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A statin-loaded reconstituted high-density
lipoprotein nanoparticle inhibits atherosclerotic
plaque inflammation
Raphaël Duivenvoorden1,2,*, Jun Tang1,3,*, David P. Cormode1,w, Aneta J. Mieszawska1, David Izquierdo-Garcia1,

Canturk Ozcan1, Maarten J. Otten1, Neeha Zaidi1, Mark E. Lobatto1,2, Sarian M. van Rijs1, Bram Priem1,

Emma L. Kuan4, Catherine Martel5, Bernd Hewing6,7, Hendrik Sager8, Matthias Nahrendorf8,

Gwendalyn J. Randolph5, Erik S.G. Stroes2, Valentin Fuster9,10, Edward A. Fisher7,

Zahi A. Fayad1 & Willem J.M. Mulder1,2

Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent

anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to

low systemic bioavailability. Here we present an injectable reconstituted high-density

lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques.

We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect

is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL

nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and

show that they accumulate in atherosclerotic lesions in which they directly affect plaque

macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment

regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen

markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents

a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.
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A
therosclerotic diseases, such as acute myocardial
infarction, are a major cause of death and disability
worldwide (http://www.who.int/cardiovascular_diseases/

en/). Preventive strategies currently focus on controlling risk
factors, such as smoking, blood pressure, serum glucose and lipid
levels1. Despite the success of these preventive measures,
substantial residual risk remains even when treatment goals are
fully met2. In patients who suffered a myocardial infarction, the
recurrence risk of an acute coronary syndrome is high,
particularly within the first year when recurrence rates are up
to 17.4% (ref. 3). A recent study explained this phenomenon by
showing that a systemic response to ischaemic injury aggravates
inflammation in atherosclerotic plaques at a distance because of
increased monocyte (Mo) recruitment4. Mos that infiltrate the
plaque differentiate into macrophages (MFs), which produce
proteolytic enzymes that digest extracellular matrix causing
plaque rupture5. The immediate site of plaque rupture
contains a high concentration of inflammatory cells6. Plaque
inflammation is therefore pursued as a therapeutic target to
prevent atherothrombotic events7.

In the current study, we developed a nanomedicine-based
delivery strategy based on reconstituted high-density lipoprotein
(rHDL) nanoparticles that allow for drug delivery to athero-
sclerotic plaques. As a cargo for our rHDL nanoparticles we
selected a 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGR) inhibitor, or statin. Statins are widely orally prescribed
serum low-density lipoprotein (LDL) cholesterol-lowering drugs
that upregulate LDL receptor expression in hepatocytes8. In
addition to its effect on hepatocytes, various studies have
established the potent immunomodulating effects of HMGR

inhibition in inflammatory cells9–11. In an atherosclerotic mouse
model in which statins did not affect lipid levels, reduced plaque
formation was shown with extremely high doses of oral statin
therapy12. However, in humans increasing the oral statin dose to
attain higher plasma concentrations is not feasible because of the
dose-dependent onset of adverse effects such as hepatoxicity
and myopathy13. Normal doses of orally ingested statins hardly
enter the systemic circulation as biotransformation occurs in the
liver14.

We addressed this issue by developing a statin-loaded rHDL
nanoparticle ([S]-rHDL) that can be administered intravenously,
can augment bioavailability and can facilitate the delivery of
statins to atherosclerotic plaque. We show, in an apolipoprotein
E-knockout (apoE-KO) mouse model of atherosclerosis, that a
3-month low-dose- as well as a 1-week high-dose [S]-rHDL
treatment regimen markedly reduces plaque MF content.

Results
Study summary. A schematic overview of the study design is
shown in Fig. 1. First, we studied the characteristics of [S]-rHDL
and its efficacy in different cell lines in vitro. Subsequently, bio-
distribution and toxicity, as well as uptake by atherosclerotic
plaque MFs, were investigated in mouse models in vivo. Next, we
investigated the in vivo efficacy of a low-dose long-term [S]-rHDL
infusion regimen on plaque development and a short-term high-
dose infusion regimen on plaque regression in apoE-KO mice.

[S]-rHDL characteristics. We constructed [S]-rHDL from
human apolipoprotein A-1 (ApoA1), the phospholipids
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Figure 1 | Schematic of the study design. (a) The targeting dynamics, targeting mechanism and anti-inflammatory action of [S]-rHDL in apoE-KO mice

were investigated by analysing the dynamics of phospholipids and hydrophobic cargos of [S]-rHDL in the blood using NIRF and flow cytometry. The

biodistribution was evaluated in organs with NIRF. (b) Magnetic resonance imaging, NIRF, fluorescence microscopy and flow cytometry were used to

validate the plaque macrophage-targeting efficiency of [S]-rHDL. The effect of [S]-rHDL on the mRNA levels of inflammatory genes of plaque macrophages

was determined in macrophages isolated with laser capture microdissection. Fluorescence molecular tomography and computed tomography were used to

assess the effect of [S]-rHDL on inflammatory protease activity in aortic root plaques. (c) The efficacy of low-dose long-term (12 weeks) [S]-rHDL

treatment on disease progression was evaluated in the abdominal aortas with MRI and in aortic roots with histology. (d) The efficacy of high-dose

short-term (1 week) [S]-rHDL treatment was evaluated in aortic roots with histology.
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1-myristoyl-2-hydroxy-sn-glycero-phosphocholine and 1,2-
dimyristoyl-sn-glycero-3-phosphatidylcholine, in which lipo-
philic simvastatin was encapsulated. This resulted in discoid-
shaped nanoparticles of 25–30 nm in diameter as determined by
dynamic light-scattering and transmission electron microscopy
(TEM) (Fig. 2a, Supplementary Fig. 1, and Supplementary
Table 1). Its exact composition was established by phosphate
determinations and simvastatin measurements using high-per-
formance liquid chromatography (HPLC) (Supplementary
Table 1). Stability experiments with the free drug and the [S]-
rHDL nanoparticle formulation in mouse serum demonstrated
the protective function of the rHDL nanoparticle towards statin
degradation (Supplementary Fig. 2). To allow its visualization in
cells and tissues via imaging techniques, we also synthesized a
variant in which an amphiphilic magnetic resonance imaging
(MRI) contrast agent, gadolinium–diethylene triamine pentaace-
tic acid–distearyl amide and/or fluorescent dyes (Cy5.5, DiO or
DiR) were incorporated (Fig. 2a).

In vitro efficacy of [S]-rHDL. To assess the therapeutic potential
and function of [S]-rHDL, we investigated its anti-inflammatory
effect in vitro. First, we investigated the effect of [S]-rHDL on the

viability of murine MFs (J774A.1) as well as on hepatocytes,
endothelial cells and smooth muscle cells as a function of
incubation concentration and time. Cells were incubated with
rHDL or [S]-rHDL, with statin doses of 1, 10 and 100mM
(Supplementary Fig. 3). MF survival was comparable in the
rHDL- and [S]-rHDL-incubated cells at 6 and 12 h time points,
while MF survival decreased in the [S]-rHDL-incubated cells at
24 and 48 h. A similar response was observed in cultured endo-
thelial cells. Significantly less loss in cell viability was observed for
the smooth muscle cells and hepatocytes (Supplementary Fig. 3).
Subsequently, we investigated whether the effect of [S]-rHDL on
MF cell viability was mediated through the mevalonate pathway.
In MFs incubated with [S]-rHDL or free statin (10 mM), we
observed a nearly complete loss of cell viability at 48 h incubation
time, while this did not occur in cells incubated with rHDL. This
effect was abolished when mevalonate was added to [S]-rHDL or
free statin (Fig. 2b). Next, we evaluated the effect of [S]-rHDL on
the expression of inflammatory cytokines (Fig. 2c). We first
stimulated the MFs with lipopolysaccharide and interferon-g for
16 h. Cell viability at these conditions was not markedly affected.
We then treated the cells with different treatments for 24 h under
serum-free conditions and assessed expression of the anti-
inflammatory markers—Mo chemotactic protein-1 (MCP-1) and
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Figure 2 | Schematic representations of the nanoparticle formulations and in vitro efficacy data. (a) Schematic representation of dual gadolinium and

fluorescent dye (Cy5.5, DiO, DiR)-labelled statin containing reconstituted high-density lipoprotein ([Gd-dye-S]-rHDL), [S]-rHDL and rHDL. Negative

staining TEM images of each of the aforementioned particles showed the typical disk-like morphology. The circular shapes are nanoparticles viewed en face,

while the striped configurations are rouleaux of nanoparticles viewed from the side. Dynamic light-scattering measurements showed the average size of

[Gd-dye-S]-rHDL to be 28.5 nm, of [S]-rHDL to be 26.0 nm and of rHDL to be 10.5 nm. For larger view TEM also see Supplementary Fig. 1. (b) In vitro cell

viability assays of murine macrophages (J774A.1), incubated with combinations of [S]-rHDL (10mM statin), free simvastatin (10 mM), rHDL plus-free

statin (10 mM), free statin (10 mM) plus mevalonate (100mM), [S]-rHDL (10mM) plus mevalonate (100mM) and only mevalonate (100mM). There was

also a control group of cells not incubated with anything. Macrophage cell viability is markedly decreased in the [S]-rHDL and free statin group. This effect

is abolished by addition of mevalonate, indicating that the effect of HMGR inhibition on cell viability is mediated through the mevalonate pathway.

N¼ 6 for all bars. (c) Production of the inflammatory cytokines MCP-1 and TNF-a. Lipopolysaccharide (LPS)- and INF-g-challenged macrophages were

incubated with the same treatments as mentioned above for 24 h. MCP-1 and TNF-a levels are markedly reduced by [S]-rHDL and free statin. MCP-1 and

TNF-a levels are restored by the addition of mevalonate to [S]-rHDL and free statin incubation. N¼6 for all bars. Cell viability in the different

groups was not affected under these conditions (Supplementary Fig. 4). All error bars are 95% confidence intervals. P-values are calculated with

Mann–Whitney U-tests for comparisons with [S]-rHDL, *Po0.05, **Po0.01. Kruskal–Wallis P-values are o0.0001 for all plots.
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tumour necrosis factor-a (TNF-a). We observed a decrease in
expression of MCP-1 and TNF-a in MFs treated with [S]-rHDL
or free statins. The expression of MCP-1 and TNF-a was restored
by the addition of mevalonate in MFs treated with [S]-rHDL and
free statins (Fig. 2c). Cell viability of MFs treated with [S]-rHDL
was similar to control cells (Supplementary Fig. 4). These data
show that [S]-rHDL reduces cell viability and the production of
inflammatory cytokines by inhibiting the mevalonate pathway.
Subsequently, we investigated the mechanism by which [S]-rHDL
decreases MF cell viability. We observed that [S]-rHDL decreased
MF proliferation. We also observed that [S]-rHDL causes non-
apoptotic MF cell death (Supplementary Fig. 4).

In vivo biodistribution and toxicity studies. To investigate the
biodistribution of [S]-rHDL, we designed an [S]-rHDL nano-
particle that carried two labels, namely Cy5.5 conjugated to a
phospholipid in the corona and the hydrophobic dye DiO or DiR
in its core. Cy5.5–phospholipids were incorporated in the corona,
while the hydrophobic dyes DiO and DiR were incorporated in
the simvastatin-loaded core of [S]-rHDL (Fig. 2a). Lipoproteins,
including HDL, are dynamic systems that are known to exchange
lipid components15–17. Therefore, we hypothesized that the
hydrophobic DiO/DiR core label would display a different
kinetic behaviour from the amphiphilic phospholipid-Cy5.5
corona label. To investigate this, we injected apoE-KO mice
(N¼ 21) with the dual-labelled [S]-rHDL, killed them at different
time points (N¼ 3 per time point) and collected their blood,
hearts, aortas, spleens, livers and kidneys. The blood was

separated into three fractions—that is, plasma, mononuclear
cells (MNCs) and red blood cells (RBCs). We observed that the
majority of the Cy5.5-labelled phospholipids remained in the
plasma fraction of the blood, while a small fraction was
transferred to the RBCs (Fig. 3a,b). The core label DiO was
detectable in the serum fraction only and displayed longer
circulation kinetics. Further analysis of blood using flow
cytometry revealed the small fraction of DiO associated with
MNC to be most abundantly present in pro-inflammatory Gr-1hi

Mos (Fig. 3c, Supplementary Fig. 5).
Near infrared fluorescence (NIRF) imaging and fluorescence

microscopy of the spleen, liver and kidneys revealed the highest
DiR presence in the liver tissue (Supplementary Fig. 6).
Nanoparticles were found in heart, aorta, liver, spleen and kidney
tissues but not in the muscle tissue (Supplementary Fig. 6). A
combination of restricted nanoparticle accessibility from the
muscle microvasculature to muscle tissue and the absence of SR-
B1, ABCA-1 or ABCG-1 expression may explain why our
nanoparticle was not found to be associated with myocytes. In the
spleen, DiR signal colocalized with CD68-stained Mos/MFs
(Supplementary Fig. 7). Flow cytometry analysis of spleen cells
revealed that MFs and Ly-6chi (Gr-1hi) Mos took up [DiO-S]-
rHDL most efficiently, while neutrophils and Ly-6clo (Gr-1hi)
moncoytes took up markedly less nanoparticles. [S]-rHDL did
not exert toxic effects on liver, kidney or myocytes when it was
administered to mice at a high dose (60 mg kg� 1 simvastatin,
40 mg kg� 1 ApoA1, four intravenous (i.v.) infusions per week)
for a week (Supplementary Fig. 8).
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Figure 3 | Pharmacokinetics and accumulation in plaque of labelled nanoparticles. (a) Cy5.5- and DiO-labelled [S]-rHDL was intravenously injected to

apoE-KO mice (N¼ 21, three mice per time point) and blood and tissues were analysed at different time points post injection. NIRF shows that components

from the lipid monolayer (Cy5.5) have much shorter blood half-life than components from hydrophobic core (DiO). It also shows that the majority

of [S]-rHDL stays in the serum and very little in the RBCs and MNCs. (b) Fluorescence intensity in serum, MNC and RBC is quantified (N¼ 21, three mice

per time point). We calculated that plasma half-life of [S]-rHDL is 21.9 h for the DiO signal. (c) Flow cytometric analysis of blood cells shows that [S]-rHDL

targets Gr-1hi pro-inflammatory Mos more efficiently than Gr-1lo anti-inflammatory Mos in the blood (N¼ 21, three mice per time point). (d) Typical

T1-weighted 9.4 Tesla magnetic resonance images of the abdominal aorta of an apoE-KO mouse, made at identical locations, before and 24 h after injection

of [Gd-Dye-S]-rHDL. The lumen is indicated by *. The scale bar in the upper images represents 10 mm and in the lower images represents 1 mm. The 24-h

post-injection image showed signal enhancement in the vessel wall (white arrows), indicative of nanoparticle infiltration and retention in the aortic

plaques. (e) [S]-rHDL labelled with Cy5.5 (lipid monolayer) and DiR (hydrophobic core) was intravenously injected into apoE-KO mice. NIRF shows that

Cy5.5 and DiR preferentially accumulate in the areas rich in atherosclerotic lesions. The scale bar represents 10 mm. (f) Cy5.5 and DiO both appear

in the plaque; until 4 h post-injection the presence of Cy5.5 declines while DiO remains present. The scale bar represents 500mm. (g) DiO-labelled

[S]-rHDL colocalizes in the plaque with CD68 (macrophages). The scale bar in the inset represents 100mm, and in the overview 400 mm. (h) Flow

cytometric analysis of cells in aorta walls shows that [S]-rHDL is taken up by plaque macrophages; furthermore, macrophages are targeted more efficiently

than monocytes (N¼ 3 per time point).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4065

4 NATURE COMMUNICATIONS | 5:3065 | DOI: 10.1038/ncomms4065 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Accumulation and uptake in atherosclerotic plaques. To assess
whether our nanoparticles accumulated in atherosclerotic
lesions and were taken up by plaque MFs, we conducted two
experiments. In the first experiment, apoE-KO mice on a high-
cholesterol diet for 28 weeks were infused with gadolinium and
statin containing rHDL ([Gd-S]-rHDL, N¼ 3) or placebo
(N¼ 3). In vivo MRI experiments performed with a 9.4 Tesla
scanner revealed signal enhancement in the vessel wall on
T1-weighted images 24 h after infusion of [Gd-S]-rHDL,
indicating pronounced accumulation of our nanoparticle in the
vessel wall (Fig. 2d).

In the second experiment, dual-labelled [S]-rHDL, with
Cy5.5–phospholipids in the corona and DiO/DiR in the core,
was injected into apoE-KO mice. Twenty-four hours post
injection, the mice were killed and their hearts and aortas were
excised. The distribution of DiR-labelled [S]-rHDL in intact
aortas was investigated by NIRF imaging, which revealed its
accumulation in regions rich in plaques (Fig. 3e). The targeting
kinetics of DiO (the core label) and Cy5.5-phospholipid label
displayed a pattern similar to the blood kinetics (Fig. 3f), namely
that the Cy5.5-labelled phospholipids appeared in the plaque
until 4 h post injection, after which their presence declined. In
contrast, the DiO core label was retained in the plaque up to at
least 24 h. Furthermore, fluorescence microscopy of plaques
revealed colocalization of DiO-labelled [S]-rHDL with MFs
in the aortic root (Fig. 3g). Flow cytometry of cells from
atherosclerotic plaques showed that the fluorescence intensity of
the core label DiO was five- to sixfold stronger in MFs than in
freshly recruited Mos (Fig. 3h, Supplementary Fig. 5).

In vivo efficacy of low-dose [S]-rHDL infusions. To investigate
the effect of [S]-rHDL on plaque inflammation we used apoE-KO
mice (N¼ 74) that were on a high-cholesterol diet for 14 weeks in
order to develop atherosclerosis. Statins are known not to affect
blood cholesterol levels of apoE-KO mice, as they lack the major
ligand for the LDL receptor, namely apoE18,19, and also
metabolize statins very rapidly in their livers20, making this a
suitable model to solely investigate the anti-inflammatory effects
of HMGR inhibition. To limit a dominant therapeutic effect of
rHDL itself, we used a low ApoA1 dose. While the mice remained
on the high-cholesterol diet, they received biweekly infusions
of [S]-rHDL (15 mg kg� 1 statin, 10 mg kg� 1 ApoA1, N¼ 16),
placebo (saline infusion, N¼ 15), orally dosed statin (15 mg kg� 1

statin daily, N¼ 15) or biweekly infusion of bare rHDL nano-
particles (10 mg kg� 1 ApoA1, N¼ 15) for 12 consecutive weeks.
We also included a group of mice that were killed when the other
groups started their treatment, which we refer to as the baseline
group (N¼ 12). As plaque formation in apoE-KO mice occurs
more rapidly in the aortic root than in the abdominal aorta, we
were able to study the effects of [S]-rHDL in both early and
established atherosclerotic lesions. In the aortic root, plaque
formation is reproducible, consistent and homogenous, and
covers a length of less than 0.5 mm, which enables us to apply
quantitative histology analyses. We evaluated 42 cross-sections of
the aortic sinus area per mouse. This resulted in the analysis of
3,108 cross-sections in total. Cross-sections were stained for
connective tissue with haematoxylin phloxine saffron (HPS) or
immunostained with CD68 antibodies to visualize the MFs. We
developed a quantitative and digitized method with in-house
developed software (Matlab) for the analysis of the histology
images, to quantify total plaque area (MFs plus connective tissue)
and MF-rich area (Supplementary Fig. 9). In contrast to the
development of atherosclerosis in the aortic root, plaque
formation in the abdominal aorta is heterogeneous and covers a
length of 2 cm, which excludes histological analysis for an

accurate assessment. Instead, we performed longitudinal in vivo
9.4 T MRI in a subset of mice (N¼ 40, 7–9 per group,
Supplementary Fig. 10). Examples of histological sections of the
abdominal aorta are displayed in Supplementary Fig. 11.

Our in vivo MRI data showed that compared with the [S]-
rHDL-treated group vessel wall thickness was 16% higher in the
placebo group (Mann–Whitney U-test P¼ 0.01), 12% higher in
the oral statin group (Mann–Whitney U-test P¼ 0.004) and 16%
higher in the rHDL group (Mann–Whitney U-test P¼ 0.005,
Fig. 4a,b) at the end of the study.

Subsequently, all mice (N¼ 74) were killed and atherosclerotic
burden was quantified by means of histology of the aortic sinus.
Total plaque area in the [S]-rHDL group was significantly
decreased by 34% compared with the baseline group (Mann–
Whitney U-test Po0.001), by 37% compared with placebo
(Mann–Whitney U-test P¼ 0.002) and by 28% compared with
rHDL (Mann–Whitney U-test P¼ 0.006, Fig. 4c). The [S]-rHDL
group showed a trend towards a decrease of 17% compared with
the oral statin group (Mann–Whitney U-test P¼ 0.06, Fig. 4c).
Plaque MF content was markedly decreased in the [S]-rHDL
group by 56% compared with the baseline group (Mann–Whitney
U-test Po0.001), by 57% compared with placebo (Mann–
Whitney U-test P¼ 0.001), by 37% compared with oral statin
(Mann–Whitney U-test P¼ 0.003) and by 40% compared with
rHDL (Mann–Whitney U-test P¼ 0.03, Fig. 4d). In Fig. 4e,
typical and representative histological sections of the different
groups are shown.

We also quantified the cholesterol content of the thoracic
aortas of all mice (N¼ 74), by digesting the excised aortas
followed by chemical quantification of the cholesterol content. In
line with expectation, we did not observe any differences in aorta
cholesterol content across all groups (Supplementary Fig. 12).

Serum triglyceride and total cholesterol levels did not differ
significantly across all groups, although total cholesterol had the
tendency to be higher in the placebo and rHDL groups
(Supplementary Fig. 13). Total cholesterol levels were equal in
the oral statin and [S]-rHDL groups; however, fast-performance
liquid chromatography showed that the oral statin group had a
more favourable lipid profile than the [S]-rHDL group, with 31%
lower very low-density lipoprotein, 16% lower LDL and 37%
higher HDL cholesterol (Supplementary Fig. 14). The decrease in
plaque MF area by [S]-rHDL remained significant compared
with placebo (multiple linear regression analysis P¼ 0.002), oral
statin (multiple linear regression analysis P¼ 0.01) and rHDL
(multiple linear regression analysis P¼ 0.02) after statistical
adjustment for serum total cholesterol levels.

In vivo efficacy of high-dose [S]-rHDL infusions. To assess the
effect of short-term high-dose [S]-rHDL therapy on plaque
inflammation, apoE-KO mice that had developed advanced
atherosclerotic lesions after 27 weeks of the high-cholesterol diet
were administered high-dose [S]-rHDL (60 mg kg� 1 statin,
40 mg kg� 1 ApoA1, N¼ 7), placebo (saline infusion, N¼ 15),
high-dose rHDL (40 mg kg� 1 ApoA1, N¼ 8) or low-dose
[S]-rHDL (15 mg kg� 1 statin, 10 mg kg� 1 ApoA1, N¼ 10). All
mice (N¼ 40) received four infusions of their assigned therapy
within a single week. Histological assessment of the aortic sinus
area was performed as described before (Supplementary Fig. 9),
and a total of 1,680 cross-sections were analysed. Histology
showed a trend towards a decrease of 31% in total plaque area in
the high-dose [S]-rHDL group compared with placebo (Mann–
Whitney U-test P¼ 0.053), and was decreased by 34% compared
with high-dose rHDL (Mann–Whitney U-test P¼ 0.005) and
by 36% compared with the low-dose [S]-rHDL group
(Mann–Whitney U-test P¼ 0.006, Fig. 5a). The decrease in total
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plaque area primarily accounted for the decreased MF-positive
areas in the high-dose [S]-rHDL group. It was decreased by 84%
when compared with placebo (Mann–Whitney U-test Po0.001),
by 79% compared with high-dose rHDL (Mann–Whitney U-test
P¼ 0.001) and by 77% compared with low-dose [S]-rHDL
(Mann–Whitney U-test P¼ 0.002, Fig. 5b). In Fig. 5c, typical and
representative histological sections of the different groups are
shown. Serum triglyceride and total cholesterol levels were equal
across all the groups (Supplementary Fig. 15). The difference in
plaque MF content between the [S]-rHDL group and placebo
(multiple linear regression analysis Po0.001), oral statin (mul-
tiple linear regression analysis Po0.001) and rHDL (multiple
linear regression analysis P¼ 0.004) remained significant after
statistical adjustment for serum total cholesterol levels.

In a subsequent study, also in apoE-KO mice (N¼ 36) with
advanced atherosclerosis, we determined the mRNA expression
levels of genes related to inflammation in plaque MFs by means
of laser capture microdissection (LCM). We compared mice
treated with high-dose [S]-rHDL with mice treated with oral
statin therapy and placebo (Fig. 5d, Supplementary Fig. 16). We
observed that in the high-dose [S]-rHDL group, mRNA
expression levels of Mo-recruitment genes (MCP-1, CCL-3,
ICAM-1, VCAM-1, CCL-15 and CXCL-12), as well as those of
pro-inflammatory genes (TNF-a, IL-1b, IL-1a and SPP-1), were
markedly decreased as compared with the oral statin and placebo
groups (Fig. 5d). The anti-inflammatory mannose receptor (MR)
mRNA level was increased in the high-dose [S]-rHDL group as

compared with placebo but was similar to the oral simvastatin
group (Fig. 5d).

Finally, to corroborate these findings we performed in vivo
fluorescence molecular tomography with computed tomography
(FMT-CT) imaging to visualize and measure the protease activity
in the aortic roots of another 11 apoE-KO mice. We revealed that
the inflammatory protease activity was markedly reduced in
apoE-KO mice treated with [S]-rHDL as compared with placebo
(Fig. 5e). Together, these data demonstrate the potent local
anti-inflammatory effect of [S]-rHDL in atherosclerotic plaques.

Discussion
In the current study, we described the development of a statin-
rHDL nanoparticle as a therapy for reducing atherosclerotic
plaque inflammation. The key findings of our study are that this
compound (1) suppresses the inflammatory response of MFs,
which is mediated through the inhibition of intracellular
mevalonate pathway, (2) accumulates in atherosclerotic plaque
where it is taken up by MFs, (3) markedly reduces plaque MF
content and inflammation following both prolonged low-dose
therapy as well as short-term high-dose therapy and (4) does not
exhibit myo- or hepatotoxic effects.

The platform on which we based our nanoparticle is rHDL.
Traditionally, HDL is considered to remove excess cholesterol
from peripheral tissues and transport it to the liver for faecal
excretion, a process referred to as the ‘reverse cholesterol
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aorta wall in all groups except in the [S]-rHDL-treated group. The analysis method of the images is shown in Supplementary Fig. 9. The scale bar represents

1 mm. (b) MRI scans of the abdominal aortas of 32 mice (N¼8 per group) were performed at three time points during the study. When the apoE-KO mice

were 14 weeks on high-cholesterol diet, the baseline scans were acquired and subsequent scans were performed 6 and 12 weeks after the baseline

scan. From baseline onwards, the mice received placebo, oral statin therapy or injections of rHDL or [S]-rHDL. Thickness of the vessel wall is expressed as

the NWI, which is defined as the ratio between the mean wall area and the outer wall area. (c) Efficacy of [S]-rHDL assessed with histology shows that the

mean plaque area was lower in the [S]-rHDL-treated group (N¼ 15) as compared with placebo (N¼ 16) and rHDL (N¼ 16), and there was a trend

towards decreased plaque area compared with statin therapy (N¼ 15). Kruskal–Wallis P-value for plaque area is 0.0011. (d) Plaque macrophage content as

measured by the CD68-positive area was decreased in the [S]-rHDL group (N¼ 15) as compared to placebo- (N¼ 16), statin- (N¼ 15) and rHDL therapies

(N¼ 16), indicating decreased plaque inflammation in the [S]-rHDL group. Bars represent the s.e.m., P-values were calculated with Mann–Whitney

U-tests. Kruskal–Wallis P-value for CD68 area is 0.0001. (e) Typical histology images of the aortic sinus area of each group are shown. The HPS-stained

images are shown on the left and the cross-sections stained with CD68 antibodies are shown on the right. The analysis method of the histology

images is shown in Supplementary Fig. 9. The scale bar represents 400 mm.
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transport’21,22. For this reason, previous studies have investigated
rHDL as a therapeutic agent. Shah et al.23 showed that in apoE-
KO mice, 18 infusions of 40 mg kg� 1 ApoA1 within 5 weeks had
no effect on plaque size but reduced plaque lipid content by 40%
and plaque MF content by 46%. In another study, Shah et al.24

showed in apoE- KO mice that a single injection of 400 mg kg� 1

ApoA1 reduced plaque lipid content by 40–50% and plaque MF
content by 29–36%. It is important to note that in the current
study we did not aim at employing rHDL or ApoA1 as a
therapeutic agent, apart from its ability to deliver statin to plaque
tissue. Compared with the studies by Shah et al.24, we used lower
ApoA1 doses, namely 24 infusions of 10 mg kg� 1 in the 3-month
low-dose study and four infusions of 40 mg kg� 1 ApoA1 in the
single-week high-dose study. In both our low- and high-dose
studies, plaque size was unchanged in the rHDL group as
compared with placebo; however, plaque MF content tended to
be lower in the rHDL groups as compared with placebo. Despite
this, we were able to show a marked reduction in plaque MF
content by [S]-rHDL treatment compared with the rHDL group.
rHDL infusion has also been investigated in large randomized
controlled trials in humans25,26. Although the therapeutic efficacy

was disappointing, the ApoA1 doses of 40 mg kg� 1 used in these
studies were well tolerated. This shows that the ApoA1 doses of
10 and 40 mg kg� 1 that we used can safely be translated to future
human studies.

In addition to the ability of HDL to remove excess cholesterol
from atherosclerotic plaques, native HDL also transports proteins
involved in inflammation, coagulation, complement activation27

and endogenous micro RNAs, and delivers them to recipient
cells28. This indicates that native HDL is in fact a carrier vehicle
involved in complex intercellular communication. In the current
study, we utilize this natural property of HDL to act as a delivery
vehicle of statins to target MFs in atherosclerotic lesions. We
showed that rHDL protects the statin cargo from catabolism in
the serum, increases the bioavailability of statin and delivers its
cargo to plaques where it is taken up by plaque MFs. Our data on
pharmacokinetics demonstrate that in the circulation [S]-rHDL is
predominantly located in the plasma and a small subfraction is
located in blood Mos. Blood Mos that took up [S]-rHDL in the
circulation and subsequently infiltrated the plaque could
potentially account for some of the accumulation of [S]-rHDL
in the plaque. However, direct infiltration from the plasma into
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placebo (N¼ 15), high-dose rHDL (N¼ 8) and low-dose [S]-rHDL (N¼ 10), indicative of decreased plaque inflammation in this group. Bars represent the

s.e.m., P-values were calculated with Mann–Whitney U-tests. Kruskal–Wallis P-value for CD68 area is 0.0006. (c) Typical histology images of the aortic
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CD68 antibodies are shown on the right. The scale bar represents 400 mm. (d) One-week high-dose [S]-rHDL treatment (N¼6) significantly reduced

the mRNA expression levels of monocyte recruitment genes (composite variable of MCP-1, CCL-3, ICAM-1, VCAM-1, CCL-15 and CXCL-12) and

pro-inflammatory genes (composite variable of TNF-a, IL-1b, IL-1a and SPP-1) of plaque macrophages in the aortic root when compared with placebo
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calculated with the Mann–Whitney U-test.
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the plaque most likely accounts for the majority of [S]-rHDL
accumulation in plaques. The reason why, within the vasculature,
[S]-rHDL preferentially accumulates at sites of atherosclerotic
lesions is likely related to local endothelial permeability, which
facilitates infiltration of the nanoparticle into the vascular tissue,
after which it is retained because of ingestion by MFs. We did
not investigate the mechanism by which plaque MFs take up
[S]-rHDL. Native HDL is known to interact with MFs through
scavenger receptor B1 and adenosine triphosphate-binding
cassette transporters A1 and G1 (refs 21,22). Possibly our
nanoparticle has a similar interaction or is simply phagocytosed
by MFs.

The current study is the first to pursue local delivery of statins
to plaque tissue to achieve local anti-inflammatory effects. The
immunomodulating effects of statins have been established in
previous studies, which showed that HMGR inhibition reduces
the production of downstream isoprenoid intermediates (for
example, farnesyl pyrophosphate) in the intracellular cholesterol
synthesis pathway, which decreases the isoprenylation of
proteins29,30. This interferes with the attachment of proteins to
the cell membrane, which affects proliferation and function of
inflammatory cells, such as MFs9–11. In the current study, we
confirm the anti-inflammatory effect of statins both in vitro and
in vivo. In vitro, we show that the anti-inflammatory effect
remains equally potent when statin is encapsulated in rHDL as
compared with free statin. We also demonstrate that the anti-
inflammatory effects of statins are mediated through the
inhibition of the mevalonate pathway, which corroborates the
results from previous studies9–11.

A previous study in an atherosclerotic mouse model investi-
gated the effects of oral statin therapy on atherogenesis. Sparrow
et al.12 treated apoE-KO mice daily with 100 mg kg� 1

simvastatin for 6 weeks and showed marked reduction in aortic
plaque development, despite the fact that statin therapy did not
affect serum lipid levels. They also showed effects of their high-
dose oral statin therapy on carrageenan-induced footpad oedema,
a model of inflammation. They did not investigate the mechanism
by which atherogenesis and inflammation was reduced; however,
it is conceivable that higher than normal serum levels of statins
were achieved since their oral statin dose was extremely high. In
humans it is not possible to administer such high oral doses
because of adverse effects13. In the current study, we used a lower
oral statin dose than that used by Sparrow et al.12, namely
15 mg kg� 1 in the 3-month low-dose study. Plaque size and MF
content tended to be lower in the oral statin group compared with
placebo. Nonetheless, we showed a marked reduction in plaque
inflammation with [S]-rHDL treatment, despite 3.5 times lower
weekly doses of statin in the [S]-rHDL group (15 mg kg� 1

simvastatin, two times per week) than that in the oral statin
group (15 mg kg� 1 simvastatin per day).

In addition to the decrease in plaque MF content following
[S]-rHDL treatment, we were able to show that [S]-rHDL
markedly affects plaque MF mRNA expression levels of genes
related to inflammation. Furthermore, we observed that short-
term high-dose [S]-rHDL treatment markedly decreased inflam-
matory protease activity in atherosclerotic plaques, which was
measured in vivo with FMT-CT.

Of note, in the current study we focused on the anti-
inflammatory effect of our nanoparticle, since statins do not
affect serum lipid levels in this mouse model. However, we showed
that in mice, nanoparticles were taken up in the liver. In humans,
[S]-rHDL will undoubtedly also be taken up by hepatocytes, where
the delivered statin will upregulate the LDL-receptor expression.
Thus, in humans, our nanoparticle may have two therapeutic
effects, namely an anti-inflammatory effect on plaques and a
cholesterol-lowering effect because of its affect on hepatocytes.

The clinical implications of our findings pertain to the field of
cardiovascular disease. With current standard of care therapy,
recurrent angina before discharge occurs in up to 10% of patients
following an acute coronary syndrome and recurrent acute
coronary syndrome within the first year in 17.4% of patients3.
Therefore, novel therapeutic strategies such as rHDL infusion are
being developed, with the concept to initiate therapy directly after
the acute event in an effort to rapidly decrease plaque
vulnerability. Unfortunately, the efficacy of rHDL infusion
alone so far has been disappointing25,26. Extrapolating from the
evidence provided, we envision that [S]-rHDL nanotherapy can
facilitate plaque retention of high quantities of statin following
short-term i.v. administration in acute coronary syndrome
patients, thereby modulating plaque inflammation31. This holds
promise to suppress plaque inflammation during the vulnerable
period following acute coronary syndrome, which can support the
standard-of-care therapy to prevent recurrent plaque rupture and
atherothrombotic events. An advantage of nanotherapy we
present is that the individual components are well tolerated by
humans. Statins are prescribed routinely to millions of patients
worldwide, whereas rHDL in lower concentrations has proven to
be safe in large phase IIB trials13,25,26. In our study, we did not
observe myo- or hepatotoxicity of our nanoparticle. Therefore,
[S]-rHDL represents a novel anti-atherosclerotic nanotherapy
with a high potential for clinical translation.

In conclusion, [S]-rHDL nanotherapy locally treats athero-
sclerotic inflammation at the level of the vessel wall. The potency
of the treatment allows for the inhibition of plaque inflammation
using a long-term, low-dose treatment regimen, while a short-
term, high-dose treatment regimen can be applied to rapidly
prevent inflammation in advanced atherosclerotic plaques.

Methods
Synthesis of [S]-rHDL. The synthesis of [S]-rHDL was modified from a published
method32. Briefly, simvastatin (AKscentific), 1-myristoyl-2-hydroxy-sn-glycero-
phosphocholine and 1, 2-dimyristoyl-sn-glycero-3-phosphatidylcholine (both
purchased from Avanti Polar Lipids) were dissolved in chloroform/methanol (4:1
by volume) solvent and dried to form a thin film. Human ApoA1 (CSL, Parkville,
Victoria, Australia) dissolved in phosphate-buffered saline (PBS) were added to the
film and the solution was incubated in 37 �C until the film was hydrated and a
homogenous solution was formed. The solution was sonicated to form small [S]-
rHDL nanoparticles. Aggregates were removed using centrifugation and filtration.
Gadolinium–DTPA–DMPE (Avanti Polar Lipids), Cy5.5-DMPE (DMPE was
conjugated with Cy5.5 NHS–ester purchased from GE Healthcare), DiR or DiO
(Invitrogen) were added when the nanoparticles were subsequently used for
imaging purposes. Control rHDL nanoparticles without simvastatin were
synthesized with the same procedures.

Characterization of [S]-rHDL. Nanoparticles were negatively stained with a
method previously reported33. Briefly, samples were suspended in an ammonium
acetate buffer using a 2% sodium phosphotungstate (pH¼ 7.4) negative stain. The
mixed solution were subsequently added to TEM grids, dried, and finally subjected
to TEM imaging. Images were acquired using a Hitachi H7650 system linked to a
Scientific Instruments and Applications digital camera controlled by the Maxim
CCD software. The mean size of the different formulations of nanoparticles was
determined by dynamic light-scattering (Brookhaven Instruments Corporation,
Holtsville, NY, USA) and by measuring the nanoparticles in TEM images. The
percentage of phospholipids in the nanoparticles was determined by Rouser’s
method; the percentage of simvastatin by HPLC (Shimadzu HPLC instrument); the
percentage of protein by a BCA protein concentration assay (Bio-Rad); the
longitudinal relaxivity (r1) of gadolinium-loaded [S]-rHDL was measured on a 60-
MHz Bruker Minispec (Bruker Medical BmbH, Ettingen) operating at 40 �C. To
determine the half-life of encapsulated simvastatin in [S]-rHDL, a concentration of
1,000 mg ml� 1 of simvastatin from [S]-rHDL or free simvastatin was achieved in
mouse serum and the solution was kept at 37 �C. The concentration of intact
simvastatin in the serum at different time points was measured with HPLC
(Shimadzu HPLC equipped with a column (Ascentis C18, 10 cm� 4.6 mm I.D.,
3 mm particles (581321-U) reversed phase)) using a protocol adapted from the
published one34. The mobile phase was 80% Acetonitrile and 20% H2O and the
flow rate was 0.5 ml min� 1. The half-life of simvastatin in [S]-rHDL and free
simvastatin was defined as the length of incubation time when the serum
simvastatin concentration was 500mg ml� 1.
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In vitro cell assays. J774A.1 (murine MFs), MS1 (murine endothelial cells),
MOVAS (murine aortic smooth muscle cells) and Hepa-1c1c7 (murine liver cells)
were cultured under American Type Culture Collection-recommended conditions.
[S]-rHDL nanoparticles were added to the cells to reach different concentrations of
simvastatin in cell culture, whereas rHDL nanoparticles were added to reach the
same ApoA1 concentrations as [S]-rHDL under each condition, and mevalonate
was added to reach 100 mM when needed. The cell viability was determined by
measuring intracellular ATP concentration by following the manufacturer’s
instructions (Promega, CellTiter Glo). To measure MCP-1 and TNF-a production
by J774A.1 cells, the cells were first challenged with lipopolysaccharide and
interferon-g for 16 h, and subsequently switched to serum-free culture condition
and treated with [S]-rHDL, free simvastatin, rHDL or nothing for another 24 h at
the concentration of 10mM simvastatin or equal concentration of ApoA1 from
rHDL, in the presence or absence of 100mM mevalonate. TNF-a and MCP-1
concentrations in the supernatants were measured with enzyme-linked immuno-
sorbent assay by following the manufacturer’s instructions (Biolegend).

For apoptosis/necrosis assay, murine cells (J774A.1) were treated with 10 mM
simvastatin equivalent [S]-rHDL for 24 h, and then stained with either apoptosis-
specific dye (YO-PRO-1) or necrosis-specific dye (Propidium iodide). Measure-
ment was used following the manufacturer’s instruction (Life Technologies, Cat no.
V13243). In brief, apoptotic cells are defined as YO-PRO-1-positive, Propidium
iodide-positive cells on flow cytometry graph, while necrosis cells are YO-PRO-1-
negative Propidium iodide-positive. For cell proliferation, an assay was performed
following the manufacturer’s instruction (Life Technologies, Cat no. C34554). In
brief, MFs were incubated with 5 mM carboxyfluorescein succinimidyl ester (CFSE)
for 10 min and the rest of the CFSEs were extensively removed. Subsequently, the
cells were treated with 10mM simvastatin equivalent [S]-rHDL or nothing for 24 h.
The percentage of proliferating cells of the total treated cells was determined using
flow cytometry following a standard protocol.

Animals and diet. All animals were used based on an approved institutional
protocol from the Icahn School of Medicine at Mount Sinai. Five-week-old male
apoE-KO mice (B6.129P2-Apoetm1Unc) were purchased from Jackson laboratory.
All mice were fed with a high-cholesterol diet, containing 20.3% fat, 22.9% protein,
45.7% carbohydrate and 0.2% cholesterol (Research Diets Inc., USA).

In vivo 9.4 Tesla MRI. To image the abdominal aortas, the mice were anaes-
thetized and maintained by isoflurane-containing air and were subsequently
scanned with a 9.4 Tesla MRI system (Bruker Instruments, Germany). T1-weighted
MRI was performed using a black blood sequence. Twenty-two consecutive
500-mm-thick slices with 500mm inter-slice distance were acquired using a spin
echo sequence with a 256� 256 matrix size. A microscale in-plane resolution of
101mm was achieved. The repetition time and echo time for the T1-weighted
scanning were 800 and 8.6 ms, respectively. An inflow saturation band of 3 mm was
used with a slice gap of 3 mm for additional luminal flow suppression. Sixteen
signal averages were used for a total imaging time of 55 min per scan. A saturation
pulse was used to eliminate signal from fat tissue and to delineate boundary of the
aortic wall and minimize chemical shift artifacts. To investigate the plaque tar-
geting of [S]-rHDL, the mice were first subjected to baseline MRI scan, and sub-
sequently injected with a 50-mmol Gadolinium kg� 1 dose of the [Gd-S]-rHDL
through their tail veins. The mice were scanned again at 24 h post injection (N¼ 3).
Image analysis was performed with a semiautomatic software (VesselMass, Leiden)
to delineate the aortic lumen area and outer wall area (OWA). The mean wall
area (MWA) was defined as the difference between lumen area and OWA. The
primary outcome parameter was the normalized wall index (NWI), which was
calculated as: NWI¼MWA/OWA. To evaluate the therapeutic effects of 12-week
treatments, mice were scanned with the same protocol but without the injection
of contrast agents.

Ex vivo NIRF. The mice were injected with Cy5.5-DMPE- and DiR-labelled [S]-
rHDL (N¼ 3) or saline (N¼ 3) through their tail veins. At 24 h post injection, mice
were killed and perfused with PBS. To acquire Cy5.5 signal from [S]-rHDL in
tissues, aortas, hearts, livers, spleens and kidneys were collected and imaged with
IVIS 200 system (Xenogen) using 675(30) nm excitation and 720 (20) nm emission
filters. Photon counts were used to quantify the fluorescence intensity from each
tissue and it was reflected by colour-coded scale bar. Images were processed with
the integrated software from IVIS 200 (Living Imaging Software 4.0). DiR signal
was acquired with the same procedure but imaged with 745(30) nm excitation and
820 (20) nm emission filters.

Flow cytometry. To investigate the targeting mechanism of [S]-rHDL, apoE-KO
mice were injected with Cy5.5 and DiO dual-labelled [S]-rHDL at doses of
15 mg kg� 1 simvastatin and 10 mg kg� 1 ApoA1, the same as the low-dose
12-week [S]-rHDL treatment. The mice were killed at individual time points post
injection (1, 2, 4, 6, 12 and 24 h; N¼ 3 per time point). Blood was collected and
RBCs were lysed and removed using RBC lysis buffer (BD Biosciences). The mice
were perfused with PBS and cells from aortas were collected using the same method
as described above. After perfusion with 30 ml of PBS, aortas were collected and the
surrounding adipose tissue was removed carefully without damaging the adventitia.

Aortas were digested with 4 U ml� 1 liberase LH (Roche), 0.1 mg ml� 1 DNase I
(Sigma-Aldrich) and 60 U ml� 1 hyaluronidase (Sigma-Aldrich) in hank’s balanced
salt solution (HBSS) at 37 �C for 90 min. The suspension was incubated with a
mixture of monoclonal antibodies for 30 min at 4 �C. Fluorescence was detected
using a flow cytometer (BD Biosciences LSR II), and the data were analysed using
the FlowJO software (Tree Star). MFs from aortas were identified as CD45þ ,
CD11bþ and F4/80þ , and Mos were identified as CD45þ , CD11bþ and SSC-A
low cells. Based on the Gr-1 expression, Mos in the blood were further identified as
Gr-1hi and Gr-1lo Mos. To quantify the delivery efficiency to Mos, MFs and
neutrophils in the spleen, a recently reported protocol was used4. Briefly,
splenocytes were released by homogenizing the spleen, and the tissue was digested
with collagenase (Sigma-Aldrich) for 30 min at 37 �C. A cocktail of antibodies
include a Pacific blue-conjugated lineage (CD90 (clone 53-2.1), B220 (clone RA3-
6B2), CD49b (clone DX5), NK1.1 (clone PK136), Ly-6G (clone 1A8) and Ter-119
(clone TER-119)), Alexa700-conjugated CD11b (clone M1/70), antigen-presenting
cell-conjugated CD11c (clone HL3), phycoerythrin-Cy7-conjugated F4/80 (clone
BM8) and PE-conjugated Ly6C (clone AL-21). Neutrophils were identified as
Lineage high, CD11b high, ly-6c intermediate and SSC-A high. MFs were
identified as lineage� , CD11b high, and F4/80þ . Mos were identified as
Lineage� , CD11b high, CD11c� , F4/80� and Ly-6Cþ . Based on Ly-6c
expression levels, Mos were further identified as Ly-6c high and Ly-6c low Mos. All
antibodies were purchased from eBioscience, BD Biosciences and Biolegend, and a
1:200 dilution was used.

Fluorescence quantification of blood components. ApoE-KO mice received
dual-labelled [S]-rHDL (Cy5.5 and DiO) through tail vein injection. At each
individual time point (1, 2, 4, 6, 12 and 24 h; N¼ 3 per time point), mouse blood
was drawn with cardiac puncture and stored in EDTA-containing tubes. Blood
(500 ml) was used for separating different compartments with Histopaque (Sigma-
Aldrich, Histopaque 1077) by following the instructions from the manufacturer.
Briefly, the blood and Histopaque solution were centrifuged at room temperature
for 30 min, and three compartments from the blood (serum; MNCs; RBCs and
granulocytes) were visible and collected. Fifty microlitre solution from each
compartment was added to a 96-well plate (three repeats for each condition). The
plate was imaged with IVIS 200 system (Xenogen). To image DiO, excitation filter
of 465 (30) nm and emission filter of 520 (20) nm were used. To image Cy5.5,
excitation filter of 675 (30) nm and emission filter of 720 (20) nm were used. Signal
intensity was analysed and quantified using the integrated software from the
system (Living Imaging Software 4.0).

Immunohistochemistry and image quantification. Serial 6 mm thick cross-
sections were made of the aortic sinus area on a cryotome (Reichert HistoStat,
Cryostat Microtome). From the first cross-section in which the leaflets of the aortic
valves appeared upward, 63 serial cross-sections were obtained, covering the entire
aortic sinus area. Every three consecutive cross-sections were subjected to anti-
CD68 immunohistochemical staining, HPS staining, and Oil Red O staining. HPS
(HPS, polyscientific) and Oil Red O staining (Fisher Scientific) were performed
with the standard methods. For anti-CD68 staining, the sections were blocked with
rabbit serum (Vectorlabs), incubated for 1 h with rat anti-mouse CD68 primary
antibody (Abdserotec, 1:250 dilution), for 10 min with biotinylated rabbit anti-rat
antibody (Vectorlabs, 1:200 dilution), for 5 min with VECTASTAIN ABC-alkaline
phosphatase solution (Vectorlabs) and finally for 17 min with Vector Red solution
(Vectorlabs).

All the cross-sections were digitally imaged with a Nikon eclipse E400
microscope, with a � 10 eyepiece and � 10 lenses, a Nikon DS-U1 camera box and
Nikon DS-5M camera. We used the NIS-Elements F3.0 software and imaged the
cross-sections at a 1/350-s exposure time, 2,560� 1,920 pixels and pixel size of
1.46 mm2 per pix. Software written in Matlab was developed to facilitate automated
image analysis.

Treatment protocol. For the 12 weeks of treatment study, 6-week-old male apoE-
KO mice were fed a high-cholesterol diet (ResearchDiets, NJ) for 14 weeks and
subsequently received 12 weeks of i.v. injection of [S]-rHDL (15 mg kg� 1

simvastatin, 10 mg kg� 1 ApoA1, 2 injections per week, N¼ 16) and rHDL
(10 mg kg� 1 ApoA1, 2 injections per week, N¼ 16), and oral administration of
simvastatin (15 mg kg� 1 per day, two saline i.v. injections per week, N¼ 15) and
placebo (two saline injections per week, N¼ 15). Mice were maintained on a high-
fat diet during the 12-week treatment. Another group of mice (N¼ 12) was killed
when the other groups started their 12-week treatment to establish a baseline.
Eight mice per group were imaged with MRI over abdominal aortas before, in the
middle and by the end of the 12-week treatments.

For the 1-week short-term treatment study, 6-week-old male apoE-KO mice
were fed a high-cholesterol diet for 27 weeks. After the diet, mice were injected
intravenously with high-dose [S]-rHDL (60 mg kg� 1 simvastatin, 40 mg kg� 1

ApoA1 and four injections per week), high-dose rHDL (40 mg kg� 1 ApoA1, four
injections per week), low-dose [S]-rHDL (15 mg kg� 1 simvastatin, 10 mg kg� 1

ApoA1 and four injections per week) or placebo (four saline injections per week).
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Laser capture microdissection and qRT–PCR. Thirty-six 6-week-old male
apoE-KO mice were fed a high-fat diet for 26 weeks to develop advanced athero-
sclerosis. The animals received 1-week treatment of high-dose [S]-rHDL (four i.v.
infusions of 60 mg kg� 1 statin, 40 mg kg� 1 ApoA1, denoted as ‘high [S]-rHDL),
rHDL (two i.v. infusions of 10 mg kg� 1 ApoA1, denoted as ‘rHDL’), oral statin
treatment (15 mg kg� 1 per day oral simvastatin, denoted as ‘Oral SVS’), rHDL plus
oral statin (15 mg kg� 1 per day oral simvastatin and two i.v. infusions of
10 mg kg� 1 ApoA1, denoted as ‘rHDLþOral SVS’) or placebo (four i.v. injections
of PBS). Sections from aortic roots were prepared as described above, and a total of
24 sections were made per animal. For every eight consecutive sections, the first
one was stained with CD68 with the same method described above and was used as
the guiding section. The other seven sections were used for isolating MFs using
LCM as previously described35. Briefly, the sections were fixed in 70% ethanol for
1 min, washed in H2O, stained with Mayer’s haematoxylin (VWR Scientific) for
1 min, washed in H2O, incubated in PBS (to develop blue colour) for 15 s, washed
in H2O, partially dehydrated in 70% followed by 95% ethanol, stained in eosin Y
(VWR Scientific) for 5 s, washed in 95% ethanol and completely dehydrated in
100% ethanol (30 s), xylene (30 s) and xylene (5 min). After air-drying for 10 min,
MFs were identified under a microscope and were verified by the CD68 staining on
the guiding slides. Several hundred MFs per mouse were collected, and these MFs
from each animal were used to extract and amplify RNA with WT-Ovation Pico
RNA amplification system (NuGen). The quality of extracted RNA was measured
using Agilent 2100 Bioanalyzer. Quantitative reverse transcriptase PCR (qRT–
PCR) was performed on samples using the iScript cDNA Synthesis kit (Bio-Rad)
according to the manufacturer’s protocol. The mRNA expression levels of
investigated genes were normalized to the housekeeping gene hprt1 (UniGene ID:
Mm.1037830, Assay ID: Mm01545399). The following genes were investigated:
MCP-1 (Mm.290320, Mm00441242_m1), CCL-3 (Mm.1283), ICAM-1
(Mm.435508, Mm00516023_m1), VACM-1 (Mm.440909, Mm01320970_m1),
CXCL-12 (Mm.303231, Mm00445553_m1), CCL-15 (Mm.284248,
mm01302427_m1), TNF-a (Mm.1293, mm00443260_g1), IL-1b (Mm.222830,
mm00434228_m1), IL-1a (Mm.15534, Mm00439620_m1), Spp-1 (Mm.288474,
Mm00436767_m1) and MR (Mannose Receptor, Mm2019, Mm00485148_m1).
TaqMan Gene Expression assay (Life Technologies, Cat no. 4331182, applied to all
aforementioned genes) was used to measure the gene expression on sequence
detection device (ABI PRISM 7900HT).

Fluorescence molecular tomography with CT. Eleven 6-week-old apoE-KO mice
were fed a high-fat diet for 20 weeks before receiving four high-dose [S]-rHDL or
placebo (PBS) injections in a week. Five nanomoles of pan-cathepsin protease
sensor (ProSense 680, PerkinElmer, Cat no. NEV10003) was intravenously admi-
nistered along with the last i.v. injection of [S]-rHDL or PBS. Twenty-four hours
later, the animals were placed in a custom-built imaging cartridge, which was
equipped for isoflurane administration during imaging. Animals were first scanned
with high-resolution computated tomography (CT; Inveon PET-CT, Siemens),
with a continuous infusion of CT-contrast agent (isovue-370, Bracco Diagnostics)
at a rate of 55ml min� 1 through a tail vein catheter. Animals were subsequently
scanned with an FMT scanner (PerkinElmer) in the same cartridge. The CT X-ray
source with an exposure time of 370–400 ms was operated at 80 kVp and 500 mA.
Contrast-enhanced high-resolution CT images were used to localize the aortic root,
which was used to guide the placement of the volume of interest for the quanti-
tative FMT protease activity map. The CT reconstruction protocol involved
bilinear interpolation, used a Shepp-Logan filter and scaled pixels to Hounsfiled
units. Image fusion relied on fiducial markers and used the Osirix software
(The Osirix Foundation, Geneva).

Blood tests and lipoprotein analysis. After 4 h of fasting, whole blood was col-
lected in an EDTA-containing tube. Some serum was subjected to a biochemistry
panel (ALX laboratories, NY) analysis to determine the blood concentrations of
alanine transaminase, aspartate transaminase, creatinine, creatine kinase, choles-
terol and triglyceride. The rest serum was pooled per group for lipoprotein analysis
via fast-performance liquid chromatography (FPLC) (Pharmacia). For each sample,
250ml of the plasma was applied to 2 Superose 6 columns (GE Healthcare) equi-
librated and run in a buffer containing 150 mM NaCl and 15 mM EDTA in
deionized water. The column flow rate was 0.7 ml min� 1. Eighty fractions were
collected, and the total cholesterol concentration of each fraction was assessed
using an enzymatic colorimetric assay (Wako) according to the manufacturer’s
instructions.

Cholesterol measurement in thoracic aorta. The thoracic aortas were blotted dry
and weighed. Later, they were minced and extracted with chloroform/methanol (2:1)
according to the method of Folch et al.36 The cholesterol-containing supernatant
was measured (WACO diagnostics) and the total cholesterol from the aortas was
calculated accordingly. Finally, the ratio of cholesterol to tissue was calculated by
dividing the total cholesterol content per aorta by the weight of the aorta.

Statistics. Continuous variables are expressed as means±s.d., unless otherwise
stated. Significance of differences was calculated by use of the nonparametric
Mann–Whitney U-tests and Kruskal–Wallis tests. Multiple linear regression

analysis was used to assess the association between CD68 area and the various
treatment groups, with CD68 area as the response variable and treatment group as
the explanatory variable, adjusting for the potential confounder serum total
cholesterol. Composite variables were calculated for Mo recruitment and
pro-inflammatory mRNA expression in the LCM experiment. Probability values of
Po0.05 were considered significant. Statistical analyses were performed using
SPSS (Statistical Package for the Social Sciences) version 17.0 and SAS package
(SAS Institute Inc.).
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