serve as important regulators of lipid hydrolysis. The
current understanding of the roles that the twomajor families
of lipid droplet proteins play in hepatic lipid homeostasis will
be discussed.

5.1. Perilipin Family. Five proteins with strong sequence
homology comprise the family of perilipin proteins (perilipin
1, 2, 3, 4, and 5 proteins) that are encoded by the five Plin genes
[87]. Perilipin 1 was originally identified as an abundant phos-
phoprotein associated with the lipid fraction of adipocytes
[88]. Immunofluorescent staining and other biochemical
studies demonstrated that this protein coats lipid droplets and
protects triglyceride from hydrolysis under basal conditions
but is phosphorylated in response to cAMP signaling and
subsequently serves to enhance lipolysis by allowing lipases
to dock with the LD. In mouse studies, perilipin 1 protein
is essentially undetectable in liver even in the context of
hepatic steatosis [29]. However, immunofluorescent staining
of humanNAFLD liver sections has readily detected perilipin
1 coating LDs [89], suggesting an important species difference
in sites of expression. Evidence has emerged that perilipin 1
may be a clinical marker of chronic hepatic steatosis that is
increased depending upon the duration of NAFLD [90].

The other members of the perilipin family are expressed
in mouse and human liver to varying degrees and depending
upon the physiologic context. Perilipin 2 (also known as
adipophilin or ADRP) has been shown to be induced in a
number of models of hepatic steatosis [29, 89, 91, 92] due
to increased expression of the gene encoding this protein as
well as increased stability of the protein likely caused by the
abundance of lipid. Indeed, the presence of exogenous lipid
increases the protein half-life of several members of this
protein family. Perilipin 2 knockout mice are protected from
high fat diet-induced hepatic steatosis [93, 94] and intercross
of perilipin 2 null mice into an ob/ob background abrogated
hepatic steatosis in thatmodel aswell [95]. Acute inhibition of
perilipin 2 expression by ASO also reduced hepatic steatosis
and improved insulin sensitivity in diet-induced obese mice
[96, 97].

Perilipin 3 is well expressed inmouse liver at baseline, but
hepatic steatosis may have little effect on its protein abun-
dance. On the other hand, perilipin 4 seems to be induced
by high fat diet feeding [72]. However, the effects of perilipin
3 or perilipin 4 inhibition or knockout on hepatic steatosis
have not been reported in the literature to date. Perilipin
5 is also induced in several models of fatty liver disease
[29, 98]. Altogether, the available data suggest a strong effect
of inhibiting perilipin family protein expression of hepatic
steatosis in a variety of mouse and rat models.

5.2. Cell Death-Inducing DFFA-Like Effector Family. Orig-
inally classified as regulators of cell death, CIDE family
members have now been shown to regulate lipid metabolism
via associations with lipid droplets to regulate their lipidation
and size. Three members of this family exist in higher
organisms (CIDEA, CIDEB, and CIDEC (Fsp27)).

CIDEA is associated with cytoplasmic LD [99] and is
expressed at relatively low levels in liver normally. However,
its expression is robustly induced by fatty liver in various
rodent models [29, 100, 101]. CIDEA expression also corre-
lates well with bodymass index and hepatic steatosis in obese
human subjects [100, 102] and its expression is regulated by
the sterol-response element binding protein 1 [29], which is
a transcription factor that is activated in fatty liver models.
Knocking out or knocking down CIDEA in liver of diet-
induced obese or ob/obmice attenuated hepatic steatosis and
led to accumulation ofmorphologically smaller lipid droplets
in hepatocytes [100, 103].

Hepatic expression of CIDEB is normally very high and
its abundance does not seem to be induced in experimental
and human models of hepatic steatosis [29, 102]. However,
CIDEB knockout mice are protected from diet-induced
hepatic steatosis [104] andCIDEB seems to play an important
role in very low density lipoprotein particle synthesis and
lipidation [105–108]. CIDEB is associated with lipid droplets
as well as the ER [105], which is consistent with its role in reg-
ulating triglyceride secretion by the liver. Other than the pro-
tective effects of CIDEB knockout on hepatic steatosis, little
is known regarding the role of CIDEB in regulating liver lipid
content in vivo.

The last member of this family, CIDEC or fat-specific
protein 27 (Fsp27), is an LDP that was described as an
adipocyte-specific gene induced by adipocyte differentiation
[109]. Many genes in the adipogenic program are activated in
fatty liver and the expression of CIDEC has been shown to be
robustly induced in a variety of studies conducted in mouse
[29, 110–112] and human [102] NAFLD. Moreover, overex-
pression of CIDEC in liver promoted, while CIDEC knock-
down attenuated, hepatic steatosis in mouse studies [110],
suggesting that CIDEC is both sufficient and necessary for
development of NAFLD. However, another recent work on
stellate cell activation has suggested that CIDEC may play
a protective role in preventing hepatic fibrosis by reducing
expression of factors required for fibrotic lesion formation
[113]. It is not clear how these protective effects are mediated
or whether inhibition of CIDEC would have negative or
protective effects in other models of NASH.

6. Triglyceride Hydrolysis Enzymes

A number of lipases in the liver are involved in the turnover
of hepatic cytosolic lipid droplets. For this review, we have
chosen to focus on specific lipases linked to regulating of
hepatic steatosis and lipid homeostasis.

6.1. Adipose Tissue Triglyceride Lipase. ATGL is a major
hepatic triglyceride lipase. Genetic deficiency in ATGL leads
to ectopic lipid accumulation, due to the inability to mobilize
stored triglycerides, in a number of tissues including the
liver [114]. The effects of liver-specific ATGL knockout or
knockdownhave also nowbeen examined in several contexts.
ATGL deficiency led to hepatic steatosis, but the majority
of these papers have not detected hepatic insulin resistance,
inflammation, or fibrosis [114–117]. However, one recent
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paper challenging ATGL knockout mice with MCD diet
and LPS did detect increased inflammation [118]. Similarly,
humans with ATGL mutations seem to be spared the usual
consequences of ectopic lipid accumulation on insulin sensi-
tivity [119]. Since much of the lipid in ATGL deficient mice
and humans is trapped in the triglyceride pool, this may be
additional evidence that triglyceride is not a lipid that causes
insulin resistance or lipotoxicity. Conversely, overexpression
of ATGL in liver ameliorates hepatic steatosis and pro-
motes the disposal of fatty acids in oxidative mitochondrial
metabolism [120]. This likely occurs because ATGL liberates
fatty acid substrates that are directed to the mitochondrion
for oxidation, but evidence also exists that ATGL activates
PPAR𝛼 [121], which is a critical transcriptional regulator of
genes encoding fatty acid oxidation enzymes in liver [122].

6.2. Hormone Sensitive Lipase. Once considered the primary
triglyceride hydrolase, HSL is now considered to be a primary
DAG lipase. The phenotype of HSL knockout mice was an
important driving force for this revelation since mice lacking
HSL retained triglyceride hydrolase activity and exhibited a
lean phenotype [123, 124]. HSL deficient mice also exhibit
increased hepatic insulin sensitivity [125, 126]. Similar to
ATGL, adenoviral-mediated overexpression of HSL reduced
hepatic steatosis and enhanced rates of fatty acid oxidation
[120].

6.3. Monoacylglycerol Lipase (MAGL). This protein functions
to hydrolyzemonoacylglycerol to glycerol and a free fatty acid
in the final step of lipolytic degradation of triglyceride.MAGL
global knockout exhibited a 40% reduction in hepatic MAGL
activity but exhibited amarked accumulation ofMAG in liver
and had attenuated high fat diet-induced insulin resistance
[127]. No information on the effects of MAGL deficiency on
hepatic steatosis in the context of high fat diet-induced or
other forms of obesity, to our knowledge, has been published.
The importance of this enzyme, in addition to the regulating
of glycerolipid hydrolysis, is that MAGL hydrolyzes species
of MAG known as endocannabinoids, the most abundant
endogenous ligands of cannabinoid receptors [128], which
are known to regulate intermediary metabolism and may be
involved in the insulin resistance of obesity. Further work
is needed to connect the activity of the MAGL enzyme,
endocannabinoid signaling, and the hepatic metabolic com-
plications of obesity.

6.4. Patatin-Like PhospholipaseDomainContaining 3. Recent
work has shown that genetic variation in PNPLA3 is strongly
associated with NAFLD in a variety of human populations
[129]. In fact, a coding single nucleotide polymorphism (SNP)
in PNPLA3 may be the single greatest genetic predictor of
NAFLD and NASH susceptibility.The initial identification of
the association between the PNPLA3 SNP and hepatic steato-
sis resulted from a genomewide association study across a
number of ethnic populations with high (Hispanic) or low
(African American) prevalence of hepatic steatosis [129]. A
single amino acid substitution from isoleucine to methionine
(I148M) was strongly associated with development of hepatic

steatosis and the frequency of this allele was very high in
Hispanics and low in African Americans. Subsequent studies
have validated the link between I148M and hepatic steatosis
prevalence and have suggested that this variant is also
associated with increased risk of progression to NASH [130–
135]. PNPLA3 I148M has also been linked to increased risk
of cirrhosis in hereditary hemochromatosis [135] and hepa-
tocellular carcinoma [136]. The many pathologies associated
with I148M make PNPLA3 a potentially appealing target for
drug discovery.

Despite the wealth of studies demonstrating the link
between PNPLA3 I148M and hepatic steatosis in human
populations, there remains controversy regarding the molec-
ular mechanisms whereby I148M drives hepatic steatosis.
This is due to species differences in sites of expression and
enzymatic activity between mice and man. Mice express
relatively low levels of PNPLA3 in liver, while this gene
is well expressed in human liver [137, 138] and because of
their low hepatic PNPLA3 expression, studies conducted in
PNPLA3 knockout mice have been inconclusive [139]. Based
on homology, PNPLA3 is a member of the protein family
that contains ATGL and other phospholipases and PNPLA3
has been shown to exhibit lipolytic activity [140]. However,
PNPLA3 has also been convincingly shown to possess activity
as an AGPAT/LPAAT [45]. The genetic variation linked to
NAFLD incidence (I148M) has been shown experimentally
to decrease lipolytic activity and increase AGPAT activity
[45, 140, 141]. Hepatic overexpression of PNPLA3 I148M in
transgenic mice increased both rates of TG synthesis and
led to reduced rates of TG turnover, whereas overexpression
of the I148I allele did not [141]. Thus, it is not clear how
the single amino acid substitution is linked to development
of NAFLD and it is possible that both enzymatic activities
may contribute to the development of hepatic steatosis.
Given the prevalence and phenotypic influence of I148M
on the incidence and progression of NASH, pharmacologic
targeting of PNPLA3 has obviously gained a great deal of
interest in the past few years.

7. Conclusions

Given the central role that lipid accumulation plays in the
etiology and pathology of NAFLD and NASH, targeting the
enzymes that regulate steady state lipid levels is attractive
for treating these and related metabolic disorders. However,
a greater understanding of the pathogenic mechanisms and
mediators that control the hepatic content of these lipids
may be needed before intelligently designed therapeutics can
be produced. For example, triglyceride accumulation may
actually protect against inflammation and insulin resistance
whereas other intermediates in these pathways can provoke
these responses. Intervening at the wrong steps may actually
exacerbate liver injury and we have little information regard-
ing which steps should be targeted for chronic inhibition or
activation. It is also not clear that specifically targeting one
enzyme in these processes will have clinical efficacy. Com-
pounds targeting these processes in a global manner might
therefore have value. Early, but promising, clinical trials on
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obeticholic acid, a bile acid that activates the farnesoid X
receptor and may promote fat catabolism, have suggested
that this may be an efficacious way to alleviate hepatic
steatosis and treat NASH [142]. Finally, very little is known
regarding the role that stellate cell lipid metabolism plays in
the development of NASH. Hepatic stellate cells, which are
nonparenchymal cells of the liver, secrete collagen, the prin-
cipal constituent of the fibrotic lesion. Although we now have
reliable promoter-driven Cre to delete conditional alleles
in a stellate cell-specific manner, the effects on stellate cell
metabolism and hepatic injury and fibrosis have been little
studied. This area still seems full of unanswered questions
and progress towards developing new therapeutics has great
potential to address an unmet medical need.
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