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Abstract

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted
TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-
stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also
able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming
after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather
than the liver was the main site of priming and that responses depended on CD8a+ dendritic cells. Importantly, sequential
exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell
expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of
rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable
boosting by blood-stage infections.
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Introduction

Malaria is a mosquito-transmitted disease found in a range of

animals including man, non-human primates and rodents. It is

caused by multiple Plasmodium species, several of which may infect

the same animal species. For humans, the two most prevalent

Plasmodium species are P. falciparum and P. vivax, with the former

responsible for the bulk of lethal disease. Mice have been used as a

convenient animal model for studying malaria, with three rodent

Plasmodium species in use: (i) P. chabaudi, which can cause a disease

that shows recrudescence and has many features in common with

human malaria including anemia, sequestration of parasites, and

metabolic acidosis [1]; (ii) P. yoelii, which has two very closely

related strains that differ in their capacity to infect red blood cells

and cause lethal disease [2]; and (iii) P. berghei, particularly the

ANKA strain (PbA), which has been used as a model for human

cerebral malaria [3,4,5], a lethal complication of P. falciparum

infection. While there is much debate as to the relevance of the

PbA rodent infection model to human disease, the pathological

processes underlying human cerebral malaria are relatively poorly

characterized, making it difficult to accurately compare human

and murine diseases. However, like human severe malaria, high

parasite burden is required for multi-organ pathology in the PbA

model [6,7,8]. In itself, the pathological process underlying

experimental cerebral malaria (ECM) seen in PbA infections also

offers insight into immune-mediated pathology in general,

providing a rigorous experimental approach that can be easily

manipulated to decipher various cellular and molecular contribu-

tions. In this rodent model, various cell types and cytokines have

been reported to contribute to lethal ECM, with CD8+ T cells a
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major and essential contributor [9,10,11]. Infection with PbA

leads to the activation of parasite-specific T cells that first expand

in the spleen and then migrate to the brain, where they cause

pathology [11]. Depletion of CD8+ T cells shortly before the onset

of ECM prevents disease [11], supporting a role for these cells in

the effector phase of disease pathology.

Plasmodium species have a complex life cycle with several distinct

stages: a mosquito stage, from which sporozoites emerge to enter

the mammalian hosts during a blood meal; a liver-stage where

sporozoites enter hepatocytes and eventually develop into a large

cohort of merozoites; and a blood stage, where merozoites are

released into the blood and cause cyclic infection of erythrocytes.

Disease symptoms and immune mediated pathology associated

with malaria are limited to the blood-stage of infection, with the

preceding liver stage being asymptomatic [12]. Despite this,

sporozoite infection is not immunologically silent, with evidence

that following pathogen entry via a mosquito bite, the immune

response is initiated in the skin draining lymph nodes of mice [13],

generating protective immunity that depends on CD8+ T cells and

the cytokines TNFa and IFNc [14]. Sporozoite-specific immunity

can control infection in mice [15], non-human primates [16] and

humans [17,18], preventing development of blood-stage infection

and its associated disease. As a consequence, researchers have

explored the use of live sporozoites attenuated by irradiation or

genetic engineering [19,20,21] or non-attenuated sporozoites

controlled by drug curing, as potential approaches to vaccination

[22]. Administration of irradiated cryopreserved sporozoites via

the intravenous route was shown to provide superior immunity

compared to cutaneous injection in non-human primates and mice

[19]. More recently, vaccination of humans by the intravenous

route demonstrated protection [21]. The success of the intrave-

nous route was speculated to result from the direct access of

parasites to the liver for development of immunity at this site.

However, direct examination of where immunity was generated to

this effective route of vaccination was not attempted.

During the different life-cycle stages, Plasmodium parasites adopt

distinct morphologies and as a consequence express many stage-

specific proteins, which are often the focus of immunity and

vaccine design. However, many proteins are expressed throughout

multiple stages of the life cycle [23] and in the mammalian host

may be expected to contribute to immunity across multiple stages.

While it has been suggested that blood-stage immunity may impair

responses to liver-stage antigens [24], others have shown

protection against liver-stage infection by prior blood-stage

infection and cure [25], supporting the idea that antigens

expressed at both stages may be capable of inducing protective

immunity. However, direct demonstration of this capacity was not

provided.

Here we describe the development of an MHC I-restricted, T

cell receptor (TCR) transgenic murine line specific for PbA. We

show that transgenic T cells from this line recognize an antigen

expressed in both the blood-stage and the liver-stage of infection,

demonstrating the potential for T cells with blood-stage-specificity

to protect against sporozoite infection. T cells from this line detect

a conserved antigen expressed by several rodent Plasmodium species

including P. chabaudi and P. yoelii, rendering it a highly versatile

immunological tool for dissecting CD8+ T cell immunity in

malaria.

Results

Generation of an MHC I-restricted TCR transgenic mouse
specific for PbA

An MHC I-restricted TCR transgenic mouse line specific for

blood-stage PbA (termed PbT-I) was generated using TCR genes

isolated from a Kb-restricted hybridoma termed B4 (Figure S1)

originally derived from a T cell line isolated from a B6 mouse

infected with blood-stage PbA. Analysis of spleen and lymph node

(LN) cells from PbT-I mice showed a strong skewing towards

CD8+ T cells (Figure 1A), with essentially all splenic (Figure 1B)

and lymph node (Figure S2) CD8+ T cells expressing the Va8.3

and Vb10 transgenes. The few CD4+ T cells detected in the spleen

and lymph node also expressed these transgenic receptors, though

at a lower level indicative of co-expression of endogenous

receptors. There was no reduction in spleen or lymph node

cellularity relative to wild-type mice, with CD8+ T cells

substituting for the lack of CD4+ T cells (Figure S3). Peripheral

skewing towards CD8+ T cells was reflected in the thymus, where

a large population of mature CD8+CD42 T cells with high TCR

expression was evident (Figure S4). In this case, total thymocyte

numbers were reduced to about one third of wild-type (Figure
S3), consistent with the cellularity of other TCR transgenic mice

we have generated, and likely due to efficient positive selection

[26].

PbT-I cells respond to PbA in vitro and in vivo
To determine if PbT-I cells responded to blood-stage PbA,

purified CD8+ T cells from PbT-I mice were labeled with CFSE

and then stimulated in vitro with dendritic cells and lysate from

either infected red blood cells (iRBC) of mixed stages or enriched

as schizonts (Figure S5). This showed a dose-dependent

proliferative response to both forms of antigen, though schizont

lysate was more efficient.

To test whether PbT-I cells also responded to PbA in vivo, PbT-I

cells were labeled with CFSE and adoptively transferred into B6

mice one day before infection with blood-stage PbA. Three or 5

days later, mice were killed and the spleen and blood examined for

proliferating PbT-I cells (Figure 2A, B). This revealed a vigorous

response by PbT-I cells, which entered the blood from the spleen

after day 3. The specificity of PbT-I cells for malarial antigen was

demonstrated by their lack of response to intravenous (i.v.)

infection with herpes simplex virus type I (HSV-1), an infection

Author Summary

Malaria is a disease caused by Plasmodium species, which
have a highly complex life cycle involving both liver and
blood stages of mammalian infection. To prevent disease,
one strategy has been to induce CD8+ T cells against liver-
stage parasites, usually by immunization with stage-
specific antigens. Here we describe a T cell receptor
specificity that recognizes an antigen expressed in both
the liver and blood stages of several rodent Plasmodium
species. We generated a T cell receptor transgenic mouse
with this specificity and showed that T cells from this line
could protect against liver-stage infection. We used this
novel tool to identify the site and cell-type involved in
priming to a recently developed intravenous attenuated
sporozoite vaccine shown to have efficacy in humans. We
showed that CD8+ T cells with this specificity could protect
against liver-stage infection while causing pathology to
the blood stage. Finally, we provided evidence that T cells
with cross-stage specificity can be primed and boosted on
alternative stages, raising the possibility that antigens
expressed in multiple stages might be ideal vaccine
candidates for generating strong immunity to liver-stage
parasites.

Cross-Stage Reactive CD8 T Cells in Rodent Malaria
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that efficiently stimulated viral glycoprotein B-specific transgenic T

cells (gBT-I cells) in the same mice (Figure S6).

To more precisely determine where PbT-I cells were

activated during the primary response to blood-stage PbA

infection, B6 mice were injected with CFSE-labeled PbT-I cells

one day before i.v. infection with blood-stage PbA, then

various tissues were harvested 2 days later to examine

expression of the early activation marker CD69 on PbT-I cells

(Figure 2C, D). This showed that blood-stage infection

caused T cell activation in the spleen, although some CD69

up-regulation was observed in liver-draining lymph nodes

(portal and celiac LNs). Other lymph nodes showed no

evidence of T cell activation.

To test whether PbT-I cells induced by blood-stage infection

made cytokines and were able to degranulate, as required for lytic

activity, mice were adoptively transferred with small numbers of

GFP-expressing PbT-I cells and infected i.v. with blood-stage PbA.

On day 8 post-infection, PbT-I cells were recovered from the

spleen and briefly restimulated with anti-CD3 mAb to test for

production of IFNc, TNFa and CD107a, the latter of which is a

surrogate marker for degranulation (Figure S7). This revealed

that most PbT-I cells were able to produce both cytokines and

degranulate.

PbT-I cells cause experimental cerebral malaria
As CD8+ T cells have been implicated in the pathology of

ECM, we asked whether transfer of PbT-I cells into B6 mice could

accelerate this disease. B6 mice were injected with a high (26106)

or low (26104) number of PbT-I cells or a high number of a herpes

simplex virus-specific gBT-I cells, then infected with blood-stage

PbA and monitored for disease (Figure 3A). This showed that

PbT-I cells significantly accelerated disease onset, though only by

about one day. ECM was accompanied by infiltration of PbT-I

cells and endogenous CD8+ T cells, but not gBT-I cells into the

brain of infected mice on days 5–6 post-infection (Figure 3B and
Figure S8).

To determine whether PbT-I cells could themselves cause

ECM, endogenous CD8+ T cells were depleted from mice with

anti-CD8 mAb and 7 days later replaced with PbT-I cells, control

gBT-I cells or no T cells. One day later, these mice were infected

with blood-stage PbA and examined for ECM onset. All mice

given PbT-I cells developed ECM, while very few other CD8-

depleted mice developed disease (Figure 4). Onset of ECM in a

small fraction of the latter was likely due to incomplete depletion of

endogenous CD8+ T cells in some mice. This could not be avoided

because the dose of depleting anti-CD8 antibody had to be

sufficient to deplete virtually all endogenous CD8+ T cells while

leaving little antibody to persist until adoptively transfer of PbT-I

cells a week later (otherwise remaining anti-CD8 mAb would have

depleted these PbT-I cells). H&E staining of the brains of mice that

received PbT-I cells showed typical features of CM, such as

haemorrhages and intravascular accumulation of RBC and

leukocytes (Figure S9). These data clearly showed that PbT-I

cells were able to cause ECM.

PbT-I cells cross-react on other species of Plasmodium
As the precise specificity of PbT-I cells was unknown, we

determined whether they recognized other species of Plasmodium.

CFSE-labeled PbT-I cells were adoptively transferred into B6 mice

that were then infected with blood-stage P. chabaudi AS; 6 or 7 days

later proliferation of PbT-I cells was assessed in the spleen

(Figure 5). This showed that PbT-I cells could proliferate in

response to blood-stage P. chabaudi AS. In a similar set of

experiments, PbT-I cells were also shown to respond to blood-

stage infection with P. yoelii XNL (Figure S10). These findings

indicated that PbT-I cells have specificity for multiple Plasmodium

species that cause rodent malaria.

PbT-I cells respond to irradiated PbA sporozoites
While our PbT-I line was generated to blood-stage parasite

infection, a proportion of antigens expressed in the blood stage are

also expressed by sporozoites and during the liver-stage of

infection [23]. To address whether sporozoites could stimulate

PbT-I cells, we adoptively transferred CFSE-labeled PbT-I cells

into B6 mice and then injected them i.v. with radiation-attenuated

PbA sporozoites (RAS). On day 4 post-infection, proliferating

PbT-I cells were detected in the spleen indicating their capacity to

Figure 1. Characterization of T cells from the spleen and lymph
node of PbT-I mice. Cells were harvested from the spleen and the
lymph nodes of PbT-I transgenic or littermate control mice (WT). FACS
analysis was performed to characterize the expression of CD8, CD4 and
the transgenic TCR alpha (Va8.3) and beta (Vb10) chains. (A)
Representative dot-plots showing the proportions of CD8 versus CD4
cells in the spleen and lymph node of PbT-I and WT mice. (B)
Representative histograms showing the expression of the transgenic
TCR Va8.3 and Vb10 chains on the CD8 or CD4 single-positive cells from
the spleen. This experiment was repeated three times with two mice
per experiment.
doi:10.1371/journal.ppat.1004135.g001

Cross-Stage Reactive CD8 T Cells in Rodent Malaria
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Figure 2. PbT-I cells respond in the spleen to i.v. blood-stage PbA. B6 mice were adoptively transferred with 26106 Ly5.1+ PbT-I cells and the
next day infected i.v. with 106 blood-stage PbA. Spleens were harvested three or five days later and the proliferation of PbT-I cells was analyzed. The
gating strategy to identify PbT-I cells was similar to that shown in Figure S13. (A) Representative histograms showing the proliferation of PbT-I cells
on day three or five post-infection. (B) Number of proliferating PbT-I cells in the spleen and blood of mice infected with PbA for three or five days.
Data are pooled from three experiments. Each data point represents a mouse and the lines represent the mean. Data were compared using student t
test (**, p,0.01; ***, p,0.001). (C) B6 mice were adoptively transferred with 106 CFSE-labeled Ly5.1+ PbT-I cells. The next day, mice were injected i.v.
with 106 blood-stage PbA. Various tissues (spleen, blood, celiac lymph node (ceLN), portal LN (pLN), inguinal LN (iLN), mesenteric LN (mLN)) were
harvested after 2 days and PbT-I cells examined for CD69 and CFSE expression. Profiles are gated on PbT-I cells. This experiment was performed three
times (two-three mice per group) with similar results. Typical profiles are shown. (D) The mean percentage of CD69+ PbT-I cells for the analysis shown
in (C). Histograms represent values from infected animals minus mean values from uninfected animals. Error bars represent standard error of the
mean.
doi:10.1371/journal.ppat.1004135.g002

Cross-Stage Reactive CD8 T Cells in Rodent Malaria
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respond to sporozoites (Figure 6). Additional mice examined on

day 7 did not progress to patency, indicating that day 4 responses

were induced by sporozoites and not by break-through blood-stage

parasites. Eight days after infection, PbT-I cells harvested from the

spleen produced IFNc, TNFa and CD107a (Figure S11),

indicating their development of effector function.

Proliferation of PbT-I cells to i.v. sporozoites occurs
mainly in the spleen and depends on CD8a+ DC

A recent report suggested that the efficiency of intravenous

vaccination with irradiated sporozoites relative to subcutaneous

vaccination may be because the former route allows more

parasites to reach the liver for priming of protective immunity

[19]. To test whether priming by irradiate parasites occurred in

the liver, we injected irradiated sporozoites intravenously and then

1–4 days later examined the activation (CD69 expression)

(Figure 7A, C) and proliferation (Figure 7A, B) of PbT-I cells

in the liver and various lymphoid tissues including the spleen and

lymph nodes. Upregulation of CD69 was seen as early as one day

after infection and was primarily detected in the spleen, with some

expression also seen in the liver draining lymph nodes (celiac LN,

portal LN and the 1st mesenteric LN) [27]. Proliferation closely

followed on day 2, almost entirely in the spleen. These data

suggested that PbT-I cells responded to sporozoites by CD69

upregulation and extensive initial proliferation in the spleen and to

a lesser extent in the liver-draining lymph nodes, but not in the

liver nor other lymph nodes. Divided cells were only evident in the

liver once they were present in the blood and had divided

extensively, suggesting initiation of proliferation elsewhere, most

likely in the spleen.

CD8a+ DC are critical for generating immunity to blood-stage

infection [28,29] and recently the human DC subset equivalent,

BDCA3+ DC, have been implicated in severe malaria in humans

[30,31]. To address whether CD8a+ DC also participated in

responses to sporozoites, we examined proliferation of PbT-I cells

in Batf3-/- mice, which lack this DC subset (Figure 8). The poor

proliferation in Batf3-/- mice compared to wild-type mice revealed

that this response was dependent on CD8a+ dendritic cells.

Cumulative expansion of PbT-I cells responding to liver-
and blood-stage infection

It has been reported that blood-stage infection can impair

immunity to liver-stage antigens [24], though this is disputed by

evidence that there is an equivalent response by liver-stage-specific

transgenic T cells to sporozoites in the presence or absence of a

subsequent blood-stage infection [32]. To resolve this issue with

respect to CD8+ T cell-mediated immunity, we examined the

expansion of PbT-I cells after exposing mice to live sporozoites

(which will infect the liver then generate blood-stage infection), or

irradiated sporozoites alone or followed by blood-stage (iRBC)

infection 2 days later, mimicking the time for blood-stage egress

after live sporozoite infection (Figure 9). Our results clearly

showed that naı̈ve PbT-I cells proliferated to reach greater

numbers if additionally exposed to blood-stage infection, indicat-

ing that T cells with cross-stage specificity can show cumulative

expansion to the liver and bloods stages.

Since sporozoite antigen has been shown to persist in other

models [33], and we could demonstrate some proliferation of PbT-

I cells transferred 2 days but not 7 days after injection of irradiated

Figure 3. PbT-I cells infiltrate the brain and accelerate ECM. B6
mice were adoptively transferred with 26106 or 26104 Ly5.1+ PbT-I cells
or 26106 herpes simplex virus-specific gBT-I cells or left uninjected. The
next day mice were infected i.v. with 106 blood-stage PbA. (A) Mice
were monitored for the development of ECM. Data are pooled from
three independent experiments. The differences between 26106 PbT-I
and the group that did not receive any transgenic cells or the group
that received gBT-I cells are statistically significant (p,0.0001) as
determined by a Log-rank test. (B) Mice were adoptively transferred
with PbT-I cells (filled circle) or gBT-I cells (filled square) or no cells
(open circle) and were sacrificed on days 4, 5 or 6 post-infection. Their
brains were then analysed for the infiltration of PbT-I cells (left) or gBT-I
cells (right). Data are pooled from 2–4 experiments. Data were
compared using student t test (*, p,0.05).
doi:10.1371/journal.ppat.1004135.g003

Figure 4. PbT-I cells induce ECM in mice lacking endogenous
CD8+ T cells. B6 mice were either left undepleted (closed triangles) or
were depleted of endogenous CD8+ T cells (-CD8) seven days before the
adoptive transfer of 26106 naı̈ve PbT-I (filled square) or gBT-I cells (filled
circle) or no cells (open triangles). The next day, mice were infected i.v.
with 106 blood-stage PbA and monitored for the development of
cerebral malaria. Data are pooled from three experiments. The
difference in survival between the following groups was statistically
significant (p,0.0001) as determined by the Log-Rank test: i. B6, -CD8, +
PbT-I and B6, -CD8; ii. B6, -CD8, + PbT-I and B6, -CD8, + gBT-I.
doi:10.1371/journal.ppat.1004135.g004

Cross-Stage Reactive CD8 T Cells in Rodent Malaria
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sporozoites (Figure S12A, B), indicating at least short-term

persistence of the PbT-I antigen, it remained possible that

augmented proliferation of PbT-I cells due to blood-stage infection

might simply relate to additional inflammatory effects, rather than

provision of antigen. To test whether inflammation alone could

boost PbT-I expansion to irradiated sporozoites, 20 nmol of 1668

CpG oligonucleotide (CpG) was used as an inflammatory signal on

day 2 and its effect on expansion of PbT-I cells examined (Figure
S12C). CpG-mediated inflammation failed to induce a significant

increase in PbT-I cell numbers in mice given irradiated

sporozoites two days earlier, suggesting that antigen provided by

blood-stage infection may be important for enhanced prolifera-

tion. This did not, however, formally excluding a role for

inflammatory signals distinct from CpG that are associated with

blood-stage infection.

PbT-I cells protect B6 mice from sporozoite infection
Because only one parasitized hepatocyte needs to survive to

deploy thousands of merozoites into the blood and seed blood-

stage infection, it is very difficult to prevent malaria with

vaccines directed at pre-erythrocytic stages. It follows that any

vaccine targeting pre-erythrocytic stages of infection must

generate sterile immunity to be effective. As the antigen

recognized by PbT-I cells was expressed by sporozoites, we

asked whether this antigen might represent a vaccine candidate

capable of eliciting sterile hepatic immunity. To assess this, we

asked whether PbT-I cells could provide protective immunity

to liver-stage infection. First, we determined an infectious dose

of sporozoites that would lead to just under 100% blood-stage

infection in the absence of PbT-I cells (Figure 10A). From this

we chose 520 sporozoites as our infectious dose. To test the

Figure 5. PbT-I cells respond to P. chabaudi AS. B6 mice were adoptively transferred i.v. with 26106 CFSE-labeled PbT-I cells. The next day, mice
were injected i.v. with 105 P. chabaudi AS. Six or seven days later, spleens were harvested and the proliferation of PbT-I was analyzed. (A)
Representative histograms of CFSE-labeled PbT-I cells in the spleen of uninfected or P. chabaudi infected mice. (B) Number of PbT-I cells in the
spleens of mice on days 6–7. The lines represent the mean and each data point represents a mouse. Data are pooled from three experiments. Data
were compared using student t test (***, p,0.001).
doi:10.1371/journal.ppat.1004135.g005
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protective capacity of PbT-I cells, these cells or control virus-specific

gBT-I cells were activated in vitro and then 76106 cells adoptively

transferred into naı̈ve B6 mice that were subsequently challenged

with 520 live sporozoites (Figure 10B). By monitoring these mice

for blood parasitemia, we showed that PbT-I cells, but not gBT-I

cells, could prevent progression to blood-stage infection, protecting

mice from infection. This indicated that the antigen recognized by

PbT-I cells has the potential to generate sterilizing immunity to

liver-stage infection.

Identification of a candidate antigen recognized by PbT-I
cells

To identify the antigenic determinant recognized by PbT-I

cells, we used an octamer combinatorial peptide library scan

[34] to identify amino acid residues important for PbT-I

activation as measured by MIP1b production (data not
shown). These residues were then used to generate a octamer

motif (x-x-x-(CD)-(WF)-N-x-(LMIV); where x is any amino

acid and residues in brackets are valid for that position) to

search the genomes of the three rodent malaria species for

which PbT-I cells showed reactivity. 151 peptides fitting this

motif were then examined for their capacity to stimulate PbT-I

cells either by CD69 expression or MIP1b production (data
not shown). Six peptide sequences caused some T cell

activation but only one of these (NCYDFNNI (NCY)) was

found to act as a target antigen for endogenous killer T cells

generated in normal B6 mice infected with PbA (Figure 11A
and data not shown). This sequence also induced IFNc
production from endogenous T cells (Figure 11B) and PbT-I

T cells (Figure 11C) responding to blood-stage infection. Note

Figure 6. PbT-I cells proliferate in response to irradiated sporozoites. B6 mice were adoptively transferred with 26106 CFSE-labeled PbT-I
cells. The next day, mice were injected i.v. with 56104–105 radiation attenuated sporozoites (RAS) or equivalent salivary extract. Four days later
spleens were harvested and the proliferation of PbT-I cells was analyzed. (A) Representative histograms showing the proliferation of PbT-I cells in
response to irradiated sporozoites. (B) Pooled data showing the number of divided PbT-I cells from four experiments. The lines represent the mean
and each data point represents a mouse. Mice similarly treated but left until day 7 post-challenge showed no breakthrough in blood-stage infection
indicating full attenuation of sporozoites. Data were compared by one-way ANOVA and Tukey’s multiple comparison test (*, p,0.05).
doi:10.1371/journal.ppat.1004135.g006

Cross-Stage Reactive CD8 T Cells in Rodent Malaria

PLOS Pathogens | www.plospathogens.org 7 May 2014 | Volume 10 | Issue 5 | e1004135



that tetramers made with Kb containing NCY were able to

stain PbT-I cells, confirming the Kb-restriction of this

specificity (data not shown). The NCY peptide was derived

from a protein of 745 amino acids (PBANKA_071450), which

is now our leading candidate for the antigen responsible for

priming PbT-I cells.

Discussion

Here we characterize a new TCR transgenic mouse that

produces CD8+ T cells specific for both the blood and liver stages

of rodent malaria. PbT-I cells responded in vivo to the blood-stage

of three different rodent Plasmodium species, PbA, P. yoelii XNL and

P. chabaudi AS. In addition, PbT-I cells responded to mosquito-

derived sporozoites of PbA and were able to provide protection

against sporozoite infection. It remains to be tested as to whether

PbT-I cells also recognize sporozoites from the other rodent

Plasmodium species, but it seems likely that this will be the case

given their blood-stage cross-reactivity. Recognition of blood-stage

parasites as well as mosquito-derived sporozoites, and the ability to

protect against liver-stage infection, suggests that the protein

recognized by PbT-I cells is widely expressed throughout the

parasite life cycle and is potentially well conserved. Identification

of NCYDFNNI as a peptide recognized by PbT-I cells and by

endogenous PbA-induced T cells suggests the protein encoded by

PBANKA_071450, which is of unknown function and undefined

expression pattern, may be the source of the PbT-I epitope.

Construction of parasites deficient in this epitope will be required

for formal proof.

It is notable that while the source protein is encoded in the

genomes of PbA and P. chabaudi, the ortholog appears severely

truncated in P. yoelii and consequently lacks the region containing

Figure 7. PbT-I cells are primed mainly in the spleen when irradiated sporozoites are delivered by the i.v. route. B6 mice were
adoptively transferred with 106 CFSE-labeled PbT-I cells. The next day, mice were injected i.v. with 105 irradiated PbA sporozoites. Various organs
(spleen, blood, liver, different lymph nodes) were harvested on days 1–4 post-vaccination and the activation and proliferation of PbT-I cells was
analyzed by flow cytometry. For gating strategy to identify PbT-I cells see Figure S13. (A) Representative histograms showing the proliferation of
PbT-I cells versus the upregulation of CD69 in the various organs. (B) Number of divided PbT-I cells in the different organs. The insert shows a more
sensitive scale to identify the few divided PbT-I cells in the liver and lymph nodes on days three and four post-infection. (C) Percentage of CD69+ PbT-
I cells in each organ on days 1-2. Error bars represent standard error of the mean. Data are pooled from three independent experiments.
doi:10.1371/journal.ppat.1004135.g007
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NCYDFNNI found in other species. As PbT-1 cells were able to

respond to P. yoelii, the authentic antigen must be present in this

species. Whether this invalidates the gene product of

PBANKA_071450 as the authentic PbT-I antigen, or is explained

by sequencing error within the P. yoelii genome, or has some other

basis remains to be established. Whatever the case, the

NCYDFNNI epitope is clearly recognized by PbT-I cells and

can be used to stimulate these transgenic T cells as well as

endogenous T cells specific for PbA.

Evidence that immunization with live blood-stage parasites

can protect against the liver-stage infection [25], suggests that

multi-stage antigens like that recognized by PbT-I cells can be

protective. Our study extends this concept by indicating that

CD8+ T cells of a single specificity for a blood-stage antigen can

protect against liver-stage infection when the antigen is also

expressed during the liver stage. It has been reported that blood-

stage infection can impair immunity to liver-stage antigens [24],

though this is disputed by the above study, which uses blood-stage

infection to induce anti-sporozoite immunity [25] and by another

study that shows an equivalent response by liver-stage-specific

transgenic T cells to sporozoites in the presence or absence of a

subsequent blood-stage infection [32]. The availability of PbT-I

cells will give us the opportunity to examine this relationship when

the relevant antigen is expressed during both blood- and liver-

stages and to determine how antigens presented during the blood-

stage might influence the effector function of T cells capable of

recognizing liver-stage antigens. Clearly, in our experiments,

exposure of cells primed to liver-stage parasites did not impair

their capacity to respond to blood-stage parasites, but increased

the expansion of PbT-I cells. This raises the possibility that CD8+

T cells specific for antigens expressed in both stages of infection

may have a selective advantage for expansion over single stage

specific T cells.

The broad cross-reactivity of this TCR transgenic line means

that it is suited to exploring the role of CD8+ T cells in several

rodent malaria models. For blood-stage infection, this is most

relevant to PbA, where ECM is dependent on CD8+ T cells.

However, CD8+ T cells have been implicated in protective

immunity to blood-stage infection by P. yoelii 17XL [35], raising

the possibility that this protective process could be explored using

Figure 8. CD8a+ DC are required for presentation of irradiated sporozoites delivered by the i.v. route. B6 or Batf3-/- mice were
adoptively transferred with 106 CellTracker Violet-labeled PbT-I cells then infected with irradiated PbA sporozoites. (A) Representative histograms
show the proliferation of PbT-I cells in B6 and Batf3-/- mice on day 5 after injection with irradiated sporozoites. (B) Pooled data showing the
proliferation of PbT-I cells from three experiments. The lines represent the mean and each data point represents a mouse. Data were compared by
one-way ANOVA and Tukey’s multiple comparison test (***, p,0.001).
doi:10.1371/journal.ppat.1004135.g008
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PbT-I cells. These transgenic T cells should also be highly relevant

for analysis of liver-stage immunity, as CD8+ T cells are critical for

protection at this stage of infection [15,36]. Here we used PbT-I

cells to investigate the site of priming and T cell expansion after

intravenous administration of irradiated sporozoites. This study

was prompted by the implication that the effectiveness of this route

of immunization was related to its capacity to prime in the liver

[19]. Our analysis revealed that T cells showed signs of activation

in the spleen and in the liver draining lymph nodes, but not in the

liver itself, and subsequent examination of T cell proliferation

showed that most PbT-I T cell proliferation occurred in the

spleen. While our study does not exclude a role for the liver in

tailoring the response, it suggests that at least the initial priming

steps are unlikely to occur in this site. Thus, efficient priming via

this route most likely derives from the large load of irradiated

sporozoites deposited in the spleen after intravenous administra-

tion and the high frequency of T cells found in this organ. This

contrasts infection by mosquito bite, which favors priming within

skin draining lymph nodes [13], probably as a consequence of

local deposition of sporozoites within the dermis of the skin. Our

findings suggest that the spleen is the main site for priming

sporozoite specific T cells after intravenous administration of

parasites, but they do not formally exclude the liver draining

lymph nodes or the liver as important sites of activation for

protective immunity.

Initiation of PbT-I proliferation in the spleen in response to

intravenous injection of irradiated PbA sporozoites also demon-

strated that the sporozoites themselves expressed the antigen

recognized by PbT-I cells and that conversion to later liver stages

of development was not necessary to provide antigen capable of

stimulating these T cells. Furthermore, it showed that the same

DC subset as required for priming CD8+ T cell immunity to

blood-stage infection, i.e the CD8a+ DC [28,29], was responsible

for inducing CD8+ T cell responses to the liver-stage parasites.

Extraction of putative CD8a+ DC from the liver 6 days after

sporozoite infection also suggested that these DC might contribute

to antigen presentation in the liver at late time points after

infection [37], though this idea should be taken with caution as

CD8 T cells can express CD11c when activated and can be easily

mistaken for DC. This common use of CD8a+ DC probably

Figure 9. PbT-I cells proliferate to greater numbers when
sequentially primed with liver-stage then blood-stage PbA
parasites. B6 mice were adoptively transferred with 56104 GFP-
expressing PbT-I cells then on day 0 they were injected with 56104 live
sporozoites alone, or 56104 radiation-attenuated sporozoites alone
(RAS), or RAS followed 2 days later by 104 iRBC (RAS + iRBC), or nothing
followed 2 days later by 104 iRBC (iRBC) or left uninfected (naı̈ve). On
day 7 spleens were harvested and the number of PbT-I cells
enumerated. Data are pooled from four experiments. At the time of
sacrifice, blood parasitemias were equivalent in the two groups of mice
given iRBC (RAS + iRBC = 5.661.8; iRBC alone = 5.160.7). Data were
compared by one-way ANOVA and Tukey’s multiple comparison test
(n.s., non-significant; **, p,0.01; ***, p,0.001).
doi:10.1371/journal.ppat.1004135.g009

Figure 10. Activated PbT-I cells confer protection against a
sporozoite challenge. (A) B6 mice were infected i.v. with 300 (n = 25),
520 (n = 22) or 900 (n = 15) PbA sporozoites and the % of mice that
developed a blood-stage infection (black bars) by day 14 is shown. Data
are pooled from three to five experiments. Data were analyzed using
Fisher’s exact test with no significant difference between groups (p.
0.05). (B) B6 mice were adoptively transferred with 76106 in vitro
activated PbT-I cells (n = 20) or activated virus-specific gBT-I cells (n = 16)
or Nil (n = 17). Two hours later, mice were infected i.v. with 520
sporozoites. Blood-stage parasitemia was monitored to day 14 post-
infection. Shown is the percentage of mice that develop a blood-stage
infection (black bars) by day 14. Data are pooled from three
experiments. Data were analyzed using Fisher’s exact test with the
PbT-I treated group significantly different from the other two groups
(p,0.0001) and no significant difference between these two groups
(p.0.05).
doi:10.1371/journal.ppat.1004135.g010
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reflects their dominant capacity to cross-present antigens [38]. The

ability of PbT-I cells to protect against infection by PbA

sporozoites is encouraging because sterilizing immunity requires

destruction of all infected hepatocytes. Our experiments used

76106 activated PbT-I cells to demonstrate protection, which is a

relatively high number of cells but certainly achievable by

vaccination. Identification of the antigen recognized by this

TCR transgenic line should allow development of vaccination

strategies to test the protective power of this potentially conserved

antigen expressed in multiple stages of the life cycle. This

approach has the potential to be highly effective since both stages

of infection are shown to boost responses by CD8+ T cells with

such multi-stage specificity. One concern with this type of multi-

stage antigen, however, is that priming of T cells by sporozoites

may enhance the potential for development of ECM mediated by

the same cells during the blood-stage of the infection. While

directly relevant for PbA infection where ECM is commonplace,

this might not be of relevance to infection models where ECM is

not seen e.g. P. yoelii XNL infection. Given the strongly argued

lack of adaptive immune involvement in human cerebral malaria,

this concern may also be irrelevant for human vaccination

approaches. However, caution should be adopted here since our

understanding of pathology in human cerebral malaria is still

somewhat limited.

In conclusion, the PbT-I TCR transgenic line represents a

versatile tool for studying CD8+ T cell immunity to a multitude of

rodent Plasmodium species during both the liver- and blood-stages

of infection. The current study highlights the spleen as a major

organ of priming for intravenously-introduced blood- or liver-stage

parasites and suggests that T cells with specificity for antigens

expressed in both stages may contribute to pathology or

protection, depending on the stage of life cycle.

Methods

Ethics statement
All procedures were performed in strict accordance with the

recommendations of the Australian code of practice for the care

and use of animals for scientific purposes. The protocols were

approved by the Melbourne Health Research Animal Ethics

Committee, University of Melbourne (ethic project IDs: 0810527,

0811055, 1112347, 0911527).

Mice, mosquitos and parasites
C57BL/6 (B6) mice, B6.Ly5.1 mice, MHC I-/- mice, Kb-/-

mice, Batf3-/- mice and the transgenic strains gBT-I [39] and

PbT-I were used between 6-12 weeks and were bred and

Figure 11. Identification of a peptide antigen (NCYDFNNI)
recognized by endogenous T cells and PbT-I cells from PbA-
infected mice. (A) B6 mice were infected with 106 blood-stage PbA
then cured by treatment with chloroquine from days 4 to 6. On day 7
mice were adoptively transferred with peptide-labeled target cells and a
day later spleens were recovered and examined for target cell killing.
Data are from two experiments, each of which used a test peptide,
NCYDFNNI, and control peptides (NNFDFNNL or NIYDFNFI; pooled). (B,
C) IFNc production by T cells responding to PbA. B6 mice were either
left untreated (B) or were adoptively transferred with 56104 PbT-I cells
(C). All mice were then infected with 106 blood-stage PbA and cured of
infection by chloroquine treatment from days 4 to 6. On day 7, spleens
were removed and an intracellular cytokine assay performed to detect
IFNc expression by endogenous CD8 T cells (B) or PbT-I cells (C). Data
are from two experiments, each of which used a test peptide,
NCYDFNNI, and a control peptide (SIINFEKL; OVA). Data were compared
using student t test (***, p,0.001; ****, p,0.0001).
doi:10.1371/journal.ppat.1004135.g011

Cross-Stage Reactive CD8 T Cells in Rodent Malaria

PLOS Pathogens | www.plospathogens.org 11 May 2014 | Volume 10 | Issue 5 | e1004135



maintained at the Department of Microbiology and Immunol-

ogy, The University of Melbourne. Batf3-/- mice used in this

study had been backcrossed 10 generations to B6. Animals

used for the generation of the sporozoites were 4–5 week old

male Swiss Webster mice were purchased from the Monash

Animal Services (Melbourne, Victoria, Australia) and main-

tained at the School of Botany, The University of Melbourne,

Australia.

Anopheles stephensi mosquitoes (strain STE2/MRA-128 from The

Malaria Research and Reference Reagent Resource Center) were

reared and infected with PbA as described [40]. Sporozoites were

dissected from mosquito salivary glands [41], resuspended in cold

PBS, irradiated with 20,000 rads using a gamma 60Co source, and

administered to mice i.v. The rodent malaria lines PbA clone

15cy1, P. chabaudi AS and P. yoelii XNL were used in this study.

Generation of transgenic PbT-I
Transgenic PbT-I mice were generated using the V(D)J

segments of the TCRa- and b-genes of a CD8+ T cell hybridoma

(termed B4) specific for an unidentified blood-stage PbA antigen.

This hybridoma was derived from T cells extracted from the

spleen of a B6 mouse at day 7 after infection with PbA. 36106

splenocytes from a mouse previously infected with PbA were co-

cultured with 56105 conventional DC (extracted from the spleen

of FMS-like tyrosine kinase 3 receptor ligand (Flt3-L) treated B6

mice) that were pre-loaded for 2 hours with 26106 PbA schizont

lysate as previously described [42] in complete RPMI at 6.5%

CO2, 37uC. One week later, cultured cells were re-stimulated for a

week with fresh DC and PbA schizont lysate. To generate PbA-

specific hybridomas, in vitro cultured cells were then fused with the

BWZ36.GFP fusion partner and exposed to drug selection [43].

This led to isolation of the Kb-restricted B4 hybridoma (Figure S1)

from which PbT-I T cell receptor genes were derived.

TCR Va usage was defined using 59 RACE PCR on cDNA

converted from the RNA of the B4 hybridoma. Sequencing

analysis revealed that the TCR a-chain consisted of AV8S6 and

Ja17 and Ca2 gene segments. The TCR a region was amplified by

PCR from the cDNA of the B4 hybridoma using the forward

primer GGATCCAGTGTCATTTCTTCCCT containing a

BamHI recognition sequence at the 59 end, designed to bind the

59 UTR region of AV8S6, and the reverse primer CAGATCT-

CAACTGGACCACAG containing a BglII recognition sequence

at the 59 end, specific for the Ca region. The AV8S6-Ja17-Ca2

segment was cloned into the BamHI site of the pES4 cDNA

expression vector, comprising the Ig-H chain enhancer, the H2-Kb

promoter and the polyadenylation signal sequence of the human

b-globulin gene [44]. To prepare the a-chain transgenic construct

for microinjection, the pES4-VJC construct was digested with the

restriction enzymes ClaI and NotI, and the digested mix was

subjected to agarose gel electrophoresis. The ,5.6 kb transgenic

insert containing the VJC sequence, the promoter and enhancer

sequences was excised from the gel, purified and quantitated for

microinjection.

TCR Vb usage was defined by PCR on cDNA converted from

the RNA of the B4 hybridoma using the forward primer

CCTGCCTCGAGCCAACTATGGG specific for the Vb10 gene

and the reverse primer CCAGAAGGTAGCAGAGACCC spe-

cific for the Cb gene. Sequencing analysis revealed that the TCR

b-chain consisted of Vb10 (BV10S1A1), Db2 and Jb2.2. The

TCR b-chain was amplified by PCR from the genomic DNA of

the B4 hybridoma using the forward primer GATCGATGTCC-

TAGGCCAGGAGATATGA specific for the Vb10, incorporat-

ing a ClaI restriction enzyme site at the 59 end, and the reverse

primer GATCGATAAGCTCAGTCCAAGA specific for Jb2.2

and incorporating a ClaI site at the 59end. The Vb10 (BV10S1A1),

Db2 and Jb2.2 segment was cloned into the ClaI site of the

p3A9CbTCR gDNA expression vector, comprising the TCR b-

chain enhancer, the 2B4-derived 59 region and leader sequence

and the B3-derived promoter and coding regions [45]. To prepare

the construct for microinjection, the p3A9CbTCR VDJ construct

was digested with the restriction enzymes ApaI and NotI, and the

digested mix was subjected to agarose gel electrophoresis. The

larger fragment (,11 kb) transgenic insert containing the VDJ

sequence, Cb sequence and the promoter and enhancer sequences

was excised from the gel, purified and quantitated for microin-

jection.

Flow cytometry
Cells were labeled with monoclonal antibodies specific for CD8

(53-6.7), CD4 (RM 4-5), Thy1.2 (30-H12), CD45.1 (A20), Va8.3

(B21.14), Vb10 (B21.5) or CD69 (H1.2F3). Dead cells were

excluded by propidium iodide staining. Cells were analyzed by

flow cytometry on a FACsCanto or Fortessa (BD Biosciences),

using the Flowjo software (Tree Star Inc.).

Infection of mice and chloroquine treatment
Unless otherwise stated, mice were infected i.v. with 106 PbA

infected RBC (iRBC) in 0.2 ml of Hank’s balanced salt solution

(HBSS). In some experiments, mice were infected i.v. with 105

P.chabaudi iRBC or i.v. with 104 P. yoelii iRBC or with 300, 520,

900, 56104 or 105 PbA sporozoites as stated in the figure legends.

Mice infected with 104 PbA infected RBC were injected i.p. with

0.4 mg chloroquine dissolved in water on days 6 and 7, before

being euthanized for analysis on day 8 post-infection.

T cell isolation and adoptive transfer
CD8+ T cells were negatively enriched from the spleens and

lymph nodes of transgenic mice and labelled with CFSE as

described [46]. Purified cells were injected i.v. in 0.2 ml HBSS. To

deplete endogenous CD8+ T cells before adoptive transfer, B6

mice were injected i.p. with 100 mg of anti-CD8 antibody (clone

2.43) 7 days prior to the transfer of PbT-I or gBT-I cells.

In vivo proliferation assay
1–26106 CFSE-labelled Ly5.1+ PbT-I cells were adoptively

transferred into Ly5.2+ B6 mice a day before mice were infected

with blood-stage PbA, P. chabaudi, or P. yoelii or with PbA

sporozoites. In other experiments, 56104 or 16106 uGFP PbT-I

cells labelled with CellTracker Violet stain (Invitrogen) were

adoptively transferred into Ly5.2+ B6 or Batf3-/- mice a day before

infection with irradiated sporozoites, or 3 days before infection

with PbA iRBC. Spleens and other organs were harvested on

various days post-infection for the analysis of PbT-I proliferation

by flow cytometry.

Dendritic cell isolation
Dendritic cells were purified from the spleens of mice as

previously described (28). Briefly, spleens were finely minced and

digested in 1 mg/ml collagenase 3 (Worthington) and 20 mg/ml

DNAse I (Roche) for 20 min at room temperature. After removing

undigested fragments by filtering through a 70 mm mesh, cells

were resuspended in 5 ml 1.077 g/cm3 nycodenz medium

(Nycomed Pharma AS, Oslo, Norway), layered over 5 ml

nycodenz medium and centrifuged at 17006g at 4uC for

12 min. The light density fraction was collected and DC were

negatively enriched by incubation with a cocktail of rat

monoclonal anti-CD3 (clone KT3-1.1), anti-Thy-1 (clone T24/

Cross-Stage Reactive CD8 T Cells in Rodent Malaria

PLOS Pathogens | www.plospathogens.org 12 May 2014 | Volume 10 | Issue 5 | e1004135



31.7), anti-Gr1 (clone RB68C5), anti-CD45R (clone RA36B2) and

anti-erythrocyte (clone TER119) antibodies followed by immuno-

magnetic bead depletion using BioMag goat anti-rat IgG beads

(Qiagen).

Functional assay with hybridomas and IL-2 ELISA
56104 DC extracted from the spleens of naive WT, MHC-I-

deficient or Kb-deficient mice and resuspended in complete

DMEM medium supplemented with 10% foetal calf serum (FCS)

were cultured for 1 h with titrated amounts of lysed whole blood

containing mixed stages of PbA parasites before adding 56104 B4

hybridoma cells. After culture for 40 h at 37uC in 6.5% CO2

supernatants were collected and concentrations of IL-2 were

assessed using the Mouse IL-2 ELISA Ready-Set-Go kit

(eBiosciences) following manufacturer’s instructions.

In vitro antigen presentation assay
PbA mixed blood-stages and schizont enriched parasite lysate

were prepared as previously described [42]. Conventional DC

isolated from the spleen of FMS-like tyrosine kinase 3 receptor

ligand (Flt3-L) treated Ly5.2+ B6 mice [42] were incubated with

titrated amounts of lysate from either the mixed blood-stages or

the schizont-enriched parasites for 2 hours before the addition of

CFSE-labeled Ly5.1+ PbT-I cells. After 60 hours of incubation at

6.5% CO2, 37uC, cells were harvested for analysis by flow

cytometry.

Ex vivo intracellular cytokine staining (ICS) assay
To detect degranulation and the production of cytokines

IFNc and TNFa from antigen specific cells, splenocytes from

mice (either normal B6 mice or those adoptively transferred

with PbT-I) infected for 7 days with irradiated sporozoites or

7–8 days with blood-stage PbA were restimulated by 5 mg/ml

plate-bound anti-CD3 or 1 mg/ml peptide for 5 hours at 37uC
in the presence of 10 mg/ml brefeldin A, monensin and anti-

CD107 antibody (clone eBio1D4B). Cells were then surface

labeled with antibodies and intracellular cytokine staining was

performed to detect intracellular IFNc and TNFa using

Cytofix/Cytoperm Fixation and Permeabilization Solution

(BD) according to the manufacturer’s instructions. Results

were represented in Venn diagrams using the online tool at

www.venndiagram.tk.

Generation of in vitro activated CTL
PbT-I or gBT-I isolated from the spleen and lymph nodes

were stimulated with media containing 10% FCS, 10 U/ml IL-

2 and 5 mg/ml anti-CD28 in 75 cm2 tissue culture flasks pre-

coated with 10 mg/ml anti-CD3 (clone 2c11), anti-CD8 (clone

53-6.7) and anti-CD11a (clone 121/7.7). 40 hours later, cell

cultures were divided into two equal volumes and given an

equivalent volume of fresh medium before culturing for

24 hours. Cells were then harvested and centrifuged over

lymphocyte separation media to remove dead cells. In vitro

activated cells generated using this method were routinely

.90% pure.

Isolation of cells from the brain
Mice were perfused intracardially with 10 ml PBS prior to

harvesting of the brain. Brains were cut into fine fragments,

washed once with media and digested with collagenase/DNAse

(1 mg/ml collagenase III (Roche); 20 mg/ml DNAse I,

(Worthington) for 1 hour at room temperature with rotation.

Samples were filtered through 75 mm nylon mesh to remove

undigested fragments and then centrifuged once at 596 g, 5

minutes at 4uC. The pellet was resuspended in 7 ml 33%

Percoll diluted in media, and centrifuged at 400 g for 20

minutes at room temperature with low brake. The supernatant

was discarded and the pellet containing RBC was incubated

with 500 ml RBC lysis buffer for 2 minutes on ice. Cells were

washed twice with FACS buffer followed by surface staining

with various antibodies.

Generation and monitoring of ECM
Mice infected with blood-stage PbA were monitored daily for

the development of ECM. Mice were considered to have ECM

when showing signs of neurological symptoms such as ataxia and

paralysis, evaluated as the inability of mice to self-right.

Hematoxilin and eosin (H&E) staining of brain sections
Brains were fixed in 4% paraformaldehyde followed by 70%

ethanol overnight and then stained by H&E.

Combinatorial peptide library scan
An octamer combinatorial peptide library in positional scanning

format [34] was synthesized (Pepscan Presto, Netherlands). For

combinatorial peptide library screening, splenocytes from trans-

genic PbT-I mice were purified, washed and rested overnight in

RPMI 1640 containing 100 U/ml penicillin, 100 mg/ml strepto-

mycin, 2 mM L-glutamine and 2% heat inactivated fetal calf

serum (all Life Technologies). In 96-well U-bottom plates, 66104

splenocytes target cells were incubated with 160 library mixtures

(at 100 mM) in duplicate for two hours at 37uC. Following peptide

pulsing, 36104 PbT-I splenocytes were added and the assay was

incubated overnight at 37uC. The supernatant was then harvested

and assayed for MIP-1b by ELISA according to the manufactur-

er’s instructions (R&D Systems).

Assessment of peptide stimulation of PbT-I cells by CD69
expression

56105 GFP-expressing PbT-I lymph node and spleen cells

together with 105 B6 spleen cells and peptide (titrated in 10-fold

steps from 5–5000 pM) were pelleted together in a 96-well U-

bottom plate and incubated for 3 hours at 37uC (6.5% CO2). Cells

were then stained with antibodies specific for CD8 and CD69 and

the proportion of CD69+CD8+GFP+ cells determined.

In vivo CTL assay for lytic activity
To detect peptide-specific lytic activity in vivo, mice were

infected for 7 days with 106 blood-stage PbA and cured by

chloroquine treatment from day 4–6 before adoptive transfer of

target cell populations. In vivo cytotoxicity was performed

essentially as described [42], with the modification that target

cells were a mixture of CFSElo B6 spleen cells, DsRed-expressing

splenocytes and GFP-expressing splenocytes, the latter two

populations coated with test peptides at 1 mg/ml. Equal numbers

of cells were combined and 2.46107 cells were injected into host

mice and 18 h later spleen cells were harvest for flow cytometric

assessment of lysis 18 h later within the spleen.

Supporting Information

Figure S1 Kb restricted recognition by the B4 hybrid-
oma specific for PbA. Dendritic cells were enriched from the

spleens of naive B6 (filled circle), MHC-I-deficient (filled triagle),

or Kb-deficient (open diamond) mice and cultured for 1 h with

titrated amounts of lysed blood-stage PbA. B4 hybridoma cells
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(from which the PbT-I TCR genes were isolated) were then added

to the cultures for 40 h before measuring IL-2 in the supernatant

by ELISA. Data points denote mean of IL-2 concentration and

error bars represent SEM. Data were pooled from 2 independent

experiments.

(PDF)

Figure S2 Characterization of T cells from the lymph
node of PbT-I mice. Cells were harvested from the lymph nodes

of PbT-I transgenic or littermate control B6 mice (WT). FACS

analysis was performed to characterize the expression of CD8, CD4

and the transgenic TCR alpha (Va8.3) and beta (Vb10) chains.

Representative histograms show the expression of the transgenic

TCR Va8.3 and Vb10 chains on the CD8 (upper) and CD4 (lower)

single-positive cells from the LN. This experiment was repeated

three times with two mice per experiment.

(PDF)

Figure S3 Enumeration of T cells in the spleen, lymph
nodes and thymus of PbT-I mice. Cells were harvested from

the spleen, lymph nodes or thymus of PbT-I transgenic or

littermate control wild-type (WT) mice. (A) The total number of

live cells and (B) the proportion of T cells expressing either CD4 or

CD8 for the spleen and lymph nodes or CD4 or CD8 or double

positive (DP) for the thymus. This experiment was repeated three

times with two mice per experiment.

(PDF)

Figure S4 Characterization of cells in the thymus of
PbT-I mice. (A) Representative dot-plots showing CD4 and CD8

expression in the thymus of PbT-I mice or littermate WT controls.

(B) Representative histograms showing the expression of the

transgenic TCR Va8.3 and Vb10 chains on the single positive

CD8 or CD4, double positive (DP) and double negative (DN)

thymocytes. This experiment was repeated three times with two

mice per experiment.

(PDF)

Figure S5 PbT-I is specific for blood-stage PbA. (A) 105

CFSE labeled PbT-I cells were incubated with 26105 dendritic cells

that were pre-incubated with titrated amounts of PbA lysate from

either schizonts-enriched (filled circle) or mixed blood-stage parasites

(open circle). 60 hours later, the proliferation of PbT-I cells was

assessed by flow cytometry. Data are pooled from two experiments.

(PDF)

Figure S6 PbT-I T cells do not respond to herpes
simplex virus type 1 infection. B6 mice were adoptively

transferred with 106 Ly5.1 gBT-I cells together with 106 GFP-

expressing PbT-I cells, each population labeled with Cell-Tracker

Violet. The next day, mice were infected i.v. with 104 blood-stage

PbA or 106 pfu HSV-1 or were left uninfected (Naı̈ve). Spleens

were harvested five days later and the proliferation of PbT-I and

gBT-I cells was analyzed. (A) Representative histograms showing

the proliferation of PbT-I cells and gBT-I cells in naı̈ve mice or on

day five post-infection. Note that PbT-I cells have a natural higher

level of homeostatic proliferation than gBT-I cells, as shown in

naı̈ve hosts. (B) Number of PbT-I cells (left) or gBT-I cells (right) in

the spleen of naı̈ve mice or those infected with either blood-stage

PbA or HSV-1 for five days. Data shown from one of two

representative experiments.

(PDF)

Figure S7 PbT-I cells primed during a blood-stage PbA
infection are functionally competent. B6 mice were

adoptively transferred with 56104 GFP-expressing PbT-I cells

and the next day infected i.v. with 104 blood-stage PbA. Infected

mice were injected i.p. with 0.4 mg chloroquine on days 6 and 7 to

cure of parasitemia. Eight days after infection, spleens were

harvested and intracellular cytokine staining was performed to

assess degranulation (CD107a) and cytokine production (IFNc and

TNFa) by PbT-I cells. (A) Bar graph showing the mean percentage

of PbT-I cells expressing CD107a, IFNc or TNFa. Error bars

represent standard error of the mean. Data are pooled from two

experiments with two mice per experiment. (B) Venn diagram

depicting the co-expression of cytokines and CD107a by PbT-I

cells from a representative mouse.

(PDF)

Figure S8 Accumulation of CD8+ T cells in the brains of
mice given PbT-I cells and infected with blood-stage
PbA. Mice adoptively transferred with PbT-I cells (filled circle) or

gBT-I cells (filled square) or no cells (open circle) were sacrificed on

days 4, 5 or 6 post-infection with blood-stage PbA and their brains

were analyzed for the infiltration of CD8+ T cells. Total number of

CD8+ T cells sequestered in the brains of mice at the times shown.

Data are pooled from 2-4 experiments. Data were compared using

student t test (*, p,0.05).

(PDF)

Figure S9 PbT-I cells induced ECM after PbA infection.
Hematoxilin and eosin staining of sagittal sections of the brains of

PbA-infected C57BL/6 mice. Mice were divided into three cohorts

and either left untreated (A–C), depleted of endogenous CD8 T cells

(D–F), or transferred with 26106 naı̈ve PbT-I cells 7 days after

endogenous CD8 T cell depletion (G–I). One day after PbT-I

transfer mice were infected with 106 blood-stage PbA. On day 6

after infection, untreated and PbT-I transferred mice developed

ECM. All mice were then killed and their brains removed for

histological examination. Typical leukocyte and RBC aggregates

could be found in the brain vessels (A, G) and meninges surrounding

cerebellar folia (C, I) of ECM-developing mice. These were absent

from ECM-resistant mice (D, F). The olfactory bulbs of mice with

ECM showed widespread haemorrhages (B, H), in contrast with

their ECM-resistant counterparts (E). Size bars: 50 mm.

(PDF)

Figure S10 PbT-I cells cross-react with P. yoelii XNL. B6

mice were adoptively transferred i.v. with 56105 CFSE-labeled

PbT-I. The next day, mice were injected i.p. with 105 P. yoelii XNL.

Six days later, spleens were harvested and the proliferation of PbT-I

was analyzed. The lines represent the mean and each data point

represents a mouse. Data are from one representative experiment of

two. Data were compared using student t test (**, p,0.01).

(PDF)

Figure S11 B6 mice were adoptively transferred with
56104 GFP-expressing PbT-I and the next day infected
i.v. with 105 irradiated sporozoites. Eight days later, spleens

were harvested and intracellular cytokine staining was performed to

assess degranulation (CD107a) and cytokine production (IFNc and

TNFa) by PbT-I cells. (A) Percentage of PbT-I cells expressing

CD107a, IFNc or TNFa. Error bars represent standard error of the

mean. Data are pooled from two experiments with four mice per

group. (B) Venn diagram depicting the co-expression of cytokines

and CD107a by PbT-I cells from a representative mouse.

(PDF)

Figure S12 The effect of inflammation on expansion of
PbT-I cells to irradiated sporozoites. (A) PbT-I T cells

proliferate to sporozoite antigen when introduced 2 days but not 7

days after injection of irradiated sporozoites. B6 mice were

untreated (naı̈ve, grey lines) or injected with 56104 irradiated

sporozoites (RAS, black lines) on day 0 and then 0, 2 or 7 days
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later were transferred with 2.56105 CellTracker Violet-labeled

GFP-expressing PbT-I cells. On day 7 after PbT-I cell transfer,

spleens were harvested and the proliferation profile of PbT-I cells

examined. Data are representative of 1-3 experiments. (B) Number

of PbT-I cells recovered from mice shown in (A). Closed symbols

are from 1-3 experiments with 2.56105 transferred PbT-I cells.

Open symbols are from 2 experiments with 5.06104 transferred

PbT-I cells. Each time point represents at least 3 experiments. Data

were log10 transformed and compared by one-way ANOVA and

Tukey’s multiple comparison test. (***, p,0.001, n.s. p.0.05). (C)

CpG oligonucleotide induced inflammation did not enhance

expansion of PbT-I cells. B6 mice were adoptively transferred with

5 x 104 GFP-expressing PbT-I cells and left uninfected (naı̈ve) or

infected with 56104 irradiated sporozoites (RAS). Two days later,

mice were left untreated or injected with 20 nmol of 1668 CpG

oligonucleotide (+ CpG). On day 7 spleens were harvested and PbT-

I cells enumerated. Data are pooled from two experiments. Data

were compared by one-way ANOVA and Tukey’s multiple

comparison test. There were no significant differences between

similar groups treated with or without CpG (p.0.05).

(PDF)

Figure S13 To identify Ly5.1+ PbT-I cells by flow
cytometry after adoptive transfer into B6 mice, cells
from tissues of recipient mice were gated sequentially as
shown in graphs A–E. PbT-I cells were identified as
Ly5.1+, Va8.3+ CD8+ cells.

(PDF)
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Vaccination with live Plasmodium yoelii blood stage parasites under chloroquine

cover induces cross-stage immunity against malaria liver stage. J Immunol 181:

8552–8558.

26. Clarke SMR, Barnden M, Kurts C, Carbone FR, Miller JFAP, et al. (2000)

Characterisation of the OVA-specific TCR transgenic line OT-I: MHC

elements for positive and negative selection. Immunol Cell Biol 78: 110–117.

27. Barbier L, Tay SS, McGuffog C, Triccas JA, McCaughan GW, et al. (2012)

Two lymph nodes draining the mouse liver are the preferential site of DC

migration and T cell activation. J Hepatol 57: 352–358.

28. Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, et al. (2008)

Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-

expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl

Acad Sci U S A 105: 14509–14514.

29. Piva L, Tetlak P, Claser C, Karjalainen K, Renia L, et al. (2012) Cutting Edge:

Clec9A+ Dendritic Cells Mediate the Development of Experimental Cerebral

Malaria. J Immunol 189: 1128–1132.

30. Urban BC, Cordery D, Shafi MJ, Bull PC, Newbold CI, et al. (2006) The

frequency of BDCA3-positive dendritic cells is increased in the peripheral

circulation of Kenyan children with severe malaria. Infect Immun 74: 6700–

6706.

31. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, et al. (2013)

Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses

during Plasmodium infection. Nat Med 19: 730–738.

32. Hafalla JC, Rai U, Bernal-Rubio D, Rodriguez A, Zavala F (2007) Efficient

development of plasmodium liver stage-specific memory CD8+ T cells during

the course of blood-stage malarial infection. J Infect Dis 196: 1827–1835.

33. Cockburn IA, Chen Y-C, Overstreet MG, Lees JR, van Rooijen N, et al. (2010)

Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell

Responses against Malaria Liver Stage Parasites. PLoS Path 6: e1000877.

34. Ekeruche-Makinde J, Miles JJ, van den Berg HA, Skowera A, Cole DK, et al.

(2013) Peptide length determines the outcome of TCR/peptide-MHCI

engagement. Blood 121: 1112–1123.

35. Imai T, Shen J, Chou B, Duan X, Tu L, et al. (2010) Involvement of CD8+ T

cells in protective immunity against murine blood-stage infection with

Plasmodium yoelii 17XL strain. Eur J Immunol 40: 1053–1061.

36. Tsuji M, Zavala F (2003) T cells as mediators of protective immunity against

liver stages of Plasmodium. Trends Parasitol 19: 88–93.

Cross-Stage Reactive CD8 T Cells in Rodent Malaria

PLOS Pathogens | www.plospathogens.org 15 May 2014 | Volume 10 | Issue 5 | e1004135



37. Jobe O, Donofrio G, Sun G, Liepinsh D, Schwenk R, et al. (2009) Immunization

with radiation-attenuated Plasmodium berghei sporozoites induces liver
cCD8alpha+DC that activate CD8+T cells against liver-stage malaria. PLoS

One 4: e5075.

38. Schnorrer P, Behrens GMN, Wilson NS, Pooley JL, Smith CM, et al. (2006) The
dominant role of CD8+ dendritic cells in cross-presentation is not dictated by

antigen capture. Proc Natl Acad Sci U S A 103: 10729–10734.
39. Mueller SN, Heath W, McLain JD, Carbone FR, Jones CM (2002)

Characterization of two TCR transgenic mouse lines specific for herpes simplex

virus. Immunol Cell Biol 80: 156–163.
40. Benedict MQ (1997) Care and maintenance of anopheline mosquito colonies.

In: Crampton JM BC, Louis C, editor. The Molecular Biology of Insect Disease
Vectors. New York: Chapman & Hall. pp. 2–12.

41. Ramakrishnan C, Delves MJ, Lal K, Blagborough AM, Butcher G, et al. (2013)
Laboratory maintenance of rodent malaria parasites. Methods Mol Biol 923:

51–72.

42. Lau LS, Fernandez Ruiz D, Davey GM, de Koning-Ward TF, Papenfuss AT,
et al. (2011) Blood-stage Plasmodium berghei infection generates a potent,

specific CD8+ T-cell response despite residence largely in cells lacking MHC I

processing machinery. J Infect Dis 204: 1989–1996.

43. Mueller SN, Jones CM, Smith CM, Heath WR, Carbone FR (2002) Rapid

cytotoxic T lymphocyte activation occurs in the draining lymph nodes after

cutaneous herpes simplex virus infection as a result of early antigen presentation

and not the presence of virus. J Exp Med 195: 651–656.

44. Kaye J, Vasquez NJ, Hedrick SM (1992) Involvement of the same region of the

T cell antigen receptor in thymic selection and foreign peptide recognition.

J Immunol 148: 3342–3353.

45. Barnden MJ, Allison J, Heath WR, Carbone FR (1998) Defective TCR

expression in transgenic mice constructed using cDNA-based alpha- and beta-

chain genes under the control of heterologous regulatory elements. Immunol

Cell Biol 76: 34–40.

46. Smith CM, Belz GT, Wilson NS, Villadangos JA, Shortman K, et al. (2003)

Cutting Edge: Conventional CD8alpha(+) Dendritic Cells Are Preferentially

Involved in CTL Priming After Footpad Infection with Herpes Simplex Virus-1.

J Immunol 170: 4437–4440.

Cross-Stage Reactive CD8 T Cells in Rodent Malaria

PLOS Pathogens | www.plospathogens.org 16 May 2014 | Volume 10 | Issue 5 | e1004135


	Washington University School of Medicine
	Digital Commons@Becker
	2014

	CD8+ T cells from a novel T cell receptor transgenic mouse induce liver-stage immunity that can be boosted by blood-stage infection in rodent malaria
	Kenneth M. Murphy
	et al
	Recommended Citation


	ppat.1004135 1..16

