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Knockout of Slo2.2 enhances itch,
abolishes KNa current, and increases action
potential firing frequency in DRG neurons
Pedro L Martinez-Espinosa†, Jianping Wu†‡, Chengtao Yang†, Vivian Gonzalez-
Perez, Huifang Zhou, Hongwu Liang, Xiao-Ming Xia†, Christopher J Lingle*

Department of Anesthesiology, Washington University School of Medicine, St. Louis,
United States

Abstract Two mammalian genes, Kcnt1 and Kcnt2, encode pore-forming subunits of

Na+-dependent K+ (KNa) channels. Progress in understanding KNa channels has been hampered by

the absence of specific tools and methods for rigorous KNa identification in native cells. Here, we

report the genetic disruption of both Kcnt1 and Kcnt2, confirm the loss of Slo2.2 and Slo2.1 protein,

respectively, in KO animals, and define tissues enriched in Slo2 expression. Noting the prevalence of

Slo2.2 in dorsal root ganglion, we find that KO of Slo2.2, but not Slo2.1, results in enhanced itch and

pain responses. In dissociated small diameter DRG neurons, KO of Slo2.2, but not Slo2.1, abolishes

KNa current. Utilizing isolectin B4+ neurons, the absence of KNa current results in an increase in action

potential (AP) firing and a decrease in AP threshold. Activation of KNa acts as a brake to initiation of

the first depolarization-elicited AP with no discernible effect on afterhyperpolarizations.

DOI: 10.7554/eLife.10013.001

Introduction
Potassium channels regulated by cytosolic Na+ (KNa) are encoded by two homologous mammalian

genes, Kcnt1 (encoding the Slo2.2 or Slack channel) (Yuan et al., 2003) and Kcnt2 (encoding the

Slo2.1 or Slick channel) (Bhattacharjee et al., 2003). Recent work has revealed a critical role of KNa

channels in neuronal function, through demonstration that several mutations in Kcnt1 are associated

with intellectual disability and childhood epilepsy (Barcia et al., 2012; Heron et al., 2012; Martin

et al., 2014). Yet, despite apparently wide-spread expression both in neurons (Bhattacharjee et al.,

2002, 2005) and other cells (Kameyama et al., 1984; Niu and Meech, 2000), the physiological roles

of KNa currents during normal patterns of neuronal activity remain poorly understood in part because

of the absence of suitably selective pharmacological tools and also the complexities than can arise

from manipulations of Na+. Because of potential coupling of KNa activation to Na+ influx through

voltage-dependent Na+ (Nav) channels, KNa currents have been proposed to influence repetitive firing

(Yang et al., 2007; Gribkoff and Kaczmarek, 2009) and postexcitatory afterhyperpolarizations

(Franceschetti et al., 2003; Gao et al., 2008). Recently, it has been suggested that KNa currents may

be selectively activated by Na+ influx through Nav channel openings that persist at steady state

following inactivation (Hage and Salkoff, 2012). To further probe the role of KNa currents, we have

genetically disrupted Kcnt1 and Kcnt2 genes to generate mouse strains in which Slo2.1, Slo2.2, or

both subunits together (Slo2 dKO) have been deleted. Because previous work has suggested an

important role of Slo2 channels in sensory neurons (Gao et al., 2008;Nuwer et al., 2010; Biton et al.,

2012), we examined the consequences of KNa KO on sensory function and dorsal root ganglion (DRG)

neuron excitability. The results reveal a role of Slo2.2 channels in acute itch sensation. Pruritic stimuli

trigger an immediate increase in itch response in Slo2.2 KO mice, with later time points

indistinguishable from WT animals. Furthermore, KO of Slo2.2, but not Slo2.1, removes a KNa current
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from all small-diameter DRG neurons examined. To examine effects of Slo2 KO on DRG excitability,

we focused on small diameter neurons, immunoreactive for isolectin Β4 (IB4+), which are known to be

enriched in neurons responsive to itch and pain stimuli (Lallemend and Ernfors, 2012). Slo2 KO

increases firing frequency at any level of current injection, while decreasing both rheobase and action

potential (AP) threshold. Contrary to the view that KNa current functions primarily during AP

repolarization and afterhyperpolarization (Schwindt et al., 1989; Franceschetti et al., 2003; Wallen

et al., 2007), we propose that in DRG neurons activation of KNa current precedes AP initiation thereby

acting as a brake to AP firing. During completion of this work, another paper describing a Slo2.2 KO

mouse (Lu et al., 2015) importantly identified a potential role of Slo2.2 in DRG in a neuropathic pain

model. Here we reveal a role of Slo2.2 in acute sensory responses and provide a new explanation for

how cell firing is altered by Slo2.2 channels.

Results

Generation and validation of Slo2.1 and Slo2.2 KO animals
Slo2.1 (gene: Kcnt2) and Slo2.2 (gene: Kcnt1) KO mice were generated via homologous

recombination of specific targeting DNA fragments (Figure 1A,D) into the genome of mouse

embryonic stem (ES) cells with confirmation by Southern blot (Figure 1B,E), generation of chimeric

mice following injection of recombinant ES cells into C57BL/6 blastocysts, and then ultimately

Cre/loxP mediated deletion of the targeted exons. Successful incorporation of the mutant allele into

mice was confirmed by PCR genotyping of genomic DNA extracted from mouse tails (Figure 1C,F).

The absence of specific native Slo2 protein was confirmed by western blots of total brain membrane

proteins (Figure 2; See ‘Materials and methods’ for discussion of Slo2 epitopes identified by

antibodies). Enrichment of brain Slo2 protein via sequential co-immunoprecipitation (co-IP) and

western blot further validated the successful KO of Slo2 proteins and also established that Slo2.1 and

Slo2.2 coassemble in WT brain (Figure 2B–E), as indicated in earlier work (Chen et al., 2009). As a

eLife digest The billions of neurons in the brain send information along their lengths in the form

of electrical signals called action potentials. These signals are produced by charged ions, such as

sodium and potassium ions, moving into and out of the neuron. To ‘fire’ an action potential, sodium

ions rapidly enter the neuron. This produces an electrical spike. Potassium ions then exit the neuron,

which causes the electrical activity to subside and allows the neuron to return to a resting state.

The sodium and potassium ions move in and out of the neuron through structures called ion

channels. The sodium-activated potassium channels are one type of ion channel; whether these ion

channels let potassium ions out of a cell depends on the concentration of sodium ions inside the cell.

Slo2.1 and Slo2.2 are two such potassium channels that are present in many different cells, including

neurons. Nevertheless, and in spite of how common they are, the exact roles of these channels

remain unclear.

Martinez-Espinosa et al. created mice that lack the genes encoding one or both of the Slo2.1 and

Slo2.2 ion channels, and compared them with normal mice. Mice that lacked Slo2.2 but not Slo2.1

initially scratched more intensely than normal mice when made to feel an itch, though this increased

scratching only occurred briefly. To some extent, the mice that lacked both Slo2 channels also had

increased pain sensations.

Martinez-Espinosa et al. observed that in sensory neurons lacking the Slo2.2 sodium-dependent

potassium channels, the neurons fired more action potentials. The increase in firing is thought to

underlie the enhanced itching and pain sensations.

Taken together, the results suggest that the activity of sodium-activated potassium ion channels

makes it less likely for a neuron to fire an action potential. Future work will need to address whether

the activity of sodium-activated potassium channels is linked to specific kinds of sodium channels,

and why the absence of the sodium-activated potassium current only enhances the immediate

response to itch stimuli. The availability of these mice that lack Slo2 subunits provides an important

new tool for evaluating the role of sodium-activated channels in other neuronal systems.

DOI: 10.7554/eLife.10013.002
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guide to tissues of interest for future study, quantitative RT-PCR was employed on various tissues to

define the relative abundance of message for Kcnt1 and Kcnt2message (Figure 2F). mRNAs encoding

either Slo2.1 and Slo2.2 are broadly present in the central nervous system, with message for Slo2.1

notably more abundant in heart and aorta and message for Slo2.2 relatively enriched in other tissues

including DRG and cerebellum. The selective expression of transcript for Slo2.1 in rat heart has been

previously reported (Bhattacharjee et al., 2003). Based on the RT-PCR results, we examined DRG,

spinal cord, cortex, cerebellum and heart for the presence of Slo2.1 and Slo2.2 subunits using

sequential IP and western blot (Figure 2G–J). Slo2.1 protein was detected in DRG, spinal cord, cortex

Figure 1. Construction and validation of Slo2.1 and Slo2.2 KO mice. (A) Upper row: map of WT mouse Kcnt2 (encoding Slo2.1) gene locus within genomic

DNA bracketing the targeted exon 22. Second row: map of the targeting vector, showing M1uI site for vector linearization, targeted exon 22 with a 1.8 kb

neomycin gene cassette flanked by LoxP and FRT sites, and a 2.8 kb thymidine kinase (TK) gene cassette. The overall size of the Kcnt2 genomic DNA for

homologous recombination (left arm + right arm) is 16.3 kb. Third row: map of the recombinant allele in targeted embryonic stem (ES) clones following

homologous recombination of the Kcnt2 KO region into the targeted locus. The neo gene cassette is eliminated by Flp-FRT mediated deletion. Fourth

row: map of the mutant kcnt allele following Cre-loxP mediated deletion of the targeted exon. Shown are the elements and restriction enzyme sites used

in generation and verification of the targeted mutant allele. Location of the probe used in genomic Southerns for the selection of recombinant ES clones is

indicated. After enzyme digestion treatments, the WT allele fragments detected by the probe are 10 kb (by EcoRV) and 4.3 kb (by PvuII), while the

recombinant allele fragments detected by the probe are 4.2 kb (by EcoRV) and 3 kb (by PvuII), respectively. (B) Genotype analysis of ES cell lines by

Southern blot analysis. After enzyme digestion with either EcoRV (left) or PvuII (right), genome DNA obtained from recombinant ES colonies, containing

both wild type allele and targeted recombinant allele, shows two corresponding fragments identified by the probe. (C) PCR verification of animal

genotypes. The target exon is removed by mating heterozygous (HET) F1 mice with early embryonic expression Cre-mice (EIIa-Cre, Jackson). The

predicted amplicons are 579 bp for WT and 269 bp for the exon 22 deleted mutant. (D) Upper row: map of WT mouse Kcnt1 (encoding Slo2.2) gene locus

bracketing the targeted exon 11. Second row: map of the targeting vector, showing SpeI site for vector linearization, targeted exon 11 and a 1.8 kb

neomycin gene cassette flanked by LoxP and FRT sites, and a TK gene cassette. The overall size of Kcnt1 genomic DNA for homologous recombination is

16.6 kb. Third row: map of the recombinant allele in targeted ES clones following homologous recombination of the kcnt1 region into the targeted locus.

The neo gene cassette is then eliminated by Flp-FRT mediated deletion. Fourth row: map of the mutant Kcnt1 allele following Cre-loxP mediated deletion

of the targeted exon. The location of the probes used in genomic Southerns are also indicated. After enzyme digestion treatments, the WT allele

fragments detected by the probe are 6.4 kb (by BclI) and 3.4 kb (by BglII), while the recombinant allele fragments detected by the probe are 4.3 kb (by BclI)

and 5.3 kb (by BglII) respectively. (E) Genotype analysis of ES cell lines by Southern blot analysis. Expected fragment sizes for either BclI (left) or BglII (right)

restriction enzyme digestion are shown for both wild type and targeted homologous recombinant. (F) PCR verification of Kcnt1 exon 11 deletion. The

target exon is removed by mating HET F1 mice with early embryonic expression Cre-mice (EIIa-Cre, Jackson). The predicted amplicons for WT and the

exon 11 deleted mutant were 607 bp and 200 bp, respectively.

DOI: 10.7554/eLife.10013.003
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and heart, but only a very weak band was seen from cerebellum (Figure 2G). Slo2.2 was observed in

DRG, spinal cord, cortex, and cerebellum, but not detectable in heart (Figure 2J). Co-IP between

Slo2.1 and Slo2.2 was observed in those tissues for which both subunits were detectable: DRG, spinal

cord, and cortex (Figure 2H,I). Because KNa currents have been described in sensory neurons

(Gao et al., 2008; Tamsett et al., 2009; Nuwer et al., 2010), we chose DRG as a convenient system

for investigation of potential physiological roles.

Figure 2. Slo2.1 and Slo2.2 subunits are absent in Kcnt2 and Kcnt1 KO mice, respectively, exhibit differential tissue distribution, and coassemble in some

tissue. (A) Top, brain membrane proteins from WT, Slo2.1 KO, and Slo2.2 KO mice were probed with N11/33 anti-Slo2.1 antibody (Antibodies Inc.).

Middle, brain membrane proteins were separated and probed with N3/26 anti-Slo2.2 mAb (Antibodies, Inc). Slo2.2 protein is absent in Slo2.2 KO mice.

No native Slo2.2 protein is present in the Slo2 KO mice, but is found in Slo2.1 KO mice. Bottom, α-tubulin loaded in each lane was probed with anti-

α-tubulin Ab. 15 μg of whole brain membrane proteins were loaded in each lane. (B) Slo2.1 Ab pulls down Slo2.1 protein from brain membrane proteins in

WT and Slo2 KO mice, but not from Slo2.1 KO mice. Anti-Slo2.1 Ab also pulls down Slo2.1 from proteins following mixing of separate Slo2.2 KO and

Slo2.1 KO membrane preparations (mix). 25 μg of whole brain proteins were subjected to IP procedures and the IP products were loaded in each lane.

(C) IP with anti-Slo2.1 Ab pulls down Slo2.2 only in WT membrane proteins, but not in mixed proteins, or membrane proteins from Slo2.1 KO or Slo2.2 KO

mice. 62.5 μg of whole brain proteins were subjected to IP procedures with the IP products loaded in each lane. (D) Following IP with anti-Slo2.2, Slo2.2 is

detected in proteins fromWT, mixed, and Slo2.1 KO membranes. 25 μg of whole brain proteins were subjected to IP procedures and the products loaded

in each lane. (E) IP with anti-Slo2.2 Ab pulls down Slo2.1 only fromWT membrane proteins. 62.5 μg of whole brain proteins was subjected to IP procedures

and the products loaded in each lane. (F1) Abundance of message for Slo2.1 relative to β-actin message is plotted for various tissues. Here and in (F2),

message was measured in triplicate from each of three mice. (F2) Slo2.2 message abundance is plotted. (F3) The ratio of message for Slo2.1 to Slo2.2

measured by quantitative rt-PCR is shown for various tissues. Dotted line indicates approximately equimolar RNA amounts. Red arrows highlight

enrichment of Slo2.2 message. Horizontal blue bar and arrow highlight relative enrichment of message for Slo2.2 in heart tissues. (G) IP with anti-Slo2.1

shows presence of Slo2.1 protein in DRG, spinal cord, cortex and heart, but not cerebellum. Protein amounts used in IPs were: DRG, 3 mg; spinal cord,

1 mg; cortex, 0.3 mg; cerebellum; 2 mg; heart, 30 mg. (H) IP with anti-Slo2.2 pulls down Slo2.1 in DRG, spinal cord and cortex, but not in cerebellum and

heart. Protein amounts used in IPs were: DRG, 3 mg; spinal cord, 1 mg; cortex, 0.5 mg; cerebellum; 0.25 mg; heart, 30 mg. (I) IP with anti-Slo2.1 pulls down

Slo2.2 in spinal cord and cortex. (J) IP with anti-Slo2.2 shows presence of Slo2.2 in all tested tissues except heart. Western blots were repeated three times

in all cases, except twice for DRG.

DOI: 10.7554/eLife.10013.004
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Slo2.2, but not Slo2.1, KO mice exhibit an enhanced response to pruritic
stimuli
WT and Slo2 KO mouse strains were evaluated with various tests of sensory function. In a 55˚C

hotplate test, single KO of either Slo2.1 or Slo2.2 did not influence the response latency, although

Slo2 dKO mice exhibited a briefer latency than WT mice (Figure 3A). In a formalin test, no differences

were observed between WT and Slo2 dKO mice (Figure 3B). The absence of a difference in hotplate

or formalin response in Slo2.2 KO mice agrees with recent observations on another Slo2.2 KO mouse

(Lu et al., 2015).

Hindpaw injection of capsaicin elicits a characteristic licking behavior which was somewhat

enhanced in Slo2 dKO mice (Figure 3C). Because the intensity of a sensory stimulus may affect

whether KNa currents influence sensory function, we compared responses to a series of capsaicin

doses (Figure 3D). Consistent with this idea, pronounced differences between WT and Slo2 dKO mice

were present at doses in excess of 0.0001 μg up through 0.01 μg, with weaker differences at 0.03, 0.1

μg, and higher concentrations. These results indicate that mice lacking both Slo2.1 and Slo2.2

channels exhibit an enhanced aversion to moderate doses of capsaicin and that Slo2 dKO can

influence the acute response to sensory stimuli.

We next tested several pruritic compounds in a standard itch assay (Sun and Chen, 2007).

Chloroquine (CQ, Figure 4A–F), histamine (HA, Figure 4G–L, Figure 4—figure supplement 1A–E),

and compound 48–80 (Figure 4—figure supplement 1F) elicited robust enhancement of scratching

behavior in Slo2 dKO mice (Video 1 for the case of CQ), but not WT mice (Video 2), during the first

5 min following injection. No difference in itch behavior was observed between WT and Slo2 dKO

mice after the first 5 min. KO of only Slo2.2 also revealed a similar alteration in the itch phenotype

during the first 5 min after injection (CQ: Figure 4C,D; HA: Figure 4I,J). The enhanced itch was also

observed in heterozygous Slo2.2 mice. In contrast, WT and Slo2.1 mice exhibited no difference in

response to either CQ (Figure 4E,F) or HA (Figure 4K,L).

Because the time course of the early itch response was similar to capsaicin responses (Figure 3C),

it seemed possible that pruritic stimuli in the Slo2 KO mice were perceived as something distinct

from itch. A cheek injection assay has been proposed to distinguish itch from pain (Shimada and

LaMotte, 2008). In the cheek, injection of HA elicits hindlimb scratching, while capsaicin injection

elicits forepaw wiping (Shimada and LaMotte, 2008), suggesting that they are being perceived

differently. We wondered whether a pruritic stimulus injected into the cheek of a Slo2 dKO mouse

might elicit a capsaicin-like forepaw wiping response. In our hands, cheek injection of CQ in WT

animals was associated with two types of behaviors, hindlimb scratching of the injected site, but also

some forepaw wiping presumably reflecting grooming (Figure 5). In the dKO animals, forepaw

wiping was no different than in WT (Figure 5B), but the hindlimb scratching was markedly increased

only during the first 5 min (Figure 5A). Whatever the basis of the enhanced response to cheek

injection of CQ in Slo2 dKO mice, the response is characteristic of pruritic stimuli and not of

capsaicin.

KNa current is absent in DRG neurons from Slo2.2, but not Slo2.1,
KO mice
Sensory neurons contain a rich variety of K+ currents (Vydyanathan et al., 2005; Dobler et al., 2007;

Li et al., 2007; Cho et al., 2009; Zhang et al., 2010b; Liu et al., 2013) that complicate unambiguous

definition of KNa current, for which selective pharmacological tools are lacking. We have not had

reliable success with subtractive methods involving Na+ current inhibition or Na+ replacement. To test

for the presence of KNa current in small diameter DRG neurons, we used a method previously applied

to rat DRG neurons (Bischoff et al., 1998): a K+ background current arising from defined pipette Na+

is measured using hyperpolarizing voltage-steps during the first 5 min following formation of the

whole-cell recording configuration. With 0 mM pipette Na+, little background current is observed with

voltage-steps from −80 to −120 mV (Figure 6A,C). With 70 mM pipette Na+, net current elicited by

the same voltage-step gradually increases over 3 min reaching a plateau near 1 nA (Figure 6A,C). At

longer times following whole-cell access, current activated by 70 mM pipette Na+ gradually diminishes

(Figure 6—figure supplement 1) despite no change in voltage-dependent Na+ current. As in rat

DRG neurons (Bischoff et al., 1998), the KNa current is blocked by extracellular 20 mM Cs+, with

stronger inhibition at −120 mV than −80 mV reflecting the voltage-dependence of Cs+ inhibition

Martinez-Espinosa et al. eLife 2015;4:e10013. DOI: 10.7554/eLife.10013 5 of 27
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(Figure 6A, Figure 6—figure supplement 2). The average amplitude of KNa current was similar for

WT and Slo2.1 KO DRG neurons (Figure 6B,C), while there was no KNa current in Slo2.2 KO or Slo2

dKO neurons (Figure 6B,C). Despite considerable variability in total KNa current among neurons from

either WT or Slo2.1 KO animals (Figure 6D), the total current always exceeds that observed in

WT cells with 0 Na+, or in Slo2 dKO or Slo2.2 KO cells with 70 mM Na+ (Figure 6D). Excised inside-out

patches confirmed that Slo2 dKO removed a Na–dependent K+ channel (Figure 6E) which exhibited

little voltage-dependence over the range of −80 through −20 mV (Figure 6E, Figure 6—figure

supplement 3A) with a single channel conductance of about 127 pS (Figure 6E, Figure 6—figure

supplement 3B). Finally, we compared the whole-cell steady-state current–voltage (I–V) relationship

between WT and Slo2 dKO cells over the range of −125 to −25 mV, with 70 mM pipette Na+ along

with the steady-state IV relationship persisting in WT cells after 30 min with 70 mM pipette Na+

(Figure 6F). This shows the relatively voltage-independent nature of the background KNa conductance

(reversal at EK) when the cytosolic Na+ concentration is constant.

Figure 3. Slo2 dKO shortens hotplate response latency, increases responses to hindpaw injections of capsaicin, but

does not influence formalin responses. (A) Latencies to aversive response following placement on a 55˚C hotplate

are plotted for the indicated genotypes, showing means, sem, and individual latencies. From left to right, n = 19, 19,

24, 11, 13, 9, 17, and 24. Only in the WT vs Slo2 dKO comparison was a difference noted (p = 0.002; KS test).

(B) Following formalin injection, time spent in licking the hindpaw was determined for 5 min intervals for WT (n = 10)

and Slo2 dKO (n = 9) mice. Here and below, behavioral tests over time display measurements centered in each

5 min interval. (C) Time course of licking response to hindpaw injection of 0.1 μg capsaicin. Small symbols, individual

mice. p = 0.012 (KS test). Vehicle: 10 μl volume with 0.35% EtOH. (D) Time spent licking was determined over

10 min following hindpaw injections of the indicated capsaicin quantities in 10 μl vehicle for WT (n = 9, 9, 20, 20, 18,

20, 20, 20, 20, and 9 from low to high capsaicin) and Slo2 dKO (n = 10, 10, 11, 9, 14, 26, 13, 18, 10, and 10) genotypes.

Vehicle alone was without effect (n = 10 for both WT and Slo2 dKO). For filled black, open black, and filled red stars,

p values correspond to KS statistic with p = 0.000 (filled black stars), p = 0.007 (filled red stars), and p = 0.012 for

open black star. For open red stars, a t-test statistic was used with p < 0.01. Highest capsaicin concentrations

showed no difference between WT and Slo2 dKO mice.

DOI: 10.7554/eLife.10013.005
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In WT DRG neurons, the average KNa background current with 70 mM pipette Na+ in IB4+ neurons

did not differ significantly from that in IB4− neurons (Figure 6—figure supplement 4A). Our results

suggest that essentially all dissociated small diameter DRG neurons express KNa current which can be

attributed exclusively to Slo2.2 subunits. The magnitude of the KNa current decreased with time in

culture, being ∼1013 ± 95 pA (n = 44 cells) after 2–10 hr of culture, but only 277 ± 70 pA (n = 9 cells)

after 2–3 days in culture (Figure 6—figure supplement 4B). Measurement of KNa current in a set of

Figure 4. The absence of Slo2.2, but not Slo2.1, results in enhancement of chloroquine (CQ) and histamine (HA)-induced itch. (A) Each point shows mean

number of scratching bouts per 5 min bins for WT mice (n = 15, black circles) and Slo2 dKO mice (n = 19, red circles) after injection of 200 μg CQ. (B) Mean

scratching bouts during first 5 min are summarized for WT and Slo2 dKO mice from (A), along with determinations from individual mice (circles). Over the

first 5 min, WT and Slo2 dKO mice differ at p = 0.000 (KS-test). (C) Slo2.2 KO mice exhibit enhanced responsiveness to CQ injection. (D) Mean scratching

bouts during the first 5 min after CQ injection for WT (n = 12), Slo2 HET mice (n = 12) and Slo2.2 KO mice (n = 16). KS-test comparisons: WT vs Slo2.2 HET,

p = 0.005; WT vs Slo2.2 KO, p = 0.000; Slo2.2 HET vs Slo2.2 KO, p = 0.003. (E) Slo2.1 KO mice exhibit CQ responsiveness identical to WT mice. (F) Mean

scratching during the first 5 min after CQ injection for WT (n = 16), Slo2.1 HET (n = 11) and Slo2.1 KO (n = 16) mice. (G) Responses of WT (n = 15) and Slo2

dKO (n = 18) mice following injection of 1 mg HA. (H) Scratching during first 5 min following HA injection for WT and Slo2 dKO mice. Over the first 5 min,

WT and Slo2 dKO mice differ at p = 0.000. (I) HA-induced scratching behavior for WT and Slo2.2 KO mice. (J) Mean and individual values of scratching

during first 5 min for WT (n = 11), Slo2.2 HET (n = 11), and Slo2.2 KO (n = 12) mice. KS-test comparisons: WT vs Slo2.2 HET, p = 0.003; WT vs Slo2.2 KO,

p = 0.000; Slo2.2 HET vs Slo2.2 KO, p = 0.121. (K) HA-induced scratching behavior for WT and Slo2.1 KO mice. (L) Mean and individual values of scratching

during first 5 min for WT (n = 19), Slo2.1 HET (n = 13), and Slo2.1 KO (n = 30) mice.

DOI: 10.7554/eLife.10013.006

The following figure supplement is available for figure 4:

Figure supplement 1. Concentration-dependence of itch response to HA and compound 48–80.

DOI: 10.7554/eLife.10013.007
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small diameter neurons in DRG slices yielded

similar results (Figure 6—figure supplement 5).

However, one difference was that, although

Slo2.2 accounted for most of the KNa current in

DRG neurons in slices, after 2–3 min of dialysis of

the pipette solution into the Slo2.2 KO neurons,

some residual Na+-dependent current was ob-

served. Although neurons in slices may be

uniquely affected by dialysis of 70 mM cytosolic

Na+, this observation raises the possibility that

channels containing Slo2.1 subunits may be

present at more peripheral locations in the DRG

neurons, perhaps consistent with the presence of

message encoding Slo2.1 and some Slo2.1 pro-

tein in DRG samples, as described above.

DRG neurons from Slo2 dKO mice
exhibit increased excitability and
reduced rheobase

Small diameter DRG neurons exhibit a complex range of electrical properties reflecting a rich variety

of Nav (Vijayaragavan et al., 2001; Ho and O’Leary, 2011) and Kv channels (Zhang et al., 2010b).

Such neurons are also heterogeneous (Petruska et al., 2000; Dirajlal et al., 2003) in regards to

sensitivity to various chemical signals. Given the presence of Slo2.2-dependent KNa current in all DRG

neurons we sampled, KNa currents may influence excitability in several different classes of neurons.

Since tests for phenotypic consequences of Slo2.2 KO pointed to neurons involved in itch and, to a

lesser extent, pain, we limited our analysis to small-diameter IB4+ neurons, likely to be enriched in

neurons involved in itch and polymodal pain sensation (Lallemend and Ernfors, 2012).

Neurons were selected for recordings based on size defined from membrane capacitance (WT:

16.1 ± 0.3 pF [±sem; n = 64]; Slo2 dKO: 15.9 ± 0.5; [n = 41]) and the presence of IB4 reactivity (Dirajlal

et al., 2003). Furthermore, neurons were prepared from 3 to 5 week old mice to help ensure relative

numbers of IB4+ and Ret-expressing neurons (Molliver et al., 1997) more consistent with acquisition

of adult itch and polymodal pain-sensing (Lallemend and Ernfors, 2012). We used Slo2 dKO neurons

to guarantee complete absence of any Slo2-dependent KNa current.

A 1 s current step to different amplitudes was used to compare numbers of evoked APs in both WT

and Slo2 dKO neurons with either 10 mM (Figure 7A) or 0 mM pipette Na+ (Figure 7B). Average

resting potential (Vm) was adjusted to −60 mV, prior to the depolarizing current pulses. Despite

considerable variability in the maximum firing

rates among both WT and Slo2 dKO neurons, AP

firing was, on average, more robustly elevated in

Slo2 dKO neurons than in WT neurons for identical

amounts of injected current (Figure 7C,D). The

increase in firing in Slo2 dKO neurons was

observed at all levels of current injection, both

with 10 and 0 mM pipette Na+ (Figure 7E–G). AP

firing did not differ between 10 and 0 mM pipette

Na+ within WT neurons or within Slo2 dKO

neurons. The increase in AP firing associated with

KNa loss is consistent with increased AP firing

of embryonic (E15) rat DRG neurons following

protein kinase A-mediated internalization of KNa

channels (Nuwer et al., 2010).

Standard protocols were used to compare

basic electrical properties of WT and Slo2 dKO

neurons either with 10 mM (Table 1, top) or

0 mM (Table 1, bottom) pipette Na+. To measure

Video 1. Response of a Slo2 dKO mouse to CQ

injection (related to Figure 4A). The nape of the neck of

a Slo2 dKO mouse was injected with 10 μl 200 μM
choroquine. Video recording was begun about 10 s after

injection.

DOI: 10.7554/eLife.10013.008

Video 2. Response of a WT mouse to CQ injection

(related to Figure 4A). The nape of the neck of a WT

mouse was injected with 10 μl 200 μM choroquine.

Acquisition of video was begun about 10 s after

injection.

DOI: 10.7554/eLife.10013.009
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rheobase, 20 ms depolarizing current injections

were applied from a −60 mV holding potential

either with 10 (Figure 8A) or 0 mM pipette Na+

(Figure 8B). This defines a minimal amount of

injected current necessary to elicit an AP. Despite

considerable variance within both WT and dKO

cells, both at 10 and 0 mM Na+ less current was

required to elicit an AP in the dKO neurons

(Figure 8C; Table 1). This difference between WT

and dKO neurons suggests that KNa is activated

prior to or during the weak depolarizations that

begin to elicit Nav activation and is not influ-

enced by pipette Na+ over the range of

0–10 mM.

We next compared the properties of single

APs in WT and Slo2 dKO neurons elicited by a

single 20 ms 100 pA current injection with 0 mM

pipette Na+ (Figure 8D), a stimulus usually

sufficient to evoke an AP in both WT and dKO

cells. AP waveforms were then transformed into

phase plots (dV/dt vs V) for each cell (Figure 8E).

Since peak dV/dt can vary substantially among

cells, we have defined the threshold in a given

cell as the Vm value at which dV/dt reaches 10%

of its peak value (dotted lines on Figure 8E,F).

This comparison shows that APs are initiated

from a more negative Vm in dKO cells than in

WT cells (Figure 8G). In contrast to the effects of

Slo2 dKO on AP initiation, a number of other

properties of single APs, including peak AP

amplitude, AP half-width, and AP after-

hyperpolarization, showed no obvious differences

(Table 1). However, with both 10 and 0 mM pipette

Na+, dKO cells exhibited a somewhat more

depolarized Vm, although no obvious difference in

input resistance (Rin) measured from a 10 mV step

from −60 to −70 mV was noted. Potential reasons

for the apparent discrepancy between Vm and Rin

will be considered below.

If the difference in apparent AP threshold between WT and dKO cells arises from outward KNa

current present in the WT cells that delays the activation of Nav current, a voltage-clamp ramp

protocol that better approximates the slow depolarization preceding an AP might also reveal a

difference between WT and dKO neurons. From a holding potential of −60 mV, cells were therefore

stimulated with a 40 ms voltage-ramp up to −20 mV (Figure 8H). We observed that the Vm at which

the overall current became net inward was more negative in dKO cells compared to WT cells

(Figure 8H,I). Prior to the surge of Nav current activation, the ramp reveals a modest outward current,

which is larger on average in WT cells and which in WT cells slightly shifts rightward the voltage at

which net current becomes inward, relative to dKO cells.

Although the properties of the ramp-activated outward current and shift in 0 current potential are

generally consistent with the loss of outward current activated at the onset of depolarization, a

concern in regards to the above experiments is that the comparisons are being made between cell

populations from genotypically distinct animals. For example, a shift in Nav channel activation to more

negative potentials in dKO neurons might produce qualitatively similar effects. We therefore tested

several inhibitors and activators of KNa current as tools to examine the properties of ramp-activated

current in WT cells, but slow onset of action and non-specific effects on other ion channels precluded

their use. As an alternative, having shown that extracellular Cs+ inhibits KNa current, we examined the

Figure 5. CQ enhances itch-type behavior following

cheek injection, but not pain-type behavior. (A) Total

scratching bouts using the hindpaw to scratch the cheek

was monitored following cheek injection of 200 μg CQ in

WT and Slo2 dKO mice. During the first 5 min interval,

distributions differed at p < 0.001 (Student’s t-test).

(B) Bouts of forepaw grooming were monitored follow-

ing CQ cheek injection for WT and Slo2 dKO mice.

There was no difference in the first 5 min.

DOI: 10.7554/eLife.10013.010
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Figure 6. The absence of Slo2.2 reduces Na+-dependent leak current in acutely dissociated mouse DRG neurons.

(A) Traces on the top show currents (evoked by indicated voltage protocol) for four time points following formation

of a whole-cell recording with 70 mM pipette Na+. Green: immediately following whole-cell access; black:

3 min following access; blue: following application of 20 mM Cs+; red: washout of Cs+. On the bottom, traces are

from another WT neuron examined with the same procedure, but with 0 mM pipette Na+. (B) Panels correspond to

the same sequence as shown in (A) for a Slo2.2 KO neuron (top left), a Slo2.1 KO neuron (top right), and a Slo2 dKO

neuron (bottom). (C) The time courses of increases in net current evoked by steps from −80 to −120 mV are shown

for WT and the three indicated Slo2 genotypes. (D) Mean estimates of leak current and standard errors measured

3 min following whole-cell access are plotted for different test conditions. Circles correspond to individual cells.

t-test comparisons yielded: for 0 mM Na+ WT vs 70 mM Na+ WT, p = 0.0015; for 70 mM WT vs Slo2 dKO, p < 0.001;

for 70 WT vs Slo2.2 KO, p < 0.001; for Slo2.1 KO vs Slo2.2 KO, p = 0.0038. All other comparisons were p > 0.1.

(E) Traces on the top show channel activity in a patch excised from a WT DRG neuron bathed either with 0 mM Na+

or 70 mM Na+. Bottom: a similar patch from a Slo2 dKO neuron reveals no channels activated by Na+. (F) Voltage-

step protocols over the range of −125 mV to −25 mV were used to compare steady-state conductance (measured at

the end of a 20 ms command step) (Figure 6—figure supplement 1) in WT and dKO neurons with 70 mM pipette

Na+, along with WT neurons with 70 mM Na+ after 30 min of recording.

DOI: 10.7554/eLife.10013.011

Figure 6. continued on next page
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ability of 20 mM Cs+ to influence excitability and ramp-activated currents in both WT and dKO DRG

neurons with 0 mM pipette Na+ (Figure 9). As shown above, the voltage-ramp activated a much

more pronounced low-voltage outward current in WT cells than in dKO cells, with a marked shift in

the 0 current potential (Figure 9A). Application of 20 mM extracellular Cs+ to WT neurons also

resulted in a reduction in ramp-activated outward current and a shift in the 0 current voltage

(p = 0.000; Figure 9B), quite comparable to the current observed in the dKO neurons (Figure 9C).

In contrast, application of 20 mM Cs+ to the dKO cells produced only small shifts in the 0 current

voltage (p = 0.675; Figure 9D). Overall, 20 mM Cs+ mimicked the effect of Slo2 dKO on the

0 current voltage (Figure 9E), while also producing essentially identical effects on measurement of

rheobase in the same set of neurons (Figure 9F). That an apparent shift in the voltages over which

the surge of inward current is observed can occur from K+ channel inhibition is also highlighted in

comparisons of the normalized ramp activated currents (Figure 9—figure supplement 1), which

clearly shows the ability of Cs+ to produce a shift in apparent inward current activation in WT cells

which is much more reduced in the dKO cells. Inhibition by Cs+ is likely to differ from Slo2 dKO in

two primary ways: first, KNa will not be inhibited completely by Cs+ at these voltages and second,

Cs+ is likely to inhibit other K+ currents in addition to KNa. However, the results clearly support the

view that an apparent shift in inward current activation occurs with inhibition of subthreshold K+

currents, likely to include KNa.

The same set of cells was also examined with standard voltage-step protocols to ascertain the

properties of peak inward and steady-state outward current (Figure 9—figure supplement 2). Step-

activated inactivating current and the voltage of half-activation of the inward current was roughly similar

in both WT and dKO neurons, with similar reductions produced by 20 mM Cs+ (Figure 9—figure

supplement 2A–D). The absence of obvious differences between the Nav currents in WT and dKO

neurons make it highly unlikely that a difference in Nav current between WT and dKO neurons accounts

for the differences in rheobase and ramp-activated 0 current potential. Furthermore, if the effect of Cs

on ramp-activated current were to arise from an effect on Nav current, an inhibition of Nav current

would be expected to shift the 0 current voltage rightward. This is not observed. Together, these results

support the view that the Cs+ induced inhibition of ramp-activated outward current and the shift in the 0

current voltage arise solely from inhibition of a K+ current. Whatever this current is, it is apparently

absent in the dKO neurons. Although it is perhaps possible that some other low voltage activated K+

current other than KNa is also absent in the dKO neurons, the simpler view is that the difference in

excitability between the WT and dKO neurons arises from the absence of the KNa current itself.

To ascertain whether there might be changes in other components of current between this

particular set of WT and dKO neurons, we also compared steady-state current at the end of a 20 ms

voltage-step in the same set of cells (Figure 9—figure supplement 2E,F). Although net outward

current was generally similar in both groups, the dKO cells exhibited a larger outward at command

potentials from −10 mV and more positive (Figure 9—figure supplement 2E). However, over the

range of −120 to almost −20 mV, there was no obvious difference in this steady-state current

(Figure 9—figure supplement 2F). With 0 mM pipette Na+, no significant difference was observed in

Figure 6. Continued

The following figure supplements are available for figure 6:

Figure supplement 1. KNa current runs down during constant cytosolic 70 mM Na+.

DOI: 10.7554/eLife.10013.012

Figure supplement 2. Cs+ inhibition of KNa current exhibits voltage-dependence.

DOI: 10.7554/eLife.10013.013

Figure supplement 3. Confirmation of properties of single KNa channels that are deleted by Slo2 dKO.

DOI: 10.7554/eLife.10013.014

Figure supplement 4. Na+-dependent leak current is present in both IB4+ and IB4− neurons and runs down with

time in culture.

DOI: 10.7554/eLife.10013.015

Figure supplement 5. The absence of Slo2.2 and, to a lesser extent, Slo2.1, reduces Na+-dependent leak current in

mouse DRG neurons in DRG tissue slices.

DOI: 10.7554/eLife.10013.016
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Figure 7. Evoked action potential (AP) firing is increased in IB4+ DRG neurons from Slo2 dKO mice. (A) 40, 60, 100,

and 200 pA current injections (1 s) were used to elicit firing in WT (left) and dKO IB4+ DRG neurons from a holding

potential of −60 mV. The pipette solution contained 10 mM Na+. (B) Similar injected currents were used to elicit

firing in WT and Slo2 dKO neurons, but with 0 mM pipette Na+. (C) Mean number of APs for each 1 s step is plotted

as a function of injected current amplitude for WT and dKO neurons for 10 mM pipette Na+. WT and dKO AP firing

was significantly different at all injected current levels. (D) Mean firing is compared for WT and dKO neurons

recorded with 0 mM pipette Na+. (E) Mean (black circle) and individual estimates (red circles) of AP firing for 1 s 60

pA current injections are summarized for 10 and 0 mM pipette Na+. p values, KS statistic. For comparisons between

0 and 10 mM Na+, for WT cells, p = 0.909; for dKO cells, p = 0.545. (F) AP firing for 100 pA current injections.

Between 0 and 10 mM Na+, for WT cells, p = 0.585; for dKO cells, p = 0.245. (G) AP firing for 200 pA current

injections. Between 0 and 10 mM Na+, for WT cells, p = 0.09; for dKO cells, p = 0.23.

DOI: 10.7554/eLife.10013.017
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the resting conductance measured from a fit of the I–Vs between −120 and −60 mV, suggesting that

there is little obvious basal activation of KNa current with 0 mM pipette Na+. Although these results

also indicate that, in the voltage range of −50 to −20 mV, there are other Cs+-sensitive K+

conductances besides KNa active at the end of 20 ms steps, these do not appear to differ significantly

between WT and dKO neurons, again supporting the idea that the observed differences in excitability

are likely to arise from changes in KNa alone.

Given that in many other cells KNa may play a role in slow AHPs, we also specifically addressed

this question in WT DRG neurons. For example, in cells of the thalamic paraventricular neurons

(Zhang et al., 2010a), it has been shown that trains of APs produce a slow development of

Na+-dependent AHPs dependent on the number and frequency of APs in the trains. We

therefore examined the consequences of an increasing number of APs on AHPs in IB4+ small diameter

neurons. Trains of 5 or 10 APs applied at 7 Hz were unable to elicit any slow AHP in IB4+ small diameter

neurons different from that elicited by a single AP (Figure 10). This further suggests that KNa current in

DRG neurons, at least with physiological ionic solutions, contributes negligibly to membrane potential

regulation following APs.

Table 1. Properties of IB4+ WT and Slo2 dKO DRG neurons (10 and 0 mM pipette Na+)

Pipette Na+ IB4+ WT IB4+ dKO p-values

10 mM Na+ mean sem n mean sem n K-S statistic

Cm (pF) 16.1 0.3 64 15.9 0.5 41 0.574

m.p. (mV) −54.2 0.6 57 −50.8 0.9 41 0.001

Rin (MΩ) 1251.1 130.8 13 1212.9 148.8 13 0.828

rheobase (pA) 86.6 4.6 44 58.1 3.4 31 0.000

dV/dt AP threshold (mV) −25.31 0.64 14 −27.89 0.65 10 0.032

AP peak (mV) 39.2 2.2 14 41.7 1.6 10 0.877

AP half-width (ms) 5.7 0.3 14 5.6 0.3 10 0.771

AHP (mV) −74.0 0.4 14 −72.6 0.5 10 0.124

60 pA AP count 2.3 0.5 64 9.7 1.9 41 0.000

100 pA AP count 5.5 0.8 64 17.7 2.7 41 0.000

200 pA AP count 11.4 1.5 64 28.9 5.1 41 0.000

Pipette Na+ IB4− WT IB4− dKO p-values

0 Na+ mean sem n mean sem n K-S statistic

Cm (pF) 16.7 0.9 12 16.7 0.8 12 0.991

m.p. (mV) −54.0 1.4 11 −47.0 1.4 12 0.007

Rin (MΩ) 1381.0 194.5 12 1136.4 95.0 11 0.459

rheobase (pA) 92.5 8.7 12 60.8 5.1 12 0.0048

dV/dt AP threshold (mV) −22.7 0.7 10 −25.8 0.5 10 0.001

AP peak (mV) 45.3 2.9 10 51.7 1.6 10 0.313

AP half-width (ms) 5.1 0.3 10 4.5 0.2 10 0.313

AHP (mV) −72.5 0.7 10 −73.7 0.4 10 0.313

60 pA AP count 1.2 0.5 12 5.8 1.2 12 0.005

100 pA AP count 3.5 1.1 12 12.3 2.1 12 0.019

200 pA AP count 6.8 2.4 11 19.9 3.0 10 0.005

Cm, cell capacitance; m.p., resting potential; Rin, input resistance measured by current deflection arising from a 10

mV pulse from −60 to −70 mV; AP half-width, measured at half peak amplitude; AHP, measured following a single

evoked AP; AP count, number of APs in 1 s of specified injected current. Rheobase, defined as smallest injected

current which elicited an action potential during a 20 ms current injection.

AP, action potential.

DOI: 10.7554/eLife.10013.018
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Figure 8. Slo2 dKO results in reduced AP threshold. (A) A 20 ms current injection of different amplitudes applied

with membrane potential adjusted to −60 mV was used to examine AP threshold for a WT (left) and a Slo2 dKO

(right) DRG neuron with 10 mM pipette Na+. Dotted red lines indicate 0 and −60 mV voltage levels. Current injection

amount that first elicited an AP is indicated on each panel. (B) A similar comparison of AP threshold for a WT (left)

and dKO (right) neuron is shown with 0 mM pipette Na+. (C) Mean and individual determinations of effective

rheobase as determined in panels (A) and (B) are plotted for WT and dKO cells both for 10 and 0 mM pipette Na+.

p values are the KS statistic for the indicated pairs. There was no difference for comparisons of 0 and 10 mM Na+

within a given genotype. (D) Example single APs elicited by a 100 pA current injection for WT and Slo2 dKO neurons

are shown (0 mM pipette Na+). (E) dV/dt is plotted as function of membrane voltage for the APs in panel (D) (dKO,

red; WT, black). Horizontal dotted lines correspond to the dV/dt value that is 10% of peak dV/dt for a given cell.

(F) The dV/dt plot is shown for a more limited range of membrane voltage, with crossover with horizontal dotted

lines of same color showing effective AP threshold. (G) Thresholds determined from dV/dt analysis are plotted for

WT and dKO neurons (p = 0.001, KS statistic). (H) Currents activated by a 40 ms voltage-ramp from −60 to −20 mV

from a holding potential of −60 mV were averaged for 10 WT and 11 dKO neurons (0 mM pipette Na+). The voltage

at which the current becomes net inward is indicated by the arrows. (I) The membrane potential at which net current

becomes inward during the voltage-ramp protocol shown in (H) is plotted for WT and dKO neurons with p = 0.007

(KS statistic).

DOI: 10.7554/eLife.10013.019
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Overall, these results suggest that the contribution of KNa to DRG firing behavior is relatively

insensitive to resting cytosolic Na+ levels up to 10 mM. The absence of a difference in resting

conductance between WT and dKO neurons at potentials between −60 and −120 mV suggests that

Figure 9. Cs+ inhibition of outward current in WT, but not dKO, neurons recapitulates properties of Slo2 dKO.

(A) Traces show averaged currents activated by the indicated voltage-ramp protocol (top) for 10 WT and 10 dKO

neurons. Number shows the voltage at which net current crosses the 0-current level (indicated approximately by

arrow heads). (B) Ramp-activated currents are shown for WT cells before and after application of 20 mM extracellular

Cs+. (C) Ramp-activated currents are compared for WT cells in the presence of 20 mM Cs+ and dKO cells.

(D) Currents are shown for dKO neurons without and with 20 mM extracellular Cs+. (E) The mean 0-current potential

for sets of WT and dKO neurons without and with Cs+ are plotted, along with the individual estimates from each cell.

p values are KS statistics. Other comparisons had p-value estimates >0.1. (F) Mean rheobase for the same set of WT

and dKO cells are plotted, along with individual estimates.

DOI: 10.7554/eLife.10013.020

The following figure supplements are available for figure 9:

Figure supplement 1. Normalized ramp-activated currents reveals that application of Cs+ shifts the apparent range

of inward current activation in a fashion similar to dKO of Slo2 currents.

DOI: 10.7554/eLife.10013.021

Figure supplement 2. Comparison of step-activated inward and steady-state currents activated in WT and dKO

cells for comparison of ramp-activated outward current.

DOI: 10.7554/eLife.10013.022

Figure supplement 3. Evaluating the potential impact of a small K+ conductance near resting potential.

DOI: 10.7554/eLife.10013.023
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basal KNa activation is minimal. Therefore, an influence of KNa current at the foot of AP generation

presumably requires a source of Na+ and perhaps a requirement for coupling to local Na+ influx.

Although it has been proposed that KNa channels may be coupled to influx through particular

subtypes of Nav channels (Hage and Salkoff, 2012), the results here would require that such coupling

must be very tight and occur immediately upon Nav activation. Future work will be required to

address these issues, but the results here suggest new considerations on the conditions under which

KNa activation may occur.

Discussion
Direct evidence supporting the existence of KNa channels in native cells first appeared about 25–30

years ago (Kameyama et al., 1984; Bader et al., 1985; Dryer et al., 1989). Yet, even with

identification of the two mammalian Slo2 genes that encode KNa channels of the type observed in the

early studies (Bhattacharjee et al., 2003; Yuan et al., 2003), full definition of functional properties

and physiological roles of KNa currents have proven somewhat elusive, despite the apparently

widespread distribution of Slo2 subunits in excitable tissue (Bhattacharjee et al., 2002, 2005). Recent

demonstration of neurological disorders linked to Slo2.2 (Barcia et al., 2012; Martin et al., 2014)

further highlights the potential importance of such channels. The availability of Slo2.1 and Slo2.2 KO

mice will now provide an additional tool to probe the roles of KNa currents. The present results

demonstrating the loci of expression of message for Slo2.1 and Slo2.2 subunits, the presence of

Slo2.1 and Slo2.2 protein in various tissues, and the natural occurrence of Slo2.1/Slo2.2 heteromul-

timers confirms and extends earlier work regarding the loci of expression of Slo2 subunits

(Bhattacharjee et al., 2002, 2003; Chen et al., 2009; Tamsett et al., 2009), while also providing

KO controls confirming the utility of antibodies in western blots. Here, focusing on the role of Slo2.2 in

sensory function, we observed that Slo2.2, but not Slo2.1, KO results in enhanced itch and, to a lesser

extent, pain responses. Furthermore, KO of Slo2.2, but not Slo2.1, results in complete absence of the

Figure 10. AP trains in IB4+ small diameter DRG neurons do not develop slow AHPs. (A) A cell was maintained at a

resting potential of −50 mV and stimulated with either 1, 5, of 10 pulses of 10 ms duration and 200 pA amplitude,

with a pulse frequency of 7.1 Hz. A brief afterhyperpolarization is associated with the last AP in each test, with no

indication of any additional slow afterhyperpolarization persisting for 100 s of milliseconds. (B) In another cell

maintained at a resting potential of −60 mV, the identical current injection sequence also failed to elicit any slow

afterhyperpolarization. Identical results were observed in three additional neurons.

DOI: 10.7554/eLife.10013.024
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DRG KNa current. This loss of Slo2 current results in increased excitability in response to depolarizing

stimuli, likely accounting for the observed phenotypes.

An important point of the present results is that the primary effect of KNa removal is to reduce AP

threshold, with little or no clear effect on AHPs following an AP. The effect on AP threshold was

revealed in multiple kinds of tests, a decrease in rheobase, a negative shift in AP threshold determined

from the rate of AP rise (dV/dt), and also from a similar negative shift in the voltage at which current

becomes net inward during a ramp protocol. Similar changes in AP threshold were observed with

both 0 and 10 mM pipette Na+, excluding a key role for differences in pipette Na+ as a determinant of

basal KNa activation. Overall, the results require that KNa acts as a mild brake to the onset of AP

initiation. Furthermore, we observed no difference in AHP amplitude measured following single APs

between WT and KO cells, either with 0 or 10 mM pipette Na+. Trains of APs also did not evoke the

development of slower AHPs.

A role of KNa activity preceding the AP upswing in DRG neurons differs fundamentally from other

explanations of the proposed role of KNa current in other cells. In different cases, a primary role for

KNa current has been proposed either in fast (Hess et al., 2007; Yang et al., 2007; Gribkoff and

Kaczmarek, 2009; Markham et al., 2013) or slower afterhyperpolarizations that may require trains of

several APs to develop (Schwindt et al., 1989; Kim and McCormick, 1998; Franceschetti et al.,

2003; Wallen et al., 2007; Zhang et al., 2010a). In the case of rapid coupling of KNa activation to

single APs, this potentially provides a mechanism to facilitate high frequency firing (Yang et al., 2007),

while slow AHP development serves to support AP accommodation and termination of burst activity.

The present results do not preclude such roles for KNa either in rapid repolarization or slow AHPs

in other cells. However, the specific role of KNa channels in any cell would depend intimately on

the balance of other repolarizing conductances, along with magnitude, spatial, and temporal

properties of any cytosolic [Na+] elevation. In this regards, it is worth mentioning that some of the

best support for the presence of KNa currents in cortical neurons has required conditions under which

Ca2+-dependent outward currents are inhibited (Schwindt et al., 1989). Given the abundance of other

repolarizing conductances in DRG neurons, it is perhaps not unexpected that modest KNa activation

during AP repolarization in DRG neurons may have negligible effects on Vm. Our observations are, in

fact, consistent with earlier results in rat DRG neurons, in which both AP duration and AHPs were

unchanged when extracellular Na+ was replaced by Li+ (Bischoff et al., 1998), despite the fact that Li+

does not substitute for Na+ in KNa activation (Safronov and Vogel, 1996).

If KNa activity acts as a brake to AP initiation, how is KNa activation elicited? Despite the well-

established existence of KNa channels, the circumstances under which cytosolic Na+ elevation arising

from physiological stimuli is sufficient to produce KNa activation remain unclear. In fact, consideration

of basic properties of Na+ diffusion and the expected Na+ flux through single channels have raised

some doubt whether average [Na+]i can ever be sufficient to activate KNa (Dryer, 1991). Some aspects

of our data partially address these issues, but there are complexities in our observations that are not

readily explained. The differences in firing properties of WT and dKO cells, both with 0 and 10 mM

pipette Na+, suggest that KNa activation is unaffected over the range of 0–10 mM pipette Na+. This is

not surprising given that the threshold for KNa activation may be higher than 10 mM (Bischoff et al.,

1998; Tamsett et al., 2009). Furthermore, when Rin was measured with a step from −60 to −70 mV,

no difference between WT and dKO neurons was observed either with 0 and 10 mM pipette Na+.

Similarly, with Rin measured by a fit to the I–V relationship over voltages from −120 to −60 mV with

0 Na+ pipette solution, no Cs+ dependent inhibition of conductance was observed in either WT or

dKO neurons. Although it has been suggested that some Slo2.2 channel activation may occur in 0 Na+

(Huang et al., 2013), the present results suggest that in DRG neurons basal KNa activity at potentials

negative to −60 mV does not occur. However, both with 0 and 10 mM pipette Na+, WT cells exhibited

a slightly more negative Vm than dKO cells. If pipette Na+ itself does not influence the differences in

WT cells from dKO cells, how might these differences arise? The largely linear behavior of both the

WT and dKO neuron steady-state I–V relationship from −120 mV to −60 mV begins to exhibit distinct

upward curvature in the range of −60 to −50 mV, bracketing the range of measured membrane

potentials. This would suggest that conductances are active at rest that are apparently not active

negative to −60 mV. Based on the differences in WT and dKO resting potentials, KNa current is clearly

a candidate for one of these conductances. In addition, that Vm is close to −50 mV with EK ∼ −80 mV

suggests that there may be appreciable inward Na current at potentials above −60 mV. Future work

will be required to assess the identity of any components of Na+ current active at such potentials.
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Voltage-step protocols used here from a holding potential of −70 mV reveal little obvious inward

current until at least −30 mV. Both Nav1.8 and Nav1.9 channels are known to be expressed in some

small diameter IB4+ neurons (Fang et al., 2006; Strickland et al., 2008) and Nav1.9, in particular,

may begin to activate at potentials close to resting potentials we have observed (Rugiero et al., 2003;

Coste et al., 2004; Zhao et al., 2011b). Another possibility reflects the proposal that KNa currents in

some neurons may be selectively activated by persistent TTX-sensitive Na+ currents (Hage and

Salkoff, 2012). TTX-sensitive Nav1.7 channels can be found in small diameter DRG neurons (Nassar

et al., 2004) and, although such channels are largely inactivated near DRG resting potentials

(Vijayaragavan et al., 2001), it is possible that even under steady-state inactivated conditions some

persistent openings occur. Perhaps as Slo1 Ca2+-dependent K+ channels are coupled to specific Ca2+

channels (Berkefeld et al., 2006; Berkefeld and Fakler, 2008), molecular coupling of KNa channels to

specific sources of Na+ influx may occur.

Although the changes in rheobase, AP threshold, and increase in excitability observed in the dKO

animals can largely consistent with what one would expect from the simple demonstrated removal of

KNa current, there is also the possibility that genetic deletion of Slo2 protein may result in

compensatory changes that account for some of the observed effects. This issue might be of particular

concern in regards to DRG neurons, since it is well-known that a variety of manipulations can readily

induce changes in various DRG current properties, including Nav channels, resulting in altered

excitability (Chahine and O’Leary, 2014). Furthermore, in the particular case of Slo2.2, it has been

proposed that severe human pathologies associated with Slo2.2 mutation arise from extensive

alterations in gene and protein expression throughout the nervous system (Kaczmarek, 2013). In the

present case, two possible alternative mechanisms by which rheobase, AP threshold, and excitability

might be altered as observed in the Slo2 dKO neurons would be, first, a shift in Nav current activation

to more negative potentials and, second, a loss of some other K+ current active in the subthreshold

range of voltages. Although we cannot fully exclude that there have been no changes other than loss

of KNa current in the Slo2 dKO DRG neurons, the demonstration that inhibition of subthreshold K+

current by Cs+ mimicked the behavior of the dKO neurons strongly argues that a change in Nav

channel expression does not underlie the observed phenotypes and, furthermore, that removal of a

sub-threshold K+ conductance can produce the particular constellation of changes we have observed.

Finally, we did not observe any indication of a loss in a near threshold K+ conductance other than KNa,

although any such change might be difficult to resolve.

It is instructive to consider how much KNa current activation might be required to account for

changes in resting potential. Assuming a simple modified GHK conductance equation and a relative

balance of GK, GNa, and GCl (net Rin = 858 MΩ; Gin = 1.165 nS) to yield a resting potential near −50 mV,

increasing the background GK of 0.7 nS with an additional activation of 0.16 nS GKNa results in

additional hyperpolarization of ∼3.3 mV (Figure 9, Figure 9—figure supplement 3). From Figure 6F,

we observed an average KNa conductance of 69 nS activated by 70 mM pipette Na+ around −50 mV.

Although 70 mM Na+ produces a less than maximal activation, if one assumes a maximal conductance

of 69 nS, the fractional activation of KNa required to produce a 3–4 mV hyperpolarization corresponds

to a Po of about 0.002, which corresponds to 8 pA at −50 mV. If these calculations are generally

correct, it is not surprising that it would be difficult to identify procedures to directly examine such a

current.

The severity of the human patients with apparent Slo2.2 mutations (Barcia et al., 2012; Heron

et al., 2012) naturally raises a question regarding whether suitable phenotype tests may uncover

cognitive impairments in the Slo2 dKO mice. Any such deficits, if they exist, apparently spare the basic

ability of the dKO animals to eat, mate, and function in a generally normal way. Perhaps relevant to

the possibility that Slo2.2 KO may have apparently benign functional consequences, one set of the

human Slo2.2 mutations corresponds to gain-of-function changes (Barcia et al., 2012), resulting in

larger KNa currents. Perhaps the presence of Slo2.2 subunits of altered function results in more

deleterious consequences than the complete absence of such subunits.

Recent work on another Slo2.2 KO model (Lu et al., 2015) also focused on sensory function with

some complementary results. In both cases, exon 11 of the gene encoding Slo2.2 was deleted. Both

groups observe similar absence of effects of Slo2.2 KO on hotplate and formalin tests. Given the

absence of effects on acute pain responses, Lu et al. (2015) focused on neuropathic pain responses,

observing that Slo2.2 activation reduces neuropathic pain and does not acutely influence sensory

responses. However, our results clearly show that Slo2.2 KO influences the immediate response to
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sensory stimuli, in particular, itch. Furthermore, an enhancement of the acute responses to capsaicin

also occurs at lower doses. Both groups also observed increased excitability in neurons lacking KNa

current, although the basis for the enhanced excitability was not examined in detail by the other

group (Lu et al., 2015). However, we suggest that the increase in DRG neuron excitability observed in

both studies is consistent with enhancement of the immediate response to a sensory stimulus.

Why do some aversive tests, for example, hotplate, formalin, tail flick, and cold plate (Lu et al., 2015),

show no difference between WT and Slo2.2 KO? We envision three possible explanations. First, as

suggested by the dose-dependence of capsaicin responses, perhaps regulation of KNa current has more

impact on weaker stimuli or relatively weak depolarizing drive, whereas, with stimuli that elicit strong

initial depolarization, modest KNa activation will be less likely to influence AP generation. Second, even if

KNa is present in most small diameter DRG neurons, different categories of such neurons may have other

conductances that diminish the impact of loss of KNa current. Third, perhaps there are small diameter

neurons, or certainly DRG neurons of other sizes, that may not have KNa current.

In sum, we propose that, in small diameter IB4+ DRG neurons, KNa currents influence AP onset,

with greatest effect during low frequency firing. The particular properties of KNa currents, specifically

modest intrinsic voltage-dependence but voltage-dependence perhaps acquired through coupling to

its cytosolic ligand, Na+, may be well-suited to influence the initial upswing of AP generation, at a time

when other K+ conductances are largely quiescent.

Materials and methods

Animal care
Animals were handled and housed according to the National Institutes of Health Committee on

Laboratory Animal Resources guidelines. All experimental protocols (protocol #20130256) were

approved by the Washington University in St Louis Institutional Animal Care and Use Committee.

Every effort was made to minimize pain and discomfort.

Generation of KO mice
To generate the Slo2.1 KO (deletion of Kcnt2 exon) mouse, exon 22 (110 bp, encoding amino acids

829–865 of the Slo2.1 protein) was targeted for deletion. The deletion of exon 22 in Kcnt2 causes a

frame-shift and the predicted residual protein is Slo2.1(1–828). To generate the Slo2.2 KO (deletion of

Kcnt1 exon) mouse, exon 11 (181 bp, encoding amino acids 253–313 of Slo2.2, which includes part of

the pore-forming region) was targeted for deletion. The deletion of exon 11 in Kcnt1 causes a frame-

shift and the predicted residual protein is Slo2.2(1–252) with an appended 26 amino acid peptide before

the first stop codon. Following germline transmission via recombinant ES cells, the F1 mice with

targeted loci were bred with FLP delete mice (B6.129S4-Gt(ROSA)26Sortm1(FLP1)Dym/RainJ, Jackson Labs,

Bar Harbor, ME, United States) to generate floxed mouse lines and with early embryonic expression Cre-

mice (EIIa-Cre, Jackson) for deletion of the targeted exons. The Kcnt1 floxed mice and Kcnt2 floxed

mice are available at The Jackson Laboratory as Stock No. 028418 and Stock No. 028419, respectively.

Slo2.1 KO and Slo2.2 KO strains of mice have been maintained in a C57BL/6 background out to N = 12.

Additional details of the generation of Slo2.1 and Slo2.2 KO mice are provided in the legend to Figure 1.

All procedures related to animal care and treatment conformed to institutional and NIH guidelines.

Behavioral testing
Mice were maintained in a 12 hr light/dark cycle with free access to food and water. Behavioral

experiments were done on male mice of 10–12 weeks of age and mice were only used once for any of

the tests. Littermate mice were used in all behavioral studies, except those involving double KO of

Slo2.1 and Slo2.2. For dKO mice, each allele had initially been breed within a C57BL/6 background

out to N = 12 generations, so comparisons were made to the Jackson Labs WT C57BL/6 stock.

Animals were habituated to the experimental room with background white noise used to mask

random noise (SKI 000148, San Diego Instruments, San Diego, CA, United States) and monitored by

an observer naı̈ve to genotype.

Hot plate test
The PE34 Hot Plate Analgesia meter (IITC Life Science, Woodland Hills, CA, United States) was used

for heat latency testing, following published procedures (Zhao et al., 2011a). Mice were placed on a
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black anodized aluminum plate within a round enclosure (diameter, 10 cm; height, 15 cm). The plate’s

surface temperature was adjusted to 55˚C (±0.1˚C) and the temperature was constant throughout the

tests. The time between placement on the plate and a defensive movement (hindpaw licking or

jumping) was recorded. Cut off time was set at 20 s.

Formalin test
Formalin (15 μl of a 0.5% formaldehyde solution) was injected subcutaneously into the dorsal surface

of one hindpaw (McNamara et al., 2007). The time spent licking the formalin-injected paw was

recorded in 5 min intervals up to 45 min after formalin injection.

Itch tests
Mice were shaved at the back of the neck. Following intradermal injections of potential pruritic agents

(EtOH, CQ, HA, compound 48–80), hindlimb scratching behavior directed towards the shaved area

was monitored over a 30 min period. CQ and compound 48–80 were dissolved in 0.35% EtOH. HA

was prepared in a saline solution.

Capsaicin injections
Mice were placed into a transparent observation chamber (30 × 30 × 25 cm) for adaptation

30 min before the experiments (Kim et al., 2001). Capsacin was administered subcutaneously into the

plantar hindpaw in a volume of 10 μl using a 50 μl Hamilton syringe attached to a 30 gauge needle.

The needle was inserted at the midline near the heel and advanced anteriorly to the base of the

second or third toe, where the drug was injected, forming a bleb that usually extended back to the

initial point of entry. Capsaicin (Sigma Aldrich, St. Louis, MO, United States) was first dissolved in 95%

ethanol (100 μg/μl) before diluting to the desired concentrations in PBS. After injections, mice were

then placed into the original chamber and were observed for licking and flinching behavior. Time

spent licking or flinching was recorded in 5-min sections, for a total of 15 min.

Cheek test
The hair on a patch of each cheek was shaved at least 2 days prior to experiments (Shimada and

LaMotte, 2008). While under mild restraint, the cheek was then injected, all within 10 s. During the

following 30 min, both forepaw wiping motions and hindlimb scratching motions were separately

counted and grouped into 5 min bins.

RNA extraction and quantitative RT-PCR
RNA extraction and RT-PCR followed procedures previously used in this laboratory (Yang et al., 2011;

Martinez-Espinosa et al., 2014). Total RNA from different mouse tissues was isolated using the

RNeasy Plus Mini Kit (Qiagen, Valencia, CA, United States) following the manufacturer’s recommen-

dations. Before the reverse transcription, total RNA was treated to remove genome DNA with the

DNA-free Kit (AM1906, Applied Biosystems, Waltham, MA, United States). cDNA was synthesized

using the Retroscript Kit (AM1710, Applied Biosystems). For the negative control groups, all

components except the reverse transcriptase MMLV-RT were included in the reaction mixtures. Real-

Time PCR with specific primers (Table 2) was performed using Power SYBR Green PCR Master Mix

(Applied Biosystems). Mouse β-actin gene was utilized here as the homogenous standard. The running

protocol extended to 40 cycles consisting of 95˚C for 15 s and 60˚C for 1 min using an Applied

Biosystems 7500 Fast Real-time PCR system. PCR specificity was checked by dissociation curve analysis

and DNA electrophoresis. Primer efficiency was validated as previously reported (Yang et al., 2009).

Abundance was calculated from 2−dCt, with dCt = Ct(target) − Ct(β-actin). Each reported estimate is the

average from three separately prepared mouse tissue RNA samples, with each sample run in triplicate.

Mouse tissue total protein and membrane protein preparations
Preparation and analysis of proteins from mouse tissues followed procedures recently used in this

laboratory (Yang et al., 2011; Martinez-Espinosa et al., 2014). Mature male mice were sacrificed for

preparation of membrane proteins from whole brain, cerebellum, cortex and spinal cord, respectively.

1 g of mouse whole brain, cortex, cerebellum, or spinal was homogenized with Teflon-glass pestle in

10 ml ice-cold 0.32 sucrose in PBS, including 100 μl 1.5 M PMSF in acetone and 100 μl Protease
Inhibitor Cocktail (Sigma-Aldrich). After spinning at 300×g for 10 min at 4˚C, the supernatant was

collected, followed by ultra-speed centrifugation in a 4˚C Ti70 rotor at 150,000×g for 1 hr. The

Martinez-Espinosa et al. eLife 2015;4:e10013. DOI: 10.7554/eLife.10013 20 of 27

Research article Biophysics and structural biology | Neuroscience

http://dx.doi.org/10.7554/eLife.10013


membrane pellet was resuspended in 10 ml lysis buffer (50 mM Na phosphate, 150 mM NaCl,

10 mM KCl, 2% Triton X-100, pH 7.2), including 100 μl 1.5 M PMSF in acetone and 100 μl Protease
Inhibitor Cocktail, and rocked at 4˚C for 1 hr, followed by centrifugation at 14,000×g for 10 min.

10 ml supernatant was saved as the membrane protein preparation in the −80˚C freezer. Hearts

from four mature male mice were dissected, washed with PBS and quickly frozen in liquid nitrogen.

The frozen hearts were pulverized with liquid nitrogen pulverizer and then homogenized on ice with

Teflon-glass pestle in 3 ml TE(pH 7.6) buffer containing 2% Triton X-100, 20 μl PMSF (1.5 M in

acetone) and 20 μl Protease Inhibitor Cocktail. The suspension was rocked at 4˚C cold room for 1 hr,

followed by spinning at 14,000Χg for 15 min. Pellet was discarded and the 3 ml supernatant was

saved as the heart total protein preparation. DRGs collected from 10 mature male mice were

homogenized on ice with a Teflon-glass pestle in 1 ml lysis buffer (50 mM Na phosphate, 150 mM

NaCl, 10 mM KCl, 2% Triton X-100, pH 7.2), including 10 μl 1.5 M PMSF in acetone and 10 μl
Protease Inhibitor Cocktail. The suspension was rocked at 4˚C cold room for 1 hr, followed by

spinning at 14,000×g rpm for 15 min. The 1 ml supernatant was saved as the DRG total protein

preparation.

Immunoprecipitation and western blotting
Samples of total protein preparations or membrane protein preparations appropriate for a given tissue

were applied in the immunoprecipitation experiment. 70 μl Protein A/G Plus agarose beads (Santa Cruz

Biotechnology, Dallas, TX, United States) were added to the preparation and mixed at 4˚C cold room

for 1 hr. The beads were removed by a brief spin at 14,000×g. The supernatant was carefully collected

and mixed with 8 μg monoclonal anti-mSlo2.1 (N11/33) or anti-mSlo2.2 (N3/26) antibody (Antibodies

Inc., Davis, CA, United States) at 4˚C cold room for 2 hr, followed by the addition of 80 μl Protein A/G

Plus agarose beads. The mixture was rocked overnight and then centrifuged briefly to collect the

beads. The beads were washed three times with 1 ml 1% Triton X-100 in PBS and the bound proteins

were eluted from the beads with 100 μl SDS loading buffer containing 100 mM DTT.

For western blotting, aliquots of total protein preparations or membrane protein preparations was

mixed well with an equal volume of 2× SDS loading buffer containing 100 mMDTT, maintained at room

temperature for 30 min before loading onto 8% Precise Protein Gels (Pierce, Life Technologies, Grand

Island, NY, United States). Protein markers were EZ-Run Prestained Rec Protein Ladder (Fisher,

Waltham, MA, United States). Proteins were transferred to Immobilon-P PVDF membranes with the

Trans-Blot Semi-Dry Transfer System (Bio-Rad, Hercules, CA, United States). Membranes were blocked

with 5% nonfat milk in Tris-buffered saline-Tween 20 solution (pH 7.3) at room temperature for 1 hr,

followed by overnight incubation at 4˚C in 5 ml blocking solution containing monoclonal anti-mSlo2.1

or anti-mSlo2.2 antibody (10 μg/ml, Antibodies Inc). After washing with 5 ml blocking solution ×
5 min for four times, membranes were incubated with 5 ml blocking solution containing

Mouse Trueblot Ultra HRP-conjugated anti-mouse IgG (at 1:2000 dilution, eBioscience, San Diego,

Table 2. Primers used for Real-Time PCR

Gene Primer Amplicon length

Kcnt2 Forward: 5′-
TCTATTTGAAACAATACTCCTTGG-3′

149 bp

Reverse: 5′-
GAACAAATAGATTTCTTAAGGTGG-3′

Kcnt1 Forward: 5′-
CTCACACACCCTTCCAACATGCGG-3′

161 bp

Reverse: 5′-
ATGCTGATACTAAATACTCGACCA-3′

Β-actin Forward: 5′-
TGGAGAAGAGCTATGAGCTGCCTG-3′

127 bp

Reverse: 5′-
GTAGTTTCATGGATGCCACAGGAT-3′

DOI: 10.7554/eLife.10013.025
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CA, United States) at room temperature for 1 hr. After four-time washing with 5 ml blocking solution,

HRP-labeling was developed using Amersham ECL Plus Western Blotting Detection System (GE

Healthcare, Pittsburgh, PA, United States). A specific Slo2.1 band in WT heart Slo2.1-IP sample was not

detected in the first round of western blot with the monoclonal anti-Slo2.1 antibody (10 μg/ml,

Antibodies Inc.). To visualize a Slo2.1-specific band, the initial western blot was stripped with Re-Blot

Plus Mild Solution (Millipore; Billerica, MA, United States) and then the PVDF membrane was reblotted

with the same antibody.

For western blotting, NeuroMab anti-Slo2.1 antibody (#75-055) targets amino acids 564–624 of

Slo2.1; NeuroMab anti-Slo2.2 antibody (#75-051) is against amino acids 1168–1237 of Slo2.2. Slo2.1

KO predicts a residual protein Slo2.1(1–828) with a predicted MW of 91 kDa, which should be

recognized by the NeuroMab antibody, but is not observed in the Slo2.1 KO brain (Figure 2). This

indicates that, following deletion of exon 22, no residual Slo2.1 protein remains in the knockout

mouse, probably due to the instability of the truncated mRNA or protein. In the case of Slo2.2 KO,

deletion of exon 11 (encoding amino acids 285–354 of Slo2.2) causes a frame-shift such that the

predicted residual Slo2.2(1–252) protein does not contain the sequence recognized by the NeuroMab

anti-Slo2.2 antibody. Therefore, no residual Slo2.2 protein was detected in Slo2.2 KO membrane

samples. Since the residual Slo2.2(1–252) is terminated in the middle of the S6 segment of the inner

helix, it seems unlikely that any residual Slo2.2 protein fragments in the knockout mouse would

assemble into functional channels. From Figure 2A,B,D, it is clear that knocking out the gene for

Slo2.1 has no obvious effect on the presence of Slo2.2 protein, and vice versa.

Acute DRG dissociation
After removal of DRG from 3 to 5 week old mice, ganglia were desheathed and then incubated in 15

U/ml papain/L-cysteine in HBSS without calcium and magnesium (Life Technologies) for 20 min at

37˚C. Ganglia were washed three times in HBSS, replaced with 1.5 mg/ml collagenase (Sigma–Aldrich)

in HBSS and incubated for 20 min at 37˚C. After washing three times with Neurobasal-A medium

supplemented with 10% FBS, B27 supplement, 100 U/ml penicillin/streptomycin, and Glutmax

(2 mM L-alanyl-L-glutamine) (all from Life Technologies), ganglia were gently triturated with a flame-

polished Pasteur pipette until the solution turned cloudy. The dispersed cells were diluted with

growth medium containing supplemented Neurobasal medium. The cells were plated at a density of

∼2000 cells per well on 12 mm glass coverslips coated with Matrigel (BD Biosciences, San Jose, CA,

United States), and maintained at 37˚C in humidified air with 5% CO2 for 1 hr before onset of

recording. Most experiments were done within 8 hr after dissociation and changes of the culture

medium were not necessary. For 2–3 days in culture, half the medium was replaced with fresh growth

medium on the second day.

DRG slice preparation
100 μm thin slices were prepared from dorsal root ganglia of 7–14 day old of mice using a

previously described method (Safronov et al., 1996). In brief, mice were killed by CO2

inhalation, rapidly decapitated, and six ganglia from lower thoracic and lumber regions were

carefully removed in ice-cold Hank’s Balanced Salt Solution (HBSS, Invitrogen; Carlsbad, CA,

United States). Ganglia were desheathed using fine forceps, placed in the center of a

35 mm petri dish, then filled with with 40˚C 4% low melting agar (wt/vol in HBSS). The dish

was then immediately submerged in ice-cold artificial CSF cutting solution, which contained the

following (in mM): 125 NaCl, 3.5 KCl, 0.5 CaCl2, 3.5 MgCl2, 26 NaHCO3, and 10 D-glucose. The

solution was bubbled with 95%O2/5%CO2 to maintain pH at ∼7.4. After solidification of the agar,

small blocks containing ganglia were cut out and glued onto the cutting platform of a vibratome

(VT100, Leica, Buffalo Grove, IL, United States) for cutting. Slices were stored for 45 min at 35˚C

and kept at room temperature until recording. The oxygenated storage solution contained the

following (in mM): 125 NaCl, 3.5 KCl, 26 NaHCO3, 10 D-glucose, 2.5 CaCl2, and 1.3 MgCl2.

Individual slices were subsequently transferred to a recording chamber continuously perfused (3

ml/min) with oxygenated saline at room temperature. A Slicescope Pro 3000 (Scientifica Ltd, East

Sussex, United Kingdom) microscope equipped with Nomarski optics, a 40× water-immersion

lens, and infrared illumination was used to view DRG neurons in the slices.
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IB4 labeling
Small diameter DRG neurons responsive to itch and pain stimuli (Stucky and Lewin, 1999; Lallemend

and Ernfors, 2012) express a cell surface antigen that binds a plant lectin, isolectin B4 (Silverman and

Kruger, 1990). To categorize neurons as either IB4+ or IB4−, prior to recording, DRG neurons,

whether dissociated or in slices, were exposed to media containing either 5 μg/ml isolectin Β4(FITC)
or 1 μg/ml isolectin B4(Texas Red). After 5 min incubation, cells were returned to normal extracellular

solution and viewed with standard fluorescence microscopy.

Basic recording methods
Standard whole-cell recording methods were used for both voltage-clamp and current clamp using

a Multiclamp Amplifier (Molecular Dynamics, Sunnyvale, CA, United States), for both dissociated

cells and for cells in slices. Voltage- and current stimulation protocols and acquisition of voltage and

current records were accomplished by Clampex 9.2 (Molecular Dynamics) with analysis of

waveforms done via Clampfit. Patch-clamp pipettes typically were of 1.5–2.5 MΩ. Following

whole-cell access, cells were used if the series resistance (Rs) was less than 10 GΩ. Rs was

compensated 85%. For excised patch experiments, pipettes of similar size were used to form GΩ
seals on dissociated DRG neurons before excision. The standard internal solution contained (in mM):

10 NaCl, 135 KCl, 1 MgCl, 5 EGTA, 10 HEPES, 3 Mg-ATP, 0.3 Na-GTP, pH 7.3 adjusted with KOH,

OSM ∼300. In the nominally zero internal Na+ pipette solution, internal KCl was 145 mM, but

contained 0.3 mM Na from Na-GTP. The standard external solution contained the following (in mM):

136.4 NaCl, 5.6 KCl, 2.2 CaCl, 1 MgCl2, 11 D-Glucose, 10 HEPES, pH 7.4 adjusted with NaOH. For

inside-out patches, the pipette (external) solution contained (in mM): 5 NaCl, 152.5 KCl, 1 MgCl2,

5 HEPES, pH 7.4 adjusted with KOH; the internal solution contained (in mM) 73.6 KCl, 1 MgCl2,

3 EGTA, 10 HEPES and 70 NaCl (for 70 Na+) or 70 Choline-Cl (for 0 Na), adjusted to pH 7.3 with

KOH (EK = 18.35 mV). Both Tetraethylammonium and tetrodotoxin were added to the external

solution at final concentrations of 1 mM and 100 nM, respectively, just before the start of

experiments. When Cs+ was used as a non-specific blocker of KNa current (Bischoff et al., 1998),

Cs+ replaced an equal molar concentration of NaCl.

For recording of ‘leak’ current, after whole-cell formation, to assess ‘leak current’, the net

difference in current observed from voltage-steps from −80 mV to −120 mV (Figure 6C,D and

Figure 6—figure supplement 4) was monitored (Bischoff et al., 1998), either with 0 Na+ in the

internal pipette solution to define Na+-independent ‘leak’ current, or with 70 mM Na+. The 70 and

0 mM sodium pipette solutions contained the following (in mM, with 0 Na+ solutions in parenthesis):

70 (0) NaCl, 73.3 (140) KCl, 1 MgCl, 5 EGTA, 10 HEPES, 3 Mg-ATP, 0.3 Na-GTP, pH 7.3 adjusted with

KOH, OsM 290–300. For leak current measurements in slices, the external solution contained the

following (in mM): 115 NaCl, 5.6 KCl, 1 MgCl2, 1.8 CaCl2, 11 D-Glucose, 1 NaH2PO4, 25 NaHCO3,

bubbled with 95%O2/5%CO2 to maintain pH at ∼7.4. For acutely dissociated DRG, the solution

contained (in mM): 136.4 NaCl, 5.6 KCl, 1 MgCl2, 1.8 CaCl2, 11 D-Glucose, 10 Hepes, pH 7.4 adjusted

with NaOH solution.

Statistical analysis
The Kolgoromov–Smirnov test was used to generate the KS statistic, P. For cases in which the number

of entries in one or both sample populations was less than 10, a two-tailed, unpaired Student’s t-test

was employed. Data are presented as mean ± sem.
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