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Abstract

The mosquito-borne West Nile virus (WNV) causes human and animal disease with outbreaks in several parts of the world
including North America, the Mediterranean countries, Central and East Europe, the Middle East, and Africa. Particularly in
elderly people and individuals with an impaired immune system, infection with WNV can progress into a serious
neuroinvasive disease. Currently, no treatment or vaccine is available to protect humans against infection or disease. The
goal of this study was to develop a WNV-vaccine that is safe to use in these high-risk human target populations. We
performed a vaccine efficacy study in non-human primates using the contemporary, pathogenic European WNV genotype
1a challenge strain, WNV-Ita09. Two vaccine strategies were evaluated in rhesus macaques (Macaca mulatta) using
recombinant soluble WNV envelope (E) ectodomain adjuvanted with Matrix-M, either with or without DNA priming. The
DNA priming immunization was performed with WNV-DermaVir nanoparticles. Both vaccination strategies successfully
induced humoral and cellular immune responses that completely protected the macaques against the development of
viremia. In addition, the vaccine was well tolerated by all animals. Overall, The WNV E protein adjuvanted with Matrix-M is a
promising vaccine candidate for a non-infectious WNV vaccine for use in humans, including at-risk populations.
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Background

West Nile virus (WNV) is a mosquito-borne flavivirus that is

maintained in an enzootic transmission cycle between avian hosts

and mosquito vectors, but WNV can also be transmitted to

humans and other mammals [1]. Infection in humans is

asymptomatic in most cases, but in about 20% of infections it

presents as West Nile fever (WNF), and in less than 1% of cases,

mainly in elderly and immunosuppressed individuals, as West Nile

neuroinvasive disease (WNND) [1].

In recent years, WNV infection has become a public health

concern in Europe because of the increasing number of human

outbreaks with severe neurological consequences and mortality [2–

7]. In addition, WNV has continued to cause large epidemics in

North America, such as those that occurred in Dallas, Texas, in

2012 [8].

Seven different phylogenetic lineages of WNV have been

described so far [9,10], but only WNV lineages 1 and 2 have been

associated with disease in humans. The different WNV lineages

are genetically related, and show 75% to 95% nucleotide identity.

In particular, WNV lineage 1 and lineage 2 viruses demonstrate

about 75% nucleotide identity and 94% amino acid sequence

identity [10,11]. Lineage 1 has a worldwide geographic distribu-

tion, and in Europe lineage 1 viruses have been responsible for

human cases of WNND in the Mediterranean countries and

Eastern Europe since the 1950s [10]. Lineage 2 viruses were

originally found only in sub-Saharan Africa and Madagascar, but

in 2004 this lineage emerged in Europe, and has spread across the

continent [12]. In 1999, a highly virulent WNV lineage 1 strain
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was introduced into the United States, and rapidly became

endemic throughout the continent, affecting wild birds and

mammals [13]. Moreover, this strain named NY99, caused a

high number of cases of WNF and WNND, leading to

considerable morbidity and mortality in humans.

The increasing number of outbreaks, as well as emergence of

novel strains belonging to both major lineages, emphasizes the

necessity to develop a WNV vaccine [4,5,14,15]. Several WNV

vaccines have been licensed for use in horses, but no vaccine for

human use has been approved yet [16]. A number of WNV

vaccine candidates are currently at different stages of develop-

ment, and make use of recombinant proteins, plasmid DNA

vectors, or chimeric live-attenuated virus approaches [17]. The

majority of these vaccines are based on the WNV envelope (E)

protein. Either E protein in its native form, a truncated subunit

protein 80E, the WNV E immunodominant domain III, or

combinations of these compounds are used as immunogens. Most

vaccine candidates have been evaluated in rodents [18–21], but

such studies may have limited prognostic value for its efficacy in

humans given the significant differences in B and T-cell repertoire

between both species.

Because of their genetic relatedness to humans, and their

relative susceptibility to WNV infection, rhesus macaques may

provide a better animal model for the evaluation of the

immunogenicity and efficacy of prototype human WNV vaccines.

Candidate WNV vaccines that have been tested in non-human

primates include recombinant chimeric yellow fever virus or

dengue virus as backbone expressing WNV structural genes [22–

27], or adjuvanted recombinant E protein [24]. Because of the

high impact on human health after its introduction in North

America, all WNV vaccines that have been tested in nonhuman

primates were based on WNV-NY99, and no data are available of

vaccine efficacy to more distantly related European WNV isolates.

We recently performed an experimental infection study in

rhesus macaques and common marmosets using the European

WNV genotype 1a strain, WNV-Ita09 [28]. Infection in rhesus

macaques resulted in a transient viremia with a peak viral load at

2–3 days post-infection, and the emergence of IgM and IgG

antibodies within 15 days of infection. After clearance of the

viremic phase, WNV was still detectable in tissues like spleen,

axillary and inguinal lymph nodes, which resembles the situation

observed in human infections [29]. Therefore, rhesus macaques

were used in this study to assess vaccine efficacy against the

European WNV-Ita09 strain.

Neutralizing antibodies are associated with protection against

WNV infection [30,31], whereas T-cells contribute to clearance of

infection [32,33]. Because the E protein of WNV is a primary

target for CD8 T-cells [34] and neutralizing antibodies [35], we

selected it for use in a human WNV subunit vaccine. The

immunogens used in our study were derived from the WNV-NY99

strain, and were either the ectodomain of the WNV E protein that

was expressed in E. coli [36], or a DNA vector expressing the

WNV E ectodomain [37].

To increase vaccine induced T-cell responses we formulated the

E protein in Matrix-M (Novavax AB). The adjuvant Matrix-M is

composed of a specific purified saponin fraction obtained from the

tree Quillaja saponaria Molina, phosphatidyl choline and

cholesterol, and has been shown to increase the migration of the

antigen towards the draining lymph nodes [38,39]. An additional

strategy to boost the T-cell responses is to prime the immune

system with a DNA vaccine [40]. Here, we used a DNA vector

expressing the WNV E protein in combination with a mannose-

conjugated linear polyethylenimine delivery reagent; WNV-

DermaVir [41,42]. The mannose ligand enhances the delivery

of DNA to cells expressing mannose-receptors, such as macro-

phages and dendritic cells, and thus, promotes antigen presenta-

tion to T-cells [43].

Two different WNV vaccine strategies were evaluated for

immunogenicity and efficacy against WNV-Ita09 challenge. The

first strategy consisted of three immunizations with recombinant E

protein adjuvanted with Matrix-M. The second strategy entailed a

priming immunization with WNV-DermaVir, followed by two

booster immunizations with recombinant E protein and Matrix-

M. Nine weeks after the last immunization the animals were

challenged with the European WNV-Ita09 strain. Both strategies

had been evaluated previously in mice, and in that model induced

neutralizing antibodies and WNV-specific cellular immune

responses [42,44]. Here, in macaques, we observed robust

humoral and cellular responses in both vaccination groups

although the responses were higher in the protein-only immuni-

zation group. Animals in both groups showed consistent vaccine-

induced IFNc responses prior to WNV exposure. After challenge,

all vaccinated macaques were completely protected against the

development of viremia.

Methods

Ethics statement
This protocol was approved by the Institutional Animal Care

and Use Committee (BPRC Dier Experimenten Commissie,

BPRC-DEC; DEC advice #724). The qualification of the

members of this committee, including their independence from a

research institute, is requested in the Dutch law on animal

Experiments (Wet op de Dierproeven, 1996). At the BPRC, all

animal handling is performed within the Department of Animal

Science (ASD) according to Dutch law. A large experienced staff is

available, including full-time veterinarians and a pathologist. ASD

is regularly inspected by the responsible authority (Voedsel en

Waren Autoriteit, VWA), and by an independent Animal Welfare

Officer.

The Council of the Association for Assessment and Accredita-

tion of Laboratory Animal Care (AAALAC International) has

awarded full accreditation to the BPRC. The BPRC is fully

compliant with international demands on animal studies and

welfare as set out by the European Convention for the Protection

of Vertebrate Animals used for Experimental and other Scientific

Purposes, Council of Europe (ETS 123 including the revised

Appendix A), Dutch implementing legislation, and the Guide for

Care and Use of Laboratory Animals.

The rhesus macaques (Macaca mulatta) used in this study were

captive-bred for research purposes and housed socially at the

Biomedical Primate Research Centre (BPRC) in Rijswijk, The

Netherlands. BPRC facilities comply with Dutch law on animal

experiments (Wet op de Dierproeven, and its adaptations as

published in the Staatscourant), the European Council Directive

86/609/EEC, as well as with the ‘Standard for humane care and

use of Laboratory Animals by Foreign institutions’ identification

number A5539-01, provided by the Department of Health and

Human Services of the United States of America’s National

Institutes of Health (NIH).

During the experiment, the animals were pair-housed in a

BSL3-facility with spacious cages and were provided with

commercial food pellets supplemented with appropriate treats.

Drinking water was provided ad libitum. Enrichment was provided

in the form of pieces of wood, mirrors, food puzzles, a variety of

other home-made or commercially available enrichment products.

Animals were monitored daily for health and discomfort.

WNV Vaccine in Rhesus
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All steps were taken to ameliorate the welfare and to avoid any

suffering of the animals. All experimental interventions (immuni-

zations, intradermal injection of WNV, blood samplings) were

performed under anesthesia using ketamine. Before euthanasia,

animals were first sedated deeply with ketamine, and subsequently

euthanized by intracardiac injection of an overdose of pentobar-

bital.

Animals
Eighteen rhesus macaques (Macaca mulatta) were used in this

study. All monkeys were adult animals, ranging in age from 5 to

12 years. The animals were in good physical health with normal

baseline biochemical and hematological values. At the start of the

study, the animals tested negative for antibodies to WNV. To

prevent sex, age and weight bias, the animals were assigned

randomly to different treatment groups.

Vaccines
The ectodomain of the E protein (amino acid residues 1 to 404)

of WNV-NY99 was cloned into the bacterial expression plasmid

the pET21a, expressed in E. coli and purified as described

previously [36]. This antigen was formulated Matrix-M, a mixture

of 40 nm particles formed by two separate saponin fractions, i.e.

Matrix-A and Matrix-C (Novavax AB, Uppsala, Sweden) [38].

WNV-DermaVir nanoparticles, containing a WNV DNA vaccine

that expresses the ectodomain of WNV E protein, were prepared

as previously described [42,45].

Experimental set up
A schematic outline of the study is given in Figure 1. The

animals in group 1 were immunized via three consecutive

intramuscular (IM) injections of 20 mg WNV-E mixed with

25 mg Matrix-M at weeks 0, 3 and 6. The animals in group 2

received 100 mg WNV-DermaVir at week 0, given as 8

intradermal injections of 100 ml each in the upper back.

Subsequently, the animals were boosted twice at weeks 3 and 6

with 20 mg WNV-E mixed with 25 mg Matrix-M. Nine weeks after

the last immunization, all animals, including those in the infection

control group (group 3), were challenged by an intradermal

injection in the upper back of 26105 TCID50 of WNV lineage 1a

strain Ita09 [46] in 100 ml saline. This dose was found previously

to productively infect rhesus macaques [28]. After WNV infection,

the animals were observed daily for general condition, appetite,

and stool until the end of the study, i.e. 14 days post-challenge.

During the immunization period, blood was collected using

standard aseptic methods from the femoral vein at the start of the

study, two weeks after each immunization, 5 weeks after the last

booster immunization, and at challenge (week 15) for determina-

tion of biochemical and hematological parameters, and for the

analysis of vaccine-induced humoral and cellular immune

responses. After challenge, 0.5 ml blood samples were collected

on a daily basis until euthanasia for viral load determination using

real-time RT-PCR. Additional, larger blood volumes were

collected at days 3, 7, and 14 post challenge for hematological

and biochemical analysis, and for the evaluation of WNV-specific

humoral and cellular immune responses.

Biochemistry and hematology
A panel of hematological parameters, i.e. white blood cell count

(WBC), red blood cell count (RBC), hemoglobin, hematocrit,

mean cellular volume (MCV), mean corpuscular hemoglobin

(MCH), platelets, neutrophils, lymphocytes, monocytes, eosino-

phils and basophils, was analyzed in peripheral blood using a

Sysmex XT-2000iV Automated Hematology Analyzer (Sysmex

Nederland B.V., Etten-Leur, The Netherlands). Biochemical

analysis, i.e. creatinine, urea, bilirubin, gamma-glutamyltransfer-

ase (cGT), aspartate aminotransferase (AST), alanine aminotrans-

ferase (ALT), alkaline phosphatase, lactate dehydrogenase (LDH),

iron, albumin, total protein, cholesterol and glucose, was assessed

using a COBAS Integra 400 plus system (Roche Diagnostics

Nederland B.V., Almere, The Netherlands).

Characterization of humoral immune responses
WNV-specific antibodies in EDTA-plasma were detected by

ELISA. Briefly, 96-well microtiter plates were coated overnight

with 400 ng of the ectodomain of the WNV-NY99 E protein [36],

or with 500 ng of hydrogen-peroxide-inactivated WNV-NY99

[47]. The coated plates were incubated for 2 h with 1:50 diluted

EDTA plasma, followed by 1 hr incubation with HRP-conjugated

goat-anti-human IgG (Thermo Fisher Scientific, Schwerte,

Germany). After washing, TMB-substrate (BioLegend, Fell,

Germany) was added to the wells and the plate was incubated

for 30 min at room temperature in the dark. Then, 1 M H2SO4

was added to stop the reaction and plates were measured at

Figure 1. Study outline. Schematic representation of the study with two West Nile virus vaccine strategies. Group 1 received three immunizations
with recombinant E protein adjuvanted with Matrix-M (red triangles) at indicated study weeks. Group 2 received one immunization of WNV-DermaVir
(green triangle), followed by two immunizations with recombinant E protein adjuvanted with Matrix-M (red triangles). Nine weeks after the last
immunization, all animals (including controls) were challenged intradermally with 26105 TCID50 of WNV-Ita09. All animals were euthanized 14 days
post-challenge (study week 17).
doi:10.1371/journal.pone.0112568.g001
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450 nm and 520 nm (reference wavelength) in an ELISA Reader

(Infiniti M200, Tecan, The Netherlands).

To determine the in vitro neutralizing capacity of sera from

vaccinated macaques, plaque-reduction neutralization tests

(PRNT50) were performed essentially as described in the

Guidelines for plaque reduction neutralization testing of human

antibodies to dengue virus (World Health Organization, 2007).

Heat-inactivated EDTA plasma samples taken at various time

points were serially diluted and mixed with 25 TCID50 of WNV-

Ita09 (lineage 1), or WNV-AUT08 (lineage 2), before addition to

adherent Vero cells. Cytopathic effect (CPE) was visualized using a

standard microscope, and the TCID50 was calculated using the

Karber formula [48].

Determination of cell-mediated immune responses
Cell-mediated immune responses were determined in peripheral

blood mononuclear cells (PBMCs) isolated from EDTA-treated

blood. PBMCs were tested for WNV-specific secretion using

WNV-E protein in ELIspot assays according to the manufacturers’
guidelines (U-CyTech, Utrecht, The Netherlands). ELIspot assays

were performed on freshly isolated cells at weeks 0, 2, 5, 8, and

11.

To obtain more detailed information on the quality of WNV-

specific responses, intracellular cytokine staining (ICS) was

performed. Frozen PBMCs, isolated at weeks 0 and 15 were

thawed, and intracellular staining was performed as described

previously [49] using a panel of monoclonal antibodies; LIVE/

DEAD-Aqua (Life Technologies, Grand Island, NY), CD3-AF700,

CD8-V500, CD4-PE-Cy7 and IFNc-PE (all Becton, Dickinson

B.V., Breda, The Netherlands). Fluorescence was measured using

a FACS LSR2 (Becton, Dickinson and Company, Breda, The

Netherlands). Data were analyzed with FlowJo software, version

9.6.4 (Tree Star, Stanford University, USA).

Virus detection in blood and tissue
Viral loads were determined in EDTA-plasma by quantitative

real-time RT-PCR as previously described [28,50]. To determine

the presence of WNV in tissue samples, 1 mg of snap frozen tissue

was added to 1 ml RPMI and was dissociated using a

gentleMACS dissociator (Miltenyi Biotec B.V., Leiden, The

Netherlands). The homogenate was centrifuged for 10 min at

8206 g at room temperature, and the supernatant was filtered

through a 40 mm filter. Viral RNA was isolated from 140 ml of

filtered homogenate with the QIAamp Viral RNA Mini Kit

(QIAGEN Benelux BV, Venlo, the Netherlands), and was

subsequently analyzed by PCR, as described previously [28].

Necropsy
Monkeys were euthanized by infusion of pentobarbital

(Apharma, Duiven, The Netherlands), and full necropsy was

performed. Based on the dissemination data of WNV obtained

from an earlier experimental infection study [28], samples were

collected from the following organs for PCR analysis; axillary

lymph nodes (ln), inguinal ln, mesenteric ln, spleen, urinary

bladder, kidney, cerebellum and hippocampus. All samples were

snap frozen for WNV-RNA determination.

Statistical analysis
Data obtained with the two vaccine strategies were analyzed

and compared using an unpaired t-test in GraphPad Prism version

6.0.

Results

Induction of antibody responses against WNV by both
vaccine strategies

Both vaccines were well tolerated by the animals and no local

reactions were observed after immunization.

Induction of WNV-specific IgG was measured two weeks after

each immunization, and 4 weeks before WNV challenge

(Figure 1). After the first immunization, very low levels of anti-

WNV E IgG were detected (sample:negative ratio (S/N) ,40) in

only one macaque of the protein-only group (group 1)

(Figure 2A). After the second protein immunization, 5 of 6

animals from group 1 showed high IgG titers directed against the

ectodomain of E, although one animal failed to develop a response

that exceeded background levels. In all group 1 animals the IgG

response was boosted after the third protein immunization, and

remained stable until at least week 11 (one animal was not tested at

this time point). In animals of group 2, which first received a DNA

vaccine prime followed by two protein booster immunizations, no

detectable antibody responses were observed at two weeks after the

DNA immunization. After the first E protein boost the levels of E-

specific IgG were significantly higher in comparison to the group 1

animals after a single protein immunization, which indicates a

priming effect of the DNA vaccine. After the second protein boost

the antibody titers in DNA-protein group reached levels that were

comparable to those measured in the protein-only group. As

expected, no E-specific IgG levels were detected in the control

animals prior to WNV challenge. The specificity of the WNV-E

protein-specific IgG responses was confirmed by using inactivated

whole virus as capture antigen in ELISA (Figure 2B).

Vaccine-induced neutralizing antibodies (VN) against WNV

were measured using a plaque reduction assay on Vero cells in

plasma samples collected at week 0 and week 11. No VN were

detectable at the start of the immunization period, but plasma

samples collected 5 weeks after the third immunization (week 11)

inhibited the infectivity WNV-Ita09, with individual VN titers

ranging from 1/3,698 to 1/48,000 (mean value 17,805) in group

1, and from 1/1,567 to 1/21,657 (mean value 12,534) in group 2

(Figure 2C). Vaccine-induced neutralizing antibodies cross-neu-

tralized the lineage 2 WNV strain AUT08 with titers ranging from

1/2,828 to 1/160,00 (mean value 6,822) in group 1 animals, and

ranging from 1/1,414 to 1/16,000 (mean value 5,771) in group 2

animals (Figure 2C). None of the animals in the control group

showed neutralizing capacity against the lineage 1 or lineage 2

WNV isolates tested.

CD8 T-cell responses in macaques elicited by WNV
vaccines

To determine the cellular immunogenicity of the two WNV

vaccine strategies, IFNc ELIspot assays were performed on

isolated peripheral blood mononuclear cells (PBMCs)

(Figure 3A). Two weeks after the first immunization, a significant

difference was observed between the number of spot-forming units

(SFU) observed in PBMC from animals that received a protein

immunization (70 to 82 SFU per million PBMC) or a DNA

immunization (28 to 77 SFU per million PBMC) (p = 0.001). Two

weeks after the second immunization, WNV-specific IFNc
responses in both groups were boosted to 155 to 487 SFU in

macaques of group 1, and 47 to 117 SFU in the group 2 animals

(p = 0.023). The final immunization further augmented the

number IFNc secreting cells in peripheral blood in both vaccine

groups, with a more robust response in group 1 animals compared

to group 2 (median values of 400 and 274 SFU, respectively,

p = 0.0008). Three weeks later, minor changes were observed in

WNV Vaccine in Rhesus
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the number of IFNc-secreting cells in the different groups.

Macaques of group 1 still showed significantly higher number of

IFNc-secreting cells compared to animals belonging to the DNA-

protein group (p = 0.0001).

To determine if IFNc was produced by CD4 T-cells, or by CD8

T-cells, ICS was performed on cells collected at weeks 0 and 15.

Cells within the lymphocyte gate were selected based on the

expression of CD3 (Figure S1). Next, CD4 T-cells and CD8 T-

cells were analyzed for their intracellular expression of IFNc. At

week 15, the day of WNV challenge, IFNc was produced by both

CD4 (Figure 3B), and CD8 (Figure 3C) T-cells in all animals of

group 1. This was not observed in the macaques that received the

WNV-DermaVir priming immunization, followed by two protein

immunizations (group 2). In this group, 2 of 6 animals had IFNc-

producing CD4 T-cells, and only one animal had IFNc producing

CD8 T-cells.

Determination of WNV vaccine efficacy in rhesus
macaques

At week 15, all of the animals were challenged intradermally

with 26105 TCID50 of WNV lineage 1a strain Ita09. During the

14-day observation period, none of the macaques showed any

behavioral changes or health complications. In addition, no

changes in rectal body temperature (Figure S2), hematological

and biochemical parameters were seen, suggesting that all animals

remained clinically healthy during the 2-weeks post-challenge

follow-up.

Figure 2. Vaccine-induced antibody responses. Antibodies reactive against (A) the ecto-domain of the WNV E protein, and (B) inactivated WNV
were measured in the individual animals at indicated time points. Humoral responses were quantified as sample:negative ratio (S/N). Vaccine-induced
neutralizing capacity (PRNT50) of macaque sera was determined using the plaque reduction neutralization test (C). Individual animals are depicted as
dots: group 1 (red), group 2 (green), and group 3 (blue). The median value is indicated for each group. Unpaired t-test was used to compare the
responses between the groups. Statistical significant differences were defined as p,0.05 and are indicated with arches in the figure.
doi:10.1371/journal.pone.0112568.g002
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The protective capacity of both WNV vaccine strategies was

assessed by measuring WNV RNA levels in plasma from the

macaques by real-time RT-PCR, and in solid tissues by diagnostic

PCR. All vaccinated macaques remained negative for WNV in

plasma during the entire follow-up period. In contrast, one day

after intradermal infection with WNV, 4 of 6 non-vaccinated

controls had become positive for WNV (7.700 to 58.000 RNA

copies/ml plasma) (Table 1). Two days post-challenge, 5 of 6

control animals were positive for WNV RNA. By day 6 after

infection, none of macaques had measurable levels of WNV RNA

in peripheral blood. In animal R08058, one of the macaques in the

non-vaccinated control group, viral RNA was not detected in

peripheral blood at any of the time points tested.

In addition to quantifying WNV by real-time PCR, we tested

the plasma taken at 1 to 5 days after WNV exposure for the

presence of infectious WNV particles. Plasma of EDTA-treated

blood samples was serially diluted, and cultured for 7 days on Vero

cells. Only plasma from R03027 (a non-vaccinated control)

collected 3 days after WNV exposure caused CPE in Vero cells.

Based on a standard curve analysis, the virus titer in this sample

was calculated 144 infectious particles per ml of plasma. Sequence

analysis confirmed that the CPE in Vero cells was caused by

WNV-Ita09 infection.

WNV tissue distribution in vaccinated and non-
vaccinated rhesus macaques

In contrast to the control animals, the vaccinated animals did

not show plasma viremia despite exposure to WNV. To assess if

the vaccine strategies employed in this study conferred sterilizing

immunity, we performed PCR analysis on solid tissues that were

collected at euthanasia, 14 days post-challenge. Figure 4 shows

the data obtained by qualitative real-time PCR and a nested PCR

assay performed on selected tissue samples. WNV RNA was

detected in the peripheral lymph nodes (axillary, inguinal or

mesenteric ln) from 5 out of 6 non-vaccinated controls. Notably,

WNV RNA was also present in the peripheral lymph nodes of

animal R08058, the only control that did not show WNV RNA in

plasma. In the unvaccinated macaque R03027, although WNV

RNA was present in plasma, we did not find WNV RNA in

peripheral lymph nodes. In the spleen of this animal, however, the

nested PCR assay did detect WNV RNA. The spleen tested

positive for WNV RNA in all 6 control animals in at least one of

the two PCR assays used. In contrast, WNV RNA was detected in

the spleen of 2 out of 12 vaccinated rhesus macaques, including

one animal from each of the groups (R06024 and R07121).

The kidney and urinary system have been suggested as potential

target organs for WNV infection in humans [2,51]. Here, only two

control animals tested positive for WNV RNA in the urinary

bladder (R01034) or kidney (R02085). Because WNV disease is

Figure 3. Vaccine-induced T-cell responses. A. IFNc-secreting cells in blood of the individual animals measured in ELISpot. The responses are
presented in spot-forming units (SFU) per million PBMCs. The WNV-specific T-cell responses were calculated by subtraction of the background
responses (mean value of triplicate assays plus two times the standard deviation, minus medium alone). Intracellular staining of IFNc produced by
CD4 T-cells (panel B), and CD8 T-cells (panel C). Background IFNc-responses (number of IFNc-producing cells with medium alone) were subtracted.
Individual animals are depicted as dots: group 1 (red), group 2 (green), and group 3 (blue). The median value is indicated for each group. Unpaired t-
test was used to compare the responses between the groups. Statistical significant differences were defined as p,0.05.
doi:10.1371/journal.pone.0112568.g003
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associated with neuroinvasion, different parts of the brain [29], the

cerebellum, the hippocampus, the brain stem, and the parietal

cortex, were tested. WNV RNA was observed in cerebellum of

control animal R05066, and in the hippocampus of 2 control

monkeys, i.e. R02085 and R05066.

Discussion

Since its introduction in 1999 into the USA, and the subsequent

spread into the New World, WNV has emerged as a serious threat

to public health. This opinion is confirmed by an increasing

incidence of WNV infections in South-East Europe caused by

lineage 1 and 2 WNV strains. Currently, no antiviral treatment or

vaccine is available to protect humans from WNV infection. In our

study, two WNV vaccine strategies (protein prime + protein boost

and DNA prime + protein boost) fully protected monkeys against

the development of viremia. Although sterilizing immunity was not

achieved, only 3 of 12 vaccinated macaques were positive for

WNV RNA in one or more solid tissues compared to 6 out of 6

challenge controls.

This project aimed to develop a vaccine against WNV that is

safe for use in the high-risk human target populations, elderly

individuals and those having a compromised immune system. Our

prototype WNV vaccines were composed of antigens that are safe

to use, as they are well-characterized recombinant components

(proteins, DNA) that lack the ability to replicate. In preparation of

the monkey study, the individual antigens, in combination with

DermaVir and Matrix-M, showed safety, immunogenicity, and

efficacy in rodents [42,44].

Protein-based vaccines can efficiently protect against a number

of viruses by eliciting antibodies, while priming the immune system

with a DNA vaccine has been shown to induce CD8 T-cell-

mediated immunity [40]. The correlate of protection against

WNV infection has not been fully elucidated although CD8 T-cell

and WNV-specific antibody responses are associated with

protection from disease or infection [31,32]. The ectodomain of

the E protein is highly immunogenic and contains multiple CD8

and CD4 T-cell epitopes [52–54], and was consequently the

immunogen of choice in our study. The combination of WNV-E

adjuvanted with Matrix-M potently induced WNV-specific IgG

antibodies in the macaques, even after the first immunization. In

contrast, anti-WNV IgG was not observed after the priming

immunization with the WNV-DermaVir nanoparticles. However,

when WNV-DermaVir was combined with protein/Matrix-M

booster immunizations, a priming effect on the humoral immune

responses was seen. In mice, De Filette et al. [42] also

demonstrated that WNV-DermaVir immunization failed to

induce a measurable humoral immune response by itself, but

upon protein boosting, DNA-vaccinated mice showed a marked

increase in IgG and neutralizing antibody titers against WNV. In

addition, mice that were given a WNV-DermaVir priming,

followed by a protein boost had a higher amount of IL-4 and

IFNc-producing cells than mice that were given protein immu-

nizations alone. This contrasts with our findings in the rhesus

macaques. No evidence was found for an improved CD8 T-cell

response due to the WNV-DermaVir priming. However, though

the numbers were modest, a CD8 T-cell response was induced in

the animals that received the WNV-DermaVir prime while a clear

IFNc producing CD8 T-cell population was shown in all animals

from group 1 prior to the challenge. It is conceivable that the

limited effect of the DNA priming immunization was caused by

use of a too low dose. Others, using 5 to 10 times more DNA than

the 100 mg DNA used in this study, did detect a strong priming

Figure 4. Detection of West Nile virus in tissue samples. Tissue samples were analyzed for the presence of WNV RNA by qualitative real-time
PCR (red) or a nested PCR assay (orange).
doi:10.1371/journal.pone.0112568.g004
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effect on the immune system of rhesus macaques that resulted in

higher and broader T-cell responses [55,56].

We observed cross-protection between North American and

European lineage 1 strains, as the vaccine components were based

on WNV-NY99, and the challenge strain used in the monkeys was

WNV-Ita09 (.99% sequence identity). In mice, E protein/

Matrix-M immunizations also afforded protection against lethal

challenge with a lineage 2 strain of WNV [44]. This was not

evaluated in vivo in macaques, but in vitro assays for detection of

virus neutralizing IgG showed cross-neutralization of the lineage 2

WNV-AUT08 strain. This is likely because of the conservation of

dominant neutralizing epitopes in different regions of WNV E

protein between lineage 1 and 2 strains [57].

At present, our results do not tell us which WNV vaccination

strategy is best. Both induced complete protection against viremia,

but failed to induce sterilizing immunity against intradermal

challenge. Although it is speculative, the vaccine may have failed

to achieve sterilizing immunity because of the relatively high

challenge dose used. Depending on the mosquito species, the dose

of WNV inoculated by one mosquito during blood feeding varies

between 104 and 105 PFU [58], and thus the 2.105 TCID50

challenge dose may have been relatively high.

Several WNV vaccines have been clinically evaluated [59].

Chimeric virus approaches, based of the yellow fever vaccine

strain YFV-17D or using dengue virus as viral backbone, showed

good immunogenicity in healthy volunteers, but may be

unacceptable for vaccine-licensing because of the risk of residual

pathogenicity, or reversal to pathogenicity in the human immune-

compromised target populations. Safer vaccines that were based

on naked DNA or protein subunits also showed good immuno-

genicity and induction of neutralizing antibodies in clinical phase I

trials, and may therefore be better alternatives. In our pre-clinical

macaque model we used a similar subunit and/or DNA vaccine

approach, but instead used a European WNV challenge virus.

Both the protein only and DNA-protein immunization strategies

induced strong humoral and cellular immune responses, and

protected healthy rhesus macaques from WNV infection. In recent

years, human cases on WNF and WNND in Europe were also

caused by WNV lineage 2 viruses, viruses previously thought to be

less pathogenic to humans [60]. It is thus of major importance that

our vaccines also elicited neutralizing antibodies that cross-reacted

in vitro with a WNV lineage 2 strain. It can therefore be

concluded that the vaccines described here are promising

candidates for the further development of WNV vaccines for at-

risk human populations.

Supporting Information

Figure S1 Gating strategy for intracellular IFNc stain-
ing in CD4 and CD8 T-cells. Representative gating strategy to

define intracellular IFNc-staining in CD4 and CD8+ T-cells of

vaccinated rhesus macaques. Cytokine-producing T-cells were

defined as LIVE/DEAD negative and CD3 positive cells. Next,

CD4 positive cells and CD8 positive T-cells were analyzed for

IFNc production.

(TIF)

Figure S2 Rectal body temperatures of rhesus monkeys
during the immunization period and after WNV chal-
lenge. Rectal body temperature (uC) measured at indicated time

points in animals from group 1 (panel A; red), group 2 (panel B;

green), and group 3 (panel C; blue). Median rectal body

temperature (D) per group at indicated days after experimental

WNV infection. Statistically significant differences were defined as

p,0.05 and are indicated with arches in the figure.

(TIF)
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