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Abstract

Despite our fine-grain anatomical knowledge of the cerebellar cortex, electrophysiological studies of circuit information
processing over the last fifty years have been hampered by the difficulty of reliably assigning signals to identified cell types.
We approached this problem by assessing the spontaneous activity signatures of identified cerebellar cortical neurones. A
range of statistics describing firing frequency and irregularity were then used, individually and in combination, to build
Gaussian Process Classifiers (GPC) leading to a probabilistic classification of each neurone type and the computation of equi-
probable decision boundaries between cell classes. Firing frequency statistics were useful for separating Purkinje cells from
granular layer units, whilst firing irregularity measures proved most useful for distinguishing cells within granular layer cell
classes. Considered as single statistics, we achieved classification accuracies of 72.5% and 92.7% for granular layer and
molecular layer units respectively. Combining statistics to form twin-variate GPC models substantially improved
classification accuracies with the combination of mean spike frequency and log-interval entropy offering classification
accuracies of 92.7% and 99.2% for our molecular and granular layer models, respectively. A cross-species comparison was
performed, using data drawn from anaesthetised mice and decerebrate cats, where our models offered 80% and 100%
classification accuracy. We then used our models to assess non-identified data from awake monkeys and rabbits in order to
highlight subsets of neurones with the greatest degree of similarity to identified cell classes. In this way, our GPC-based
approach for tentatively identifying neurones from their spontaneous activity signatures, in the absence of an established
ground-truth, nonetheless affords the experimenter a statistically robust means of grouping cells with properties matching
known cell classes. Our approach therefore may have broad application to a variety of future cerebellar cortical
investigations, particularly in awake animals where opportunities for definitive cell identification are limited.
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Introduction

Obtaining reliable assignments of spike discharges to identified

neuronal types in vivo is a major problem, particularly in awake

behaving animals [1]. Amongst the sensorimotor areas of the

brain, the cerebellum offers a tractable circuit to study owing to its

few well-defined cell-types. However, only Purkinje cells can be

definitively identified using their unique responses to climbing

fibre inputs [2]. Previous studies have employed a variety of

measures based on spike timing or waveform characteristics to

tentatively classify other neurone types [3–5], in some cases

supported by juxtacellular labelling [6–9], or intracellular staining

and/or assessment of membrane properties [10–12]. Anaesthe-

tised animals have been widely used as they can provide a ground-

truth through neuronal labelling although this is much harder to

achieve in awake animals where spike-shape or firing-pattern

derived measures tend to be relied upon. Spike-waveform shapes

have been used in the cerebellum [4,5,13] and also in frontal
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cortex [14], barrel cortex [15] and ventral striatum [16]. Whilst

spike-shapes carry potentially useful information for classifying

neuronal classes, they can vary with electrode type and the

geometric relationship between the electrode and the spike

generation zone [17,18]. Moreover, spike-shape measurement is

achieved with a variety of techniques, making it difficult to

compare and standardise between laboratories.

The heterogeneous morphological, neurochemical and synaptic

connectivity of cerebellar interneurones [19,20] is expected to

impart distinctive firing patterns to the different classes of local

interneurones. The recent use of a C4.5 decision-tree algorithm (a

popular version of an algorithm to build a decision tree [21]) to

classify local interneurones, within a restricted part of the

cerebellum (vestibulocerebellum), using spontaneous activity sig-

natures [9] lends weight to this viewpoint. However, decision-tree

algorithms result in orthogonal decision boundaries, leading to

inferior results with correlated parameters such as firing rate and

irregularity. The method also requires numerous decision-steps,

applied in a specific order and does not provide a measure of

confidence surrounding the final decision. Here, we use a

probabilistic approach (Gaussian Process Classifier) to classify

cerebellar granular layer neurones, molecular layer neurones and

Purkinje cells using firing rate and irregularity metrics.

Driven by the anatomical distinction between the granular and

the molecular layers of the cerebellar cortex, we assessed the

usefulness of a GPC-based approach for classifying neurones in

each of these layers. Custom-built GPC models for the granular

and molecular layers achieved 99.2% and 92.7% accuracy,

respectively. In a cross-species comparison, using identified

neurones the same approach achieved 80–100% accuracy using

data drawn from anaesthetised mice and decerebrate cats. Based

on the high levels of accuracy in mice, rats and cats, we assessed

unidentified data from awake rabbits and monkeys and used our

GPC to identify subsets of cells bearing the closest similarity to

identified cell classes. Our approach highlights an extensive

consistency of neuronal firing patterns between species and

between behavioural ’states’, implying a broad applicability of

our GPC model to awake animal experiments.

Materials and Methods

All procedures were conducted in accordance with the relevant

national laws relating to animal use for scientific research and

approved by the University of Cambridge Ethical Review Panel

(rats and rabbits), by the University College London Animal Ethics

Committee (mice), by the Malmö/Lund Animal Research Ethics

Committee (permit number and approval-ID: M32-09) at the

University of Lund (cats) and Washington University (primates).

Methods as well as general animal care and welfare regarding the

treatment of primates in our research conformed to the National

Institute of Health (NIH) Guide for the Care and Use of

Laboratory Animals and were approved by the Washington

University Institutional Animal Care and Use Committee.

Animals are housed in individual cages or in pairs with sufficient

space for exercising following NIH guidelines. Animals are given

primate food (pellets), fruits and food-treats twice a day. Additional

fruits and food-treats are provided after each experimental session.

Analgesics were used when directed by veterinarians to prevent

pain of discomfort after surgery. A strong environmental

enrichment program is active in Washington University to provide

toys and pair animals for social interaction.

Our datasets consisted of neuronal recordings made in

anaesthetised and decerebrate preparations: rat (urethane

[7,22]); mouse (ketamine/xylazine [24]); cat (decerebrate

[10,23]). In these preparations, efforts were made to elucidate

cellular identities using intracellular recording and assessment of

membrane biophysics (mouse) or intracellular/juxtacellular label-

ling (rat & cat), see examples in Figure 1. We also used data

obtained from awake animals; macaques (unpublished data) and

awake rabbits [25] (see original studies for details on animal

preparation). Recordings of neuronal activity were obtained from

Purkinje cells, molecular layer units and granular layer units in the

absence of overt stimulation, thus such activity is considered

spontaneous; for awake animals, periods of quiet rest were used. In

the awake animal datasets, only Purkinje cells could be definitively

identified due to the presence of complex spike discharges [2],

whilst the remainder of the units sampled were considered to have

been recorded in the granular layer (see original studies for details),

therefore their identification remains as putative.

Using the rat dataset, we employed a Gaussian Process

Classifier (GPC) [26] to infer the probability of a given cell

belonging to a particular cell class. Spike trains in our rat dataset

(used to build our GPC model) had a variety of lengths ranging

from a minimum of 65 spikes to 13650 spikes, dependent on the

firing rate of the neurone under study. For Golgi cells we had on

average ,1400 spikes, whereas for granule cells, regular firing

mossy fibre terminals, Purkinje cells, stellate and basket cells we

had on average ,680, ,1500, ,5500, ,1038 and ,1014 spikes,

respectively. The GPC is realized by maximizing a strict lower

bound on the marginal likelihood of a multinomial probit

regression model. The GPC developed in [26] is a variational

Bayesian approach for multi-class Gaussian process classification.

We used the radial basis function (RBF) as the Gaussian process

(GP) covariance function. The (i,j) th element of the covariance

matrix C in case of the RBF is defined as

C(i,j)~ exp {
XD

d~1

Qd (pid{pjd )2

( )
, where pid is the d-th param-

eter extracted from the spike train (e.g. entropy) for cell ‘i’, D is the

number of parameters used and Qd a covariance function

hyperparameter for dimension d. One of the appealing properties

of the GPC developed in [26] is that the Qd can be inferred from

the data using importance sampling. Importance sampling is a

technique for estimating parameters of a particular distribution,

while only having samples generated from a different distribution

rather than the distribution of interest, because parameter

estimation is too hard to treat analytically, see [26].

The covariance matrix C is of dimension N6N where N is the

number of cells: N equals 120 cells for building the GPC model of

the granular layer and 41 cells for building the GPC model of the

molecular layer.

We used the leave-one-out cross-validation (LOO-CV) tech-

nique [27] to estimate the accuracy of prediction on the rat data.

This validation is closest to our objective of using the 120 rat cells

from the granular layer model to make predictions for new cells as

we demonstrated for the cells of the mouse, cat, rabbit and

monkey. Similarly this validation is closest to using the 41

neurones of the molecular layer model to make predictions for new

cells as demonstrated. In the leave-one-out procedure a GPC is

built using all cells except for one cell that is left out (hence

N = 119 or N = 40). The probability of that cell to belong to each

of the cell classes is then computed based on the classifier. The cell

is then assigned to the class with the highest probability according

to Bayes’ decision rule. The prediction of the model can then be

compared with the known cell type to verify whether the model

made a correct decision. This procedure is repeated over all cells,

so that each cell has been tested once. The final classification

accuracy is then reported as the percentage of cells that were
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classified correctly. In case of the granular layer model, a GPC was

built on all rat cells (hence N = 120) and the probability for each

cell of the other species to belong to the different cell classes was

inferred. For the molecular layer model a GPC was built on a

mixture of anaesthetized rat cells (stellate cells and Purkinje cells)

and decerebrate cat cells (stellate and basket cells). The cells are

then assigned to the class which has the highest probability. The

percentages of cells that were correctly classified are reported as

the classification accuracies. The GPC models and decision

boundaries in Figure 2 D–H, 3 C–D, 4 B–C, 5 A, C & E were

built when using all 120 available cells of the granular and

Purkinje layers. The GPC models in Figure 2 L–P, 3 E–F were

built when using 15 stellate/basket cells and the 26 available

Purkinje cells. Note that in Figure 2H all cells fall at the correct

side of the decision boundary and therefore it appears that no

error is made, however the reported accuracy of 99,2% (119/120)

is based on our LOO-CV in which not all cells were used to build

models (described earlier).

Results

In this study we use a large dataset consisting of spontaneous

activity of Purkinje cells and a variety of granular layer units,

recorded in Crus I/II in anaesthetised rats, as well as molecular

layer units, recorded in Crus I/II in anaesthetized rat and lobule

IV/V of the decerebrate cat. As shown in Figure 1, Purkinje cells

are the most easily identified due to their unique dual discharge of

complex spike-waveforms [2] alongside simple spikes (Figure 1A,

left panel). An example Purkinje cell is shown following

juxtacellular labelling with neurobiotin (Figure 1A, right panel)

revealing a typical soma located in the Purkinje cell layer (dotted

line) and dendrites extending into the molecular layer (ML).

In contrast to Purkinje cells, several authors have described

characteristic discharges assumed to be Golgi cells; large neurones

located in the granular layer of the cortex. In the rat, at rest these

cells are active with relatively low firing rates 2–25 Hz [7,22,28],

1.9–11 Hz [9], broad peaked inter-spike interval histograms (c.f.

Figure 1B, left panel), a scarcity of intervals less than 30 ms and

tuning distances of 50–150 mm with generally broad action

potential shapes [4–9,29–32]. An example Golgi cell following

juxtacellular labelling is shown in Figure 1B (right panel) - note the

dendrites extending in to the ML and the highly arborised axon

within the granular layer (GL; note that GL dendrites are not

visible in this micrograph).

Fewer studies have addressed the activity of granule cells in vivo;

at rest, typically they are inactive or characterised by generally

irregular firing patterns sometimes punctuated by ’bursts’ of

activity but often with long periods without discharge [6,9–11,22–

Figure 1. Activity patterns of cerebellar cortical cells in the rat.
A shows an ISIH and spike-shapes (band pass 0.3–10 kHz) from an
example Purkinje cell - note the presence of two spike-shapes, complex
(top) and simple (bottom). The right panel shows a bright-field
micrograph of a Purkinje cell following juxtacellular labelling with
neurobiotin - note the characteristic dendritic arbor in the molecular
layer (ML). B–E follow the same format for an example Golgi cell,
granule cell, a regular firing mossy fibre terminal and basket/stellate
cell, respectively. Although each of these granular layer units have
broadly similar mean firing rates (compare the ISIHs), their intrinsic

irregularities are divergent. Note that the spike-shapes shown for the
Golgi cell, granule cell and basket/stellate cell are highly similar due to
being recorded in the juxtasomatic configuration, whilst the spike-
shape for the mossy fibre terminal is composed of an early fast and later
variable negative after wave (NAW). The micrographs show a typical
Golgi cell, viewed in dark-field, with dendrites extending into the ML
and profuse, highly arborised axon tree in the granular layer (GL: note
GL dendrites are not visible). In contrast, the much smaller granule cell
shown in bright-field has a soma with three short dendrites. The
micrograph in D shows a neurobiotin deposit in the upper granular
layer following a juxtacellular labelling attempt with a regular firing
mossy fibre unit (indicated by the arrow). Example data from a basket/
stellate cell are shown in E, with a cell visible in the lower third of the
molecular layer (ML) with arborisations extending in the parasagittal
plane and presumed dendrites ascending in the plane of the Purkinje
cell dendrites. Micrographs shown in A & B reproduced with permission
from [7].
doi:10.1371/journal.pone.0057669.g001
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24]. An inter spike interval histogram (ISIH) and photomicro-

graph of an example juxtacellularly labelled granule cell is shown

in Figure 1C. Note the similarity of the spike-shape to the Golgi

cell (c.f. Figure 1B) - in each case spikes were recorded in the

juxtacellular configuration, with an initial positive deflection in the

spike-shape - this component ’grows’ as the electrode advances

into the juxtacellular configuration [7,17]. In anaesthetised rats,

granule cells commonly respond with long-lasting excitations

which are causally related to the long-lasting depression responses

seen in their counterpart inhibitory Golgi cells [22].

Mossy fibres are present throughout the granular layer, with

each of multiple mossy fibre rosettes contacting 50–150 granule

cells whilst each granule cell receives roughly four mossy fibre

inputs [33,34]. Mossy fibre firing patterns can appear similar to

those of granule cells, characterised by irregular activity punctu-

ated by ’bursts’ [6,12,23,32] however, comparison of mossy fibre

firing patterns is not straightforward since they relate to the source

and modality of information they convey [12,23]. In the rat Crus

I/II, where our recordings were made, we commonly isolated

units with highly rhythmic firing patterns. The spike-shapes of

these units comprise an early fast- and later variable slow-

component typical of mossy fibre terminals [4,10,32,35]. At rest,

these units are spontaneously active with mean firing rates ranging

from ,7–22 Hz, overlapping with Golgi cell firing rates

(Figure 1D). Although we could not juxtacellularly label these

units, an example labelling attempt resulting in a neurobiotin

deposit in the granular layer is shown in the photomicrograph in

Figure 1D.

The molecular layer contains two types of inhibitory interneu-

rones; basket cells and stellate cells. These two cell types are

distinguished principally by their depths within the molecular

layer, basket cells residing in the deepest one third and stellate cells

within the outer two thirds of the molecular layer, however, there

are some basket cells that reside in the middle third of the

molecular layer [36]. In general, basket and stellate cells are

considered to be on a continuum of transitional morphology – a

suggestion first put forward by [37] and therefore we consider

them a single class for the purpose of the current study. Molecular

layer cell firing rates were broadly similar to those of Golgi cells

ranging from ,2–35 Hz (mean ,10 Hz) in agreement with

previous descriptions by Ruigrok and co-workers [9]. Example

data from a juxtacellularly labelled basket/stellate cell are shown

in Figure 1E.

Our previous studies in anaesthetised rats have shown that

cerebellar cortical units (granule, Golgi and Purkinje cells)

commonly have distinctive response patterns following somato-

sensory stimulation [7,22], thus aiding their identification as

different neuronal elements [38]. For future experiments, in

different cerebellar areas or in awake animals, somatosensory

stimulation may not be possible thus an alternative approach for

identifying cells is required. Whilst spike-shape information can be

useful, particularly for Purkinje cells and mossy fibres, it is not

always helpful (c.f. Golgi cell, granule cell, basket/stellate cell

spike-shapes). Similarly, techniques such as juxtacellular labelling

are not always possible, particularly in behaving animals, or in

preparations where it is impractical to sacrifice the animal, so

whilst this has proved important for validating our dataset (see

Methods) we developed an approach for identifying cells using

their spontaneous activity patterns. Ruigrok and colleagues [9]

have made progress in this direction although their decision-tree

algorithm does not provide probabilistic feedback to the experi-

menter. Therefore we aimed to address this shortfall by developing

a method that enables the experimenter to choose their preferred

confidence threshold in order to objectively accept cells for further

study or reject them as unclassified units.

Analysis of Spontaneous Firing Rate and Irregularity
We assessed a range of statistics describing firing rates,

irregularities and burstiness of firing using both the arithmetic

and logarithmic spike-time series. The logarithmic transformation

makes the ISI distributions more symmetric [39]; for review see

[40]. We computed mean, median and modal ISI, mean spike

frequency (MSF) and mean instantaneous spike frequency [7],

alongside a range of irregularity measures including the coefficient

of variation (CV), mean CV2 (relative difference of adjacent ISIs

[5,41]), the local variation (Lv [38,42]), the revised local variation

(LvR [43]), the instantaneous irregularity (IR [44]), the geometric

average of the rescaled cross-correlation of the ISIs (SI [45]), the

CV of log interval series (LCV) and the log-interval-entropy (ENT

[39]). The burstiness of firing was computed by the 5 th percentile

of the ISIH [9]. These parameters are defined in Appendix S1.

A GPC model aimed at classifying all cell types with a

combination of all 13 of our firing rate and irregularity statistics,

lead to an overall accuracy of 89.4% (126/141 cells correct),

although an analysis of the cell class specific errors revealed poor

performance in identifying molecular layer neurones (38.1%, 8/21

correct). Considered as a whole, 24% (5/21) molecular layer

neurones were misclassified as granule cells, 5 as Golgi cells and 3

as Purkinje cells. This poor performance in classifying molecular

layer neurones led us to explore the performance of a molecular

layer specific model. To be of use to the experimenter, layer-

specific models require the experimenter to have knowledge of the

cell layer being recorded from: for superficial cortical regions

depth monitoring is straightforward, whilst for deeper areas

electrophysiological separation of the granular and molecular

layers is required, which is nonetheless eminently achievable [25].

Three of the most useful statistics for providing separation

within the granular and molecular layer cell classes are plotted in

Figure 2A–C & I–K; LCV, MSF and ENT, respectively. Note that

ENT is expressed using a logarithmic base of 2, providing a value

of bits; thus a doubling of the variance is equivalent to an increase

in entropy by one bit. Considering each parameter alone, we built

a GPC model (see Methods) to obtain probabilities of each unit

belonging to a particular cell class. This step generates decision

boundaries between cell classes (defined as equal probability of

belonging to neighbouring cell classes), enabling a probabilistic

classification of each neurone analysed (coloured panels,

Figure 2D–F). Using the leave-one-out cross-validation (LOO-

Figure 2. Firing frequency and firing irregularity measures for granular layer and molecular layer neurones. Three of the most useful
statistics, CV of log ISIs (LCV), mean spike frequency (MSF) and log-interval-entropy (ENT), for classifying cells into distinct classes are plotted in A–C
for the granular layer cells and I–K for the molecular layer cells. Each circle represents the spike train statistic of a single neurone (n = 120 cells and 41
cells, respectively). These data were used to build Gaussian Process Classifiers (D–F and L–N, respectively) using a single statistic to infer probabilities
for each neurone belonging to a class and to delineate equiprobable decision boundaries between cell classes (solid black lines). Classification
accuracy for each statistic is provided above each plot. G & H show the outcome of Gaussian Process Classifiers built using a twin-variate approach
for the granular layer cells and O & P show the same analysis for the molecular layer cells (note inset labelled basket/stellate cell [cat]). Probability
contours are superimposed for each class (probability levels = 0.25, 0.4, 0.6, 0.7, 0.8, 0.9 & 0.95) as well as the 2-dimensional decision boundaries and a
resultant increase in classification accuracy (included in top right of each panel).
doi:10.1371/journal.pone.0057669.g002
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CV) technique (see Methods), both granular layer univariate

models using either LCV or MSF correctly classified 72.5% of

cells, whilst the ENT based model performed at 65% accuracy. As

these individual parameters performed rather poorly, we therefore

explored twin-variate GPC models by combining LCV-ENT,

MSF-LCV and MSF-ENT. The GPC model combining LCV-

ENT achieved 95% accuracy using LOO-CV (6 mistakes in 120

cells, 2 Golgi cells misclassified as Purkinje cells, 2 Purkinje cells

misclassified as Golgi cells, one as a granule cell and one as a

regular firing mossy fibre unit), MSF-LCV achieved 95.8%

accuracy (5 mistakes in 120 cells; 3 Golgi cells misclassified as

mossy fibre units, one mossy fibre unit as a Golgi and one Purkinje

cell as a granule cell) although in comparison MSF-ENT achieved

a much higher accuracy (99.2%) with only 1 Purkinje cell

misclassified as a Golgi cell. We evaluated the statistical

significance of the differences between the two selected twin-

variate models (MSF-LCV and MSF-ENT). In Appendix S1 we

show that the MSF-ENT model performed significantly better

(significance threshold a= 0.05) than the MSF-LCV model using

either a binomial distribution or a Wilcoxon ranksum test.

Following the same format for Figure 2A–H, in Figure 2I–P we

show the same statistics for the molecular layer neurones and

Purkinje cells. As univariate statistics, LCV, MSF and ENT

offered classification accuracies of 80.5%, 92.7% and 85.4%

respectively (Figure 2I–N). In the twin-variate models, MSF-LCV

and MSF-ENT each achieved 92.7% accuracy (38/41) with the

LOO-CV indicating that for the MSF-LCV model, 13/15

molecular layer neurones were correctly predicted with 2

misclassified as Purkinje cells, with 1/26 Purkinje cells misclassi-

fied, whereas the MSF-ENT model misclassified 2/15 molecular

layer cells as Purkinje cells and 1 Purkinje cell misclassified as

molecular layer cell. Although no gains in overall classification

accuracy for molecular layer cells were achieved using the twin-

variate models compared to MSF alone, nonetheless, the creation

of two dimensional decision boundaries and probability contours

aids in the process of probability-thresholding each classification

decision, i.e. selecting cells with the highest probability of

belonging to a particular class, and thereby leads to an overall

increase in quality of the classifications made by the model.

Due to the relatively limited size of the dataset used to build this

model, we reserved a further 6 molecular layer neurones (4 basket

cells and 2 stellate cells) as a test dataset. When projected into the

MSF-ENT model, 83% (5/6) were correctly classified with 1

stellate cell misclassified as a Purkinje cell (filled circles Figure 2P).

Whilst a model that classifies only molecular layer neurones from

Purkinje cells at face-value, might seem redundant, our Purkinje

cell firing statistics are derived from the complete spike-trains of

these cells (simple and complex spikes). Thus although many

experimenters rely on observing complex spikes for definitive

identification, complex spike ’visibility’ is sensitive to electrode

position, up- and down-states of Purkinje cells and the vigilance

state of the animal [46,47]. Therefore, the value of our approach

for both granular and molecular layer models, is in removing the

experimenter’s reliance on complex spikes to identify Purkinje

cells.

Within the cell classes, Golgi cell and Purkinje cell populations

showed significant correlation between MSF and ENT (rho

20.66, p = 4.7*1027; rho = 20.58, p = 0.0024, respectively;

Spearman’s rank correlation test) whilst neither the granule cells,

nor mossy fibre units or the molecular layer cells showed a

significant correlation between firing rate and irregularity. These

data indicate that faster firing rates infer higher regularity of spike

timing in Golgi cells and Purkinje cells.

Entropy as a Robust Estimator of Irregularity
Although our MSF-ENT model performed to a high level of

accuracy for both the molecular layer and granular layer models

(92.7% and 99.2% respectively) we re-evaluated the granular layer

model by substituting ENT with a variety of irregularity measures

and similarly by substituting MSF with alternative measures of

firing frequency. The results of this analysis using LOO-CV are

shown in Figure 3A & 3B respectively, indicating that against

MSF, the optimal irregularity measure to complement this is ENT,

with the poorest performing combination being MSF-SI (89%

accuracy) with CV slightly ahead (90.8%). The Lv and LvR

perform equally well at 91.6% whilst the widely adopted measure

CV2 performed as well as IR (95%) with LCV slightly behind

ENT at 95.8%. In comparison, the optimal firing frequency

measure to compliment ENT was MSF with modal ISI and

median ISI measures each achieving 93.3% accuracy and mean

instantaneous firing frequency (98.3%) offering a similar accuracy

as MSF. Although we did not explore all possible parameter

combinations between the frequency and irregularity measures,

any gains would be marginal since MSF-ENT offers 99.2%

classification accuracy. Similar substitution of the irregularity

metrics in the molecular layer model offered no further

improvements in classification accuracy, with all MSF-irregularity

metric combinations offering 92.7% accuracy. In terms of

substituting the firing frequency metrics, the ENT-mean instan-

taneous frequency combination decreased classification accuracy

to 90.24% (37/41), with all other combinations offering no further

improvement over the MSF-ENT combination (data not shown).

As the neurones in our dataset had a wide range of firing rates,

and therefore variable spike numbers (minimum 62 spikes, granule

cell; maximum 13560 spikes, Purkinje cell; see Methods), we

investigated how spike train length affects classification accuracy.

As we cannot be sure how many spikes are required to capture a

neurone’s full repertoire, we recomputed the granular layer MSF-

ENT model using either 30 ISIs or 60 ISIs for all cells. Using 30

ISIs, prediction accuracy using LOO-CV fell to 95% (Figure 3C)

with 1 granule cell being misclassified as a Golgi cell and vice-

versa, and 2 Golgi cells being misclassified as regular firing mossy

fibres and vice-versa. Using 60 ISIs improved performance with

only 1 Golgi cell misclassified as a mossy fibre unit leading to

99.2% LOO-CV classification accuracy (Figure 3D, c.f.

Figure 2H). We also followed the same approach with the

molecular layer MSF-ENT model, using either 30 or 60 ISIs. In

both scenarios, LOO-CV classification accuracy increased from

92.7% (38/41) to 95.4% (39/41); see Figure 3E & F. This change

is attributable to a single mistakenly classified Purkinje cell (close to

the decision boundary - see Figure 2P) being then correctly

classified when the smaller samples of ISIs were used to compute

its statistics. Thus, in the 30 ISI and 60 ISI models, 2 molecular

layer neurones were incorrectly classified, representing no change

from the original model using all available ISIs. In summary, our

data indicate that MSF-ENT offers an optimal combination of

firing pattern statistics for reliable and robust prediction of the

identity of neurones using relatively small samples of activity

obtained from both the granular and molecular layers.

Comparison of GPC with Decision-tree Algorithm
Our GPC approach can be used in one of two ways - the

decision boundaries can be interpreted as binary ’black and white’

decisions or more powerfully, the probabilistic nature of our

approach allows the experimenter to choose confidence levels for

the acceptance or rejection of each individual classification. In this

way, cells that fall in a parameter space, say with p,0.7 can be

rejected as unknown cells. Applying our model in both modes,
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’black and white’ and ’shades of grey’ we compare the change in

classification decisions for our rat dataset in Figure 4A. For Golgi

cells and granule cells, probability-thresholding pruned 4/50 Golgi

cells and 1/21 granule units as unknown with the remainder of

cells being ’highly likely’ to belong to their particular class, thus

classification accuracy for these cells remained at 100%. For the

molecular layer cells, probability-thresholding pruned 3/21 units

as unknown leading to an accuracy of 89% (16/18; c.f. 90% un-

thresholded).

For a performance comparison, we used our datasets to

calculate each of the parameters and ensuing decision-steps

described in the decision-tree algorithm developed by Ruigrok

and colleagues [9]. The decision-tree algorithm correctly classified

48% of Golgi cells (24/50) with 12 unknown cells (summarised in

Figure 4A and Table 1), 13 Golgi cells were misclassified as

unipolar brush cells and 1 as a molecular layer cell (i.e. overall

63.2%; 24/38 when disregarding unknown cells). For granule

cells, 7/21 were correctly classified (33%) with 3 unknown cells

and 11 misclassified as molecular layer cells (i.e. 38.9%; 7/18

when disregarding unknown cells). For molecular layer cells, the

decision-tree algorithm correctly identified 61.9% (13/21) of cells,

with 6 unknowns, and 1 cell misclassified as a Golgi cell and 1 cell

as a granule cell (i.e. 13/15<86.7% when disregarding border

cells); our GPC model achieved a similar classification accuracy for

Figure 3. Comparison of irregularity measures, frequency measures and spike-train length on classification accuracy. The bar chart
shown in A plots the Gaussian Process Classifier LOO-CV accuracy for our rat dataset using a range of firing irregularity statistics combined with MSF.
The worst combination was MSF vs SI offering 89% classification accuracy, whilst MSF vs. ENT performed at 99.2% accuracy. B shows a similar analysis
with a variety of frequency measures combined with ENT. Median and Modal ISI offered ,93% accuracy with a marginal difference between mean
instantaneous frequency and mean firing rate (98% and 99.2%, respectively). C & D show Gaussian Process Classifiers built on the granular layer
dataset but with 30 ISIs or 60 ISIs, respectively. The decision boundaries for the model built on all spikes are superimposed (black lines), along with
the recomputed decision boundaries (green and red lines respectively). Note that the probability contours are specific to each model. Using 30 ISIs
offered a prediction accuracy of 95% whilst the model built with 60 ISIs for all cells offered the same accuracy as the all-spikes model (99.2%; c.f.
Figure 2H). This shows the model can be built and applied to spike trains containing as little as 60 ISI’s without a decrease in performance. This allows
a prediction in the order of a few seconds for the slowest firing neurones (granule cells). E & F show Gaussian Process classifiers built on the
molecular layer dataset following the same convention as above. Note that the probability contours are specific to each model. Using 30 or 60 ISIs
offered prediction accuracy of 95.1% in both cases, comparable to the all-spikes model (92.7%; c.f. Figure 2P).
doi:10.1371/journal.pone.0057669.g003
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molecular layer cells when compared to the decision-tree

algorithm. In terms of probability-thresholding, our non-thre-

sholded GPC correctly classified 100% (23/23) of regular firing

mossy fibre units, with the thresholded GPC pruning 2 units as

unknown, while in comparison, for Purkinje cells, the GPC

misclassified 1 cell as a Golgi cell (1/26) whereas post-thresholding,

5 cells were pruned as unknown with the remaining 100% (21/21)

of cells correctly identified (data not shown but see Table 1). As the

decision-tree algorithm was not built to include mossy fibres or

Purkinje cells and since we were not able to obtain data from

identified unipolar brush cells we could neither compare nor

assess, respectively, performance of our GPC with these cell types.

Note that in our comparison of the decision-tree algorithm and

our GPC models we do not include ’unknown cells’, although with

the selection of an arbitrary probability threshold, cells with

confidence estimates below this threshold would be rejected as

unknown. Therefore, considered overall (i.e. for Golgi cells,

granule cells and basket/stellate cells, but excluding Purkinje cells

and mossy fibres), the decision-tree algorithm correctly identifies

47.8% of cells (44/92 ) or 62.0% (44/71) when disregarding

unknown cells. In comparison our models (which include Purkinje

cells and mossy fibres but not unipolar brush cells) offer 92.7% and

99.2% accuracy for the molecular- and granular layers, respec-

tively. We show that the decision-tree algorithm performs poorly

in classifying Golgi cells and granule cells, despite having been

designed to classify these cell types. Furthermore, we show that the

probability-thresholding offered by our GPC approach leads to the

pruning of cells close to the equi-probable decision boundaries

between cell classes, thereby improving the overall quality of the

classifications that are retained.

Cross-species Comparison of MSF-ENT
Given the conservation of cerebellar interneurone features

between species [48–51] we applied our GPC models to datasets

obtained from laboratories examining other species. These

included identified granule cells recorded in the paraflocculus of

Figure 4. Decision-tree algorithm performance with identified
neurones across mice, rats and cats. Following the format used by
Ruigrok et al. (2011), A compares the classifications our of GPC model
with those of the decision-tree algorithm. The left and middle columns
show the outcomes of our GPC classification taking all cells without
probability-thresholding (left) or with an arbitrarily chosen probability
threshold of (p.0.7; middle column) thus some cells were classified as
’unknown’ cells (c.f. the Ruigrok decision-tree outputs). The right
column shows the results of our datasets when classified using the
Ruigrok decision-tree. The numbers within the pies indicate the number
of cells that were classified correctly, incorrectly and as ’unknown’ cells
(i.e. cells for which no decision is taken). In general, the decision-tree
algorithm was less accurate than our GPC model, although note that
neither mossy fibres nor Purkinje cells were built in to the decision-tree
algorithm. B shows data from a small set of identified granule cells
recorded in the anaesthetised mouse, leading to 80% classification
accuracy. C shows similar data for identified granule cells (inset shows
confocal reconstructions of juxtacellularly labelled granule cells) and

Golgi cells recorded in the decerebrate cat, leading to 100%
classification accuracy. Following the same format as in A, we compare
mouse and cat data using our GPC model and the decision-tree
algorithm. Generally lower levels of accuracy were achieved by the
decision-tree algorithm.
doi:10.1371/journal.pone.0057669.g004

Table 1. Classification accuracy for GPC vs. decision-tree
algorithm.

Cell Class GPC (raw) GPC (p.0.7) Decision-tree

Rat Golgi cells (n = 50) 100 100 (n = 46) 63

Rat Granule cells (n = 21) 100 100 (n = 20) 39

Rat Basket/Stellate cells (n = 21) 90 89 (16/18) 87

Rat Mossy fibres (n = 23) 100 100 (n = 21) n/a

Rat Purkinje cells (n = 26) 96 100 (n = 21) n/a

Cross-species comparison

Mouse Granule cells (n = 5) 80 100 (n = 4) 66

Cat Golgi cells (n = 11) 100 100 (n = 10) 100

Cat Granule cells (n = 16) 100 100 (n = 13) 64

Numbers indicated are %-accuracy calculated excluding unknown cells.
Numbers in parentheses indicate sample size for each cell class; note that for
the probability-thresholded GPC sample sizes decreased as cells were excluded
as unknown.
doi:10.1371/journal.pone.0057669.t001
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anaesthetised mice [24], identified granule cells and Golgi cells

recorded in lobule IV/V in decerebrate cats [10]. Projecting the

mouse granule cells into the granular layer MSF-ENT model

yielded 80% accuracy (4/5 cells correct) with the mistaken cell

lying close to the granule cell - Golgi cell decision boundary

(Figure 4B, cell entropy = 7.34, decision boundary entropy = 7.41,

probability [Golgi cell class] = 0.57). Similarly, for the identified

cat cells our model yielded 100% accuracy (Figure 4C; inset

panels; 27/27 cells correct). These findings indicate that the rat-

based decision boundaries generalise to mice and cats, at least for

granule cells and Golgi cells.

Assessing our awake animal datasets represents an ideal

benchmark since neither the decision-tree algorithm nor our

own models were built using these datasets. In this regard, the

decision-tree algorithm generally performed with lower accuracy

in the anaesthetised mouse and decerebrate cat preparations

(Table 1 & Figure 4D; c.f. rat data Figure 4A). Our approach thus

holds the promise of offering experimenters a means of

standardising the classification of neurones between laboratories

and across species, with a probabilistically determined means of

accepting/rejecting each individual classification.

Application to Awake Animal Preparations
Although our model performs well in classifying neurones in

anaesthetised and decerebrate preparations, ideally its most

powerful application would be in the classification of neurones

in awake animals, where the opportunities for obtaining ground-

truth identification are often severely limited. To this end, we

assessed a variety of datasets composed of granular layer neurones,

which we would expect to include large interneurones such as

Golgi cells, along with Purkinje cells recorded in lobule HVI in

awake rabbits [25], the parafloculus in awake rhesus monkeys

(unpublished data) and the nodulus uvula in awake rhesus

monkeys (unpublished data). In these datasets, where ground-

truth was not available (with the exception of Purkinje cells), we

applied our model to probabilistically identify cells that fall within

a particular MSF-ENT parameter space, i.e. the most Golgi cell-

like units.

Data from ventral parafloculus in awake rhesus monkeys

consisted of 43 granular layer cells (Figure 5A). The GPC model

suggested that 35 of these units (81%) bore a close correspondence

to identified Golgi cells (Figure 5B). Applying an arbitrary

probability threshold (p.0.7) pruned 13 cells as unknown, leaving

27/30 (90%) units as being highly likely to be Golgi cells (unknown

cells excluded). In comparison, the decision-tree algorithm

suggested 7 units as Golgi cells (21% - when unknowns are

excluded).

Alternative data from the nodulus uvula in awake rhesus

monkeys, consisting of 102 granular layer units and 104 Purkinje

cells were analysed in the same way (Figure 5C), with the GPC

suggesting 79/102 (77%) candidate Golgi cells, pruned to 68/84

(81% - unknowns excluded) following probability thresholding. In

comparison, the decision-tree algorithm suggested 13/78 (17%)

candidate Golgi cells. In terms of Purkinje cells, our model

correctly classified 88/104 (85%; un-thresholded) and 50/59

(85%) following probability-thresholding with 45 Purkinje cells

pruned as unknown (Figure 5D). The nodulus uvula dataset also

included 3 non-Purkinje cell units recorded in the molecular layer.

Our molecular layer model misclassified these as Purkinje cells

whilst the decision-tree algorithm suggested 2 of these units were

stellate/basket cells and the remaining unit was a unipolar brush

cell.

Finally, we assessed data obtained from awake rabbits

containing 35 Purkinje cells and 51 granular layer units

(Figure 5E). Our model suggested 48/51 candidate Golgi cells,

with thresholding pruning 11 units as unknown, leaving 40/40

units (100%) considered highly likely to be Golgi cells. The

decision-tree algorithm suggested 5/21 (24% - unknowns exclud-

ed) candidate Golgi cells. In terms of Purkinje cells, the GPC

correctly classified 33/35 Purkinje cells (94%) with probability-

thresholding identifying 17 units as highly likely to be Purkinje

cells (100%) with 18 unknowns (Figure 5F).

In summary, we show how our GPC approach can highlight

subsets of cells bearing the closest similitude to identified cell types,

thereby enabling the experimenter to probabilistically accept or

reject units for further study based on the likelihood of their

belonging to a particular cell class. Although our GPC model is

derived from firing patterns obtained in anaesthetised rats, the

choice of parameters and associated decision boundaries none-

theless appear to generalise well across species and from

anaesthetised to awake animal preparations.

Discussion

Obtaining accurate identification of neurones recorded in

awake animals represents a major barrier to systems and

network-level neuroscience experiments. We have approached

this problem in the cerebellar cortex by developing a probabilistic

model built with data from identified cells. We show that our built

GPC model accurately predicts cellular identity across species in

mice, rats and cats and offers statistical inference of cell type for

putatively classified cells in awake primates and rabbits. We

further show that our probabilistic models provide robust

classification using easily obtainable measures of spontaneous

activity derived from short excerpts of data (60 inter-spike

intervals) enabling classification decisions to be obtained within

rapid experimental-time frames (a few seconds on average) offering

the chance to influence experimental decision-making in awake

animal preparations. Finally, our approach may facilitate inter-

laboratory comparison of datasets by offering a statistical means of

accepting/rejecting cells for further study.

Differentiation between cerebellar cortical cell types using

established criteria usually relies on qualitative descriptions of cell

firing patterns which are not easy to generalise. Whilst the

decision-tree algorithm used by Ruigrok and colleagues (2011)

makes progress toward solving this problem, comparison with our

own cross-species datasets indicates their criteria do not generalise

to preparations beyond their own as the decision-tree algorithm

offered relatively poor classification accuracy for our identified

Golgi cells and granule cells in mice, rats and cats (see Figure 4

and Table 1). This may reflect unique characteristics of the cells

they analysed within the particular cerebellar cortical compart-

ments in the rat (primarily ventral uvula and nodulus) and

flocculus) and rabbit (flocculus). Alternatively, other factors may

account for this mismatch; in the present study, we built our

models with a considerably larger dataset than Ruigrok et al. and

our test data was not used to build our GPC models whereas their

approach is weakened by using the same data to test their model as

was used to build it. It is well known from the machine learning

literature that this is a poor indicator for the generalization

performance on unseen data due to the problem of over-fitting

[52]. Furthermore, the decision-tree classification accuracies

represent only how well cell types can be distinguished by drawing

orthogonal decision lines that ignore any parameter correlations,

and as we show for some cell types (Golgi cells and Purkinje cells),

firing rate and irregularity can be correlated. These factors may in

part explain why the decision-tree algorithm achieved low

performances on our datasets.
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Figure 5. Putative classification of neurones in awake monkeys and rabbits. A, C & E re-plot our GPC decision boundaries and probability
contours, in each case with a selection of granular layer units (blue circles), from the ventral parafloculus of awake monkeys (A), alongside Purkinje
cells in the nodulus uvula of awake monkeys (B) and alongside Purkinje cells in the lobule HVI of awake rabbits (E). Besides each plot, the pie charts
(B, D, F) illustrate the classification decisions arising from the un-thresholded GPC (left column), the p.0.7 thresholded GPC (middle) and for
comparison, the decision-tree algorithm (right) for both the granular layer units and where appropriate, the Purkinje cells (i.e. decision-tree algorithm
cannot deal with Purkinje cells). For the granular layer, all classifications remain putative and in this setting the GPC highlights cells with, for example,
the most Golgi-like firing patterns. In comparison, the decision-tree algorithm in all cases suggests that a subset of the granular layer neurones are
molecular layer cells (c.f. Figure 5B, 5D & 5F).
doi:10.1371/journal.pone.0057669.g005
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Unfortunately, due to scarcity/absence of reported recordings

from some of the rarer/harder to obtain types of cerebellar

neurones we were not able to assess data from unipolar brush cells,

Lugaro cells, globular cells and other types of mossy fibre units,

which can have firing patterns different from our regular-firing

mossy fibres [6,12,23,32]. Further, not all cells are spontaneously

active thereby precluding their inclusion in our analysis; many

granule cells are inactive at rest in vivo, nonetheless this can aid in

their identification [6,9–11,24]. We still rely in part on spike-shape

information for the identification of mossy fibre terminals

[4,10,32,35]. However, our method does not require convoluted

quantitative measurement of spike-shapes [14–16] thereby reduc-

ing the analysis burden and avoiding non-trivial comparisons

between laboratories/measurement style. In this regard, our GPC

model can accurately distinguish Purkinje cells from other cell

types without the need for the experimenter to detect/assess

complex spike discharges which are known to be labile [46,47].

Although our approach includes Purkinje cells and mossy fibres,

which were not examined by Ruigrok et al. [9], Purkinje cells can

be incorporated in to the decision-tree algorithm as shown by

Hensbroek et al. [53] although the parameters for this new arm of

the algorithm were not available to us; using our own data we

found that in its published form the decision-tree algorithm near

uniformly misclassifies Purkinje cells as stellate/basket cells.

The success of our approach relies on combining two easily

computed parameters - mean spike frequency and spike-train

irregularity measured using log-interval-entropy. Log-interval-

entropy has been previously employed to measure neuronal

activity in the neuroendocrine system [54–57] and in the

subthalamic nucleus of Parkinsonian patients [58]. Logarithmic

transformation of inter-spike intervals affords several advantages;

firstly it reduces the effect of long-ISIs on the standard deviation,

thus unlike the CV, entropy does not weight long-ISIs at the

expense of short-ISIs due to the inherent asymmetry in ISI

distributions (since CV is sensitive to ISIH skewness). Secondly,

entropy also provides accurate estimates of irregularity with small

data sets [54,59], in our case producing reliable models using 60

ISIs. Thirdly, entropy is independent of the units used to measure

time, for example arbitrary time-binning used to measure firing

rate, thus for individual cells it quantifies firing irregularity in a

manner statistically independent from firing rate. For a Poisson

process, the log-interval-entropy is also independent of frequency

because it is constant (,7.9 bits using a 0.02 ln time resolution

[39]), thus entropy also measures the maximal amount of

information that each spike may encode [60]. In this regard, it

is noteworthy that average entropy values for granule cells were

8.0960.08 bits/spike (rats: mean 6 standard error; see Figure 2H)

thus these cells, via their interaction with excitatory mossy fibres

and inhibitory Golgi cells, may be optimised for maximal coding

capacity [23]. In contrast, average Purkinje cell entropy (rats:

5.9260.1 bits/spike), Golgi cell entropy (rats: 6.3060.08 bits/

spike) and molecular layer cells (rats and cats: 7.137160.61 bits/

spike; see Figure 2P) suggest overall lower coding capacities per

spike. This might arise through the considerable synaptic

convergence these cell types receive from granule cells [61].

Furthermore, Purkinje cells and Golgi cells have auto-rhythmic

spike-generators leading them to be spontaneously active in vitro

[62,63] and it is likely that this serves to ’regularise’ spike-timing,

producing lower entropy values; a perfect metronome has zero

entropy. This may also partly account the strong correlation

between firing rate and entropy observed for Purkinje and Golgi

cell populations which suggests the more potent influence of the

refractory period may limit spike-timing at higher rates (c.f.

negative rate-CV relationship [64,65]); in this regard Golgi cells

have prolonged spike after-hyperpolarisations [63].

Our cross-species comparisons highlight the broad relevance of

our criteria to a variety of animals. In part, this may arise due to a

degree of conserved homology between species [48–51] and in

part due to our use of urethane anaesthesia which is reported to

act via background potassium leak channels thus leaving synaptic

transmission intact [66,67] and therefore, to some extent, perhaps

mimics the non-anaesthetised state; in this regard, the decerebrate

cat data showed a striking correlation with the rat data. None-the-

less, our mouse granule cells were recorded under ketamine-

xylazine [24] which depresses granule cell transmission [68] but

despite this our model nonetheless captures the key features of

granule cell spontaneous activity. Considering the more challeng-

ing datasets obtained from awake primates and awake rabbits, no

ground-truth was obtained for the non-Purkinje cells and our

approach requires that experimenters delineate cell layers within

the cerebellar cortex, however this is relatively straight-forward

since the molecular layer is characterised by the presence of

climbing fibre signals which can be observed in the local-field-

potential signal in both anaesthetised and awake animals [25],

along with monitoring the crossing of Purkinje cell layers

[5,7,22,28,69] recordings can be attributed to the granular layer

with a high degree of confidence. In both awake primate and

rabbit preparations there is a general increase in mean spike

frequency for all cell types (right-ward shift in datasets), consistent

with some degree of activity suppression under anaesthesia/

decerebration (c.f. Figure 2H & Figure 5A, 5C & 5E), thus re-

building of the GPC model incorporating the identified Purkinje

cells would likely improve the positioning of the decision-

boundaries and thus robust statistical grouping of cells. Nonethe-

less, probability-thresholding aids in reducing the ’blur’ between

granular layer cells and Purkinje cells in our awake monkey data

(see Figure 5C & 5D) and so although the absolute decision

boundaries may not be optimal, their tolerance is increased by

thresholding thus our model was able to highlight those cells

bearing the highest similarity to identified cell classes and in this

way enable the experimenter to choose their preferred level of

confidence in their classifications. We envisage that this approach

will enable experimenters to standardise acceptance/rejection of

cells for further study and facilitate comparisons between datasets

generated in different laboratories.

Our GPC approach can be applied and tested in a variety of

other brain areas, particularly where ground-truth datasets are

available: the emergence of datasets of optogenetically identified

neurones in vivo will substantially facilitate efforts in this direction,

see e.g. [70], as will the advent of methods for accomplishing the

gold-standard ground-truth of juxtacellular labelling in freely

behaving animals [71]. The advantages of our GPC approach

make it highly attractive as a future research tool particularly as

mean spike frequency and entropy can be calculated on a spike-

by-spike basis in near real-time providing an online probabilistic

cell classification which in turn could influence experimental

decision-making and guide future brain-machine interfaces where

real-time single neurone classification is required when decoding

system- or network-level activity.

Supporting Information

Appendix S1 Equations for firing rates, irregularity and
burstiness and hypothesis testing of GPC model param-
eter choice.

(DOC)
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11. Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in

cerebellar granule cells during sensory processing. Nature 428: 856–860.

doi:10.1038/nature02442.

12. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, et al. (2007) High-

fidelity transmission of sensory information by single cerebellar mossy fibre

boutons. Nature 450: 1245–1248. doi:10.1038/nature05995.

13. Garwicz M, Jörntell H, Ekerot C–F (1998) Cutaneous receptive fields and

topography of mossy fibres and climbing fibres projecting to cat cerebellar C3

zone. J Physiol (Lond) 512: 277–293. doi:10.1111/j.1469-7793.1998.277bf.x.

14. Katai S, Kato K, Unno S, Kang Y, Saruwatari M, et al. (2010) Classification of

extracellularly recorded neurons by their discharge patterns and their correlates

with intracellularly identified neuronal types in the frontal cortex of behaving

monkeys. Eur J Neurosci 31: 1322–1338. doi:10.1111/j.1460-9568.2010.

07150.x.

15. Vijayan S, Hale GJ, Moore CI, Brown EN, Wilson M (2010) Activity in the

Barrel Cortex During Active Behavior and Sleep. J Neurophysiol 103: 2074–

2084. doi:10.1152/jn.00474.2009.

16. Lansink CS, Goltstein PM, Lankelma JV, Pennartz CMA (2010) Fast-spiking

interneurons of the rat ventral striatum: temporal coordination of activity with

principal cells and responsiveness to reward. Eur J Neurosci 32: 494–508.

doi:10.1111/j.1460-9568.2010.07293.x.

17. Pinault D (1996) A novel single-cell staining procedure performed in vivo under

electrophysiological control: morpho-functional features of juxtacellularly

labeled thalamic cells and other central neurons with biocytin or Neurobiotin.

J Neurosci Methods 65: 113–136.

18. Van Dijck G, Seidl K, Paul O, Ruther P, Van Hulle MM, et al. (2012)

Enhancing the yield of high-density electrode arrays through automated

electrode selection. Int J Neural Syst 22: 1–19.
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