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Abstract 1 

Difficulty switching between motor programs is a proposed cause of motor blocks in Parkinson 2 

disease (PD). Switching from one movement to another has been studied in the upper extremity 3 

and during postural control tasks, but not yet in the eyes and lower limb in PD. The purpose of 4 

this study was to compare movement orientation switching ability between people with PD and 5 

age-matched controls (CON) and to determine if switching ability is correlated between the eyes 6 

and lower limb. Twenty-six persons with PD and 19 age-matched controls participated. 7 

Movement orientation switching was studied in a seated position with the head fixed in a 8 

chinrest.  In response to a randomly generated tone, participants switched from a continuous 9 

back-and-forth movement in either the horizontal or vertical orientation to the opposite 10 

orientation as quickly as possible.  Lower limb movements were performed with the great toe 11 

pointing back and forth between targets positioned on a 45º angled floor platform. Eye 12 

movements were back and forth between the same targets.  Eye and lower limb switch time was 13 

reduced in PD  (p<0.01), but after normalizing switch time to movement velocity, no differences 14 

existed between PD and CON.  Eye and lower limb switch times were correlated in PD (r=0.513, 15 

p<0.01) but not in CON.  In PD, switch time and movement velocity of the lower limb, but not 16 

the eyes, correlated with bradykinesia and postural instability/gait.  Our results suggest that 17 

individuals with PD experience movement switching deficits with both the eyes and lower limb, 18 

perhaps driven by overall bradykinesia.    19 

 20 

 21 

Keywords:  Parkinson’s disease, eye movements, basal ganglia 22 

 23 



Running Title: Movement orientation switching in PD  

1. Introduction 24 

 Many persons with Parkinson disease (PD) experience bradykinesia and akinesia that 25 

often lead to functional decline including decreased mobility, freezing of gait, and a higher risk 26 

of fall-related injuries.  According to the center-surround hypothesis, basal ganglia dysfunction 27 

in PD may lead to excessive inhibition of desired and undesired movements 
1
, leading to 28 

difficulty with selection and execution of the desired movement.   This difficulty  has been cited 29 

as a mechanism underlying problems with changing from one motor program to another 
2-4

, with 30 

extreme difficulties in switching motor programs perhaps contributing to the freezing 31 

phenomenon
5
. As freezing of gait is quite often triggered by turning, we hypothesize that 32 

difficulties in switching between motor patterns in order to change direction of movement may 33 

underlie the turning difficulties noted in many individuals with PD.  Such impairments related to 34 

switching movement direction have been reported for upper extremity movements and postural 35 

control tasks 
4,6,7

.  Pfann et al. 
7
 even noted pauses, perhaps analogous to the freezing of gait 36 

sometimes triggered by turning, at the points of direction change during upper extremity 37 

movements.  Specific impairments related to changing directions have also been hypothesized to 38 

contribute to difficulties with sit to stand movements in individuals with PD 
8
.  39 

 When considering direction changes, particularly during locomotion, one should not 40 

overlook the role of eye movements.  Saccadic eye movements play an important role in 41 

locomotion as they provide a shift in gaze toward the direction of travel and initiate the top-down 42 

rotation sequence characteristic of a normal turning pattern 
9-11

.  Saccadic eye movements, 43 

however, are impaired in PD, as evidenced by a large body of evidence.  Early work in persons 44 

with PD showed prolonged fixation times, bradykinesia, and akinesia during rapid alternating 45 

gaze shifts between two fixed targets 
12

.  Several more recent studies have demonstrated that 46 
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people with PD make slower and smaller voluntary saccadesthan control subjects 
13-15

.  The basal 47 

ganglia (BG) circuitry may be particularly important for changing saccade direction 
16

, and 48 

saccade dysfunction is associated with turning difficulty in persons with PD 
17

.  During both 90 49 

and 180 degree turns, the saccade initiating the turn is hypometric and displays altered timing 50 

relative to turn onset when compared with healthy controls.      51 

To our knowledge, deficits in ability to change movement directions of the eyes and 52 

lower limbs have yet to be examined in the same individuals with PD.  Therefore, the purpose of 53 

this investigation was to confirm whether individuals with PD have difficulty switching between 54 

two movement orientations with the eyes and lower limbs, and to determine if the ability to 55 

switch movement orientation with the eyes is correlated with switching ability in the lower limb.  56 

We hypothesized that deficits in the ability to change movement orientation with the eyes and 57 

lower limbs would be noted in individuals with PD, and that the deficits in the eyes and limbs 58 

would correlate with one another, indicating a similar amount of decline in orientation switch 59 

ability across different body parts.  Confirmation of our hypotheses would support an overlap 60 

between oculomotor and lower limb control in the dysfunctional BG and provide important 61 

insights into the nature of eye and limb control in PD.      62 

2. Methods 63 

2.1 Participants 64 

 Twenty-six individuals with idiopathic PD (17 men, 9 women; age = 70.2 ± 10.5; PD 65 

duration 8.4 ± 6.0 years, Hoehn & Yahr stage = 2.3 ± 0.4; MDS-UPDRS III score = 41.0 ± 11.1)  66 

and 19 age-and gender-matched controls (11 men, 8 women; age = 67.7 ± 10.6 years) 67 

participated.  Sample size was based on a-priori power analysis using switch time pilot data; 20 68 

subjects per group would provide 87% power to detect a 0.7 effect size using a two-tailed, 2-way 69 
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ANOVA (p = 0.05). Individuals with PD were recruited from Washington University School of 70 

Medicine’s (WUSM) Movement Disorders Center.  Controls were recruited from the Volunteers 71 

for Health Database, posted flyers, and other WUSM volunteer databases.   All subjects met the 72 

following inclusion criteria: aged 30 years or older, normal central (except for PD in the PD 73 

group) and peripheral neurological function, able to stand independently for at least 30 minutes 74 

and walk independently without an assistive device, no history of vestibular disease and no 75 

evidence or history of dementia.   Exclusionary criteria included: serious medical condition other 76 

than PD, use of neuroleptic or other dopamine-blocking drug, use of drug that might affect 77 

balance such as benzodiazepines, evidence of abnormality on brain imaging (previously done for 78 

clinical evaluations-not part of this research), history or evidence of other neurological deficit, 79 

and history or evidence of orthopedic, muscular, or psychological problem that may affect task 80 

performance. Additionally, participants with PD were included based on a diagnosis of “definite 81 

PD” by a board certified neurologist, as previously described by Racette et al. 
18

 based upon 82 

established criteria 
19,20

 and were excluded if they had received surgical management of PD (e.g. 83 

deep brain stimulation).  All subjects gave informed consent to perform experimental procedures 84 

approved by the Human Research Protection Office at WUSM. 85 

2.2 Experimental procedures 86 

 All procedures were performed in the Locomotor Control Laboratory at WUSM. 87 

Participants with PD were tested OFF medication, i.e. after a 12-hour withdrawal of all anti-88 

Parkinson medications.  Before testing procedures commenced, the Movement Disorder Society 89 

Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Motor Subscale III was administered 90 

according to Goetz et al. 
21

 by a trained rater. The MDS-UPDRS-III is a measure of severity of 91 

PD motor symptoms, as well as physical disability, and includes measures of rigidity, gait, 92 
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tremor, hand/arm and leg movements (bradykinesia), speech, and facial expressions. The 93 

modified Hoehn and Yahr scale was used to evaluate disease severity in PD 
22

.  FOG was 94 

assessed using the Freezing of Gait Questionnaire (FOG-Q) 
23

, with total FOG-Q score 95 

representing overall FOG severity, and freezers identified as those who reported freezing of gait 96 

at least once per week on item three or the questionnaire. 97 

 During the protocol, each participant performed eye and lower limb movement tasks 98 

while in a seated position.  Lower extremity tasks were performed with the dominant limb. For 99 

all movement tasks, four white targets were placed on a black angled platform (45º relative to the 100 

floor) located on the floor in front of the subject. Targets were positioned 20 centimeters apart 101 

such that eye movements between targets would be approximately 25 degrees (Figure 1).  Each 102 

subject was seated with his head resting in a chinrest to minimize head movement and angled 103 

downward such that the platform was positioned in the center of the visual field.  The platform 104 

was centered in front of the subject at a distance that allowed for comfortable movement of the 105 

lower limb. To investigate the ability to switch movement orientation (switch task), participants 106 

began the task by moving either their eyes or lower limb (pointing with the big toe) back and 107 

forth as quickly as possible between two targets (either horizontally or vertically).  Upon hearing 108 

an auditory tone, participants were instructed to switch movement orientation as quickly as 109 

possible and continue moving back and forth in the new orientation. Multiple orientation 110 

switches, including both horizontal-to-vertical (HV) and vertical-to-horizontal (VH) switches, 111 

were performed at random times during each trial with 4-6 orientation switches per 30 second 112 

trial. Auditory cues were triggered by the first author by pressing a button which sounded the 113 

signal.  Throughout each trial, the interval between switches was random as that the tester did not 114 
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time the interval between switch cues and made an effort to vary the time interval from switch to 115 

switch.   116 

 To control for differences in reaction time between PD and CON, simple reaction times 117 

(RT) of the lower limb and eyes were tested. Each participant began with eyes fixated or great 118 

toe positioned on a target centered between the 4 peripheral targets used for the switch task.  119 

Upon hearing a tone, the participant reacted as quickly as possible to move either left, right, up, 120 

or down, as instructed prior to each trial.   To control for differences in movement velocity 121 

between PD and CON, participants also performed three 10 second trials of back and forth 122 

movements of the eyes or lower limb, moving as quickly as possible between the horizontal 123 

targets without switching orientations so that average movement velocity could be determined.  124 

For all tasks, participants were given the opportunity to practice the task and data collection 125 

commenced when the participant was comfortable performing the task. 126 

2.3 Data collection and processing 127 

 Lower limb movements were captured using an eight camera, passive marker, 3-128 

dimensional, high-resolution motion capture system sampling at 100 Hz in Cortex software 129 

(Motion Analysis Corporation, Santa Rosa, CA).  One retro-reflective marker was positioned at 130 

the base of the great toe.  The motion capture system was calibrated both statically (calibration 131 

frame) and dynamically (wand) prior to each data collection session.  Ocuolmotor data were 132 

captured using a head-mounted infrared binocular eye tracking system (Applied Sciences 133 

Laboratory, Bedford, MA) and electrooculography (EOG).  Oculomotor data were captured 134 

synchronously at 1000Hz on the same PC workstation with kinematic data in Cortex software.  135 

The infrared eye tracking system was calibrated for each participant using a two step process. 136 

First, a nine-point relative points methods was used to calibrate the eye tracking system. Then, 137 
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participants performed saccades of known amplitudes in four directions (up, down, left, right) to 138 

allow conversion of analog data (millivolts) into angle data (degrees).  139 

 Lower limb marker data and analog data were filtered using 4th order low-pass 140 

Butterworth filters.  Marker data were filtered in Cortex with a cut-off frequency of 6 Hz while 141 

analog data were filtered in MotionMonitor (Innsport, Chicago, IL) with a cut-off frequency of 142 

20 Hz.  A global coordinate system was defined in MotionMonitor with the positive X-axis 143 

pointing anteriorly, positive Y-axis pointing to the left and positive Z-axis pointing upward 144 

vertically.  Toe marker kinematic data and filtered analog data were exported for further 145 

processing in custom written MATLAB software (The Mathworks, Inc, Natick, MA).   146 

 For the orientation switch task, switch time was defined as the time interval between the 147 

auditory tone and the beginning of first full amplitude movement in the new orientation. As each 148 

trial contained multiple VH and HV switches, VH and HV switches were measured separately 149 

and an average switch time was determined for each switch orientation.  For the RT tasks, RT 150 

was defined as the time interval between auditory tone and movement onset (lower limb 151 

movement exceeding 5 mm from origin and eye movements exceeding 0.5 degrees from origin). 152 

For the movement velocity task, movement velocity was calculated as the number of back and 153 

forth cycles completed during a measured time period multiplied by the average movement 154 

amplitude across all of the cycles within the trail.  Finally, to control for the effect of movement 155 

velocity, switch times were normalized to movement velocity by multiplying the two measures. 156 

Individual trials were excluded from analysis if artifacts in oculomotor data due to blinks, 157 

prolonged closure of eyelids, or other factors precluded measurement.  Remaining trials within a 158 

condition were averaged to obtain a single data point for each subject for each task.  159 

2.4 Data Analysis 160 
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 Independent Student’s t-tests were used to compare between-group differences in 161 

movement velocity, movement amplitude, and normalized switch time for both the eyes and 162 

lower limb, and a bonferroni correction was used to control for multiple comparisons, bringing 163 

the level of significance for the t-tests to p<0.0045. A mixed model was used to test the effect of 164 

group, segment (eye vs. lower limb), and the group-segment interaction on switch time and RT.  165 

Segment was treated as a repeated measure.  Pearson’s correlation coefficients were used to test 166 

the correlation between eye and lower limb switch times as well as the correlation between 167 

switch time and movement velocity. Spearman’s rank order correlations were used to examine 168 

correlations between movement parameters (amplitude, velocity, switch time) and FOG and the 169 

MDS-UPDRS III.  The criterion for statistical significance was set at p<0.05 for all analyses. 170 

3. Results  171 

 Eye movements in the vertical plane could not be captured for a number of participants 172 

(13 PD and 2 CON). Therefore, only movement tasks in the horizontal plane and VH orientation 173 

switches are reported. Age did not differ between PD and CON (t = .799, p = 0.429), nor did RT 174 

(F = 1.703, p = 0.199), although RT was slower in the lower limb (F = 28.343, p < 0.001).  175 

Movement velocity was not statistically different between PD and CON for the eyes (t = 1.505, p 176 

= 0.140), but was decreased in PD for the lower limb (t = 3.710, p = 0.001).  There was a 177 

significant group effect for switch time (F = 20.99, p <0.001), but neither the main effect of 178 

segment nor the group-segment interaction were significant (F=2.386, p = 0.130; F = 0.143, p = 179 

0.707, respectively).  Although switch time was significantly different between groups, 180 

normalized switch time did not differ significantly between groups for the eyes (t = 1.683, p = 181 

0.100) or lower limb (t = 1.138, p = 0.261).   During the movement velocity task, average lower 182 

limb and eye movement amplitudes closely approximated the expected values based on target 183 
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placement (20 cm/ 25 degrees apart), and there were no group differences for the eyes (t = 0.453, 184 

p = 0.653) or lower limb (t = 1.949, p = 0.058).  Eye and lower limb performance data are 185 

displayed in Table 1. 186 

  Across all participants, switch times of the eyes and lower limb were significantly 187 

correlated (r = 0.425, p = 0.004), but normalized switch times of the eyes and lower limb were 188 

not significantly correlated (r = 0.257, p = 0.088). Within PD, eye and lower limb switch time 189 

did not correlate significantly (r = 0.286, p = 0.186) but normalized switch times correlated 190 

significantly (r = 0.513, p = 0.007). Within CON, neither correlation was significant (switch 191 

time, r = 0.089, p = 0.719; normalized switch time, r = -0.058, p = 0.812) (Figure 2).   In PD, 192 

FOG was correlated with lower limb velocity (ρ = -.483, p = 0.013), amplitude (ρ  = -0.552, p = 193 

0.007), and switch time (ρ = 0.503, p = 0.009).  Total MDS-UPDRS-III scores correlated with 194 

lower limb switch time (ρ = 0.502, p=0.009), velocity (ρ = 0.551, p = 0.004), and amplitude (ρ = 195 

-0.606, p = 0.001).   MDS-UPDRS-III scores were also divided into sub-scores reflecting tremor 196 

(items 3.15 – 3.18), rigidity (item 3.3), bradykinesia (items 3.4 – 3.8), and postural stability and 197 

gait (PIGD, items 3.9 – 3.13).  PIGD correlated with lower limb switch time (ρ  = 0.558, 0.003), 198 

velocity (ρ  = -0.617, p = 0.001) and amplitude (ρ  = -0.430, p = 0.032).  Bradykinesia correlated 199 

with lower limb switch time (ρ  = 0.412, p = 0.036) and velocity (ρ  = -0.493, p = 0.010).  Eye 200 

switch time and velocity did not correlate significantly with any of the MDS UPDRS III sub-201 

scores.  These correlations are shown in Figure 3.  Finally, switch time and movement velocity 202 

were significantly correlated in the eyes (r = -0.587, p < 0.001) and in the lower limb (r = -0.749, 203 

p< 0.001) across all participants. 204 

 Comparing freezers and non-freezers. groups did not differ in terms of movement 205 

velocity (eye, t = 1.045, p = 0.306; lower limb, t = 1.134, p = 0.268) or amplitude (eye, t = 0.007, 206 
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p = 0.995; lower limb, t = 0.852, p = 0.403).  The main effect of eye vs. lower limb was 207 

significant for RT (F = 21.248, p < 0.001) with RT being slower in the lower limb. Both the main 208 

effect of group (F = 0.039, p = 0.845) and the interaction (F = 1.343, p = 0.258) were not 209 

significant for RT. Switch time main effect of group (F = 1.081, p = 0.309), eye vs. lower limb 210 

(F = 1.936, p = 0.177), and the interaction (F = 3.247, p = 0.084) were all non-significant.  211 

4. Discussion 212 

 This study sought to determine whether the ability to switch movement orientation with 213 

the eyes and lower limbs is impaired in PD and whether orientation switch ability is similar 214 

between the eyes and lower limbs.  In summary, persons with PD took longer to switch 215 

movement orientation with both the eyes and lower limb, and displayed a reduction in lower 216 

limb movement velocity. When normalizing switch time to movement velocity, the significant 217 

group effects of switch time were negated.  Across both PD and CON, eye switch time correlated 218 

significantly with lower limb switch time, and in persons with PD, FOG, UPDRS, PIGD, and 219 

bradykinesia correlated significantly with lower limb function, while oculomotor function did 220 

not correlate with these measures.  There were no differences between PD freezers and non-221 

freezers in terms of switch time, movement velocity, or movement amplitude 222 

 Our hypothesis was supported in that persons with PD required 37% and 41% more time 223 

to switch orientation with their eyes and lower limb, respectively, compared to controls. 224 

However, since eye and lower limb movement velocities were slower in PD compared with 225 

CON, we normalized orientation switch times to movement velocity. In doing so, we noted that 226 

normalized switch times were similar between PD and controls, indicating that if PD were to 227 

move at the same velocity as the controls, their orientation switch ability may be comparable for 228 

both the eyes and lower limbs. As hypothesized, normalized lower limb switch times explained 229 
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26% of the variance in normalized eye switch times in PD, but this relationship did not hold true 230 

for controls.  231 

 Our finding of prolonged switch times in PD corroborates previous research.  In the 232 

upper extremity, Almeida et al.
24

 observed delays in switching between two coordination 233 

patterns in the upper extremity, while Plotnik et al.
6
 showed that people with PD respond poorly 234 

to movement modifications.  To our knowledge, this is the first study to report such findings in 235 

the lower extremity and eyes.  Further, previous studies in the upper extremity did not account 236 

for movement velocity.  Herein, we demonstrate that accounting for movement velocity negates 237 

the group differences in orientation switch ability.  Thus, observed deficits in the ability to 238 

switch movement direction/orientation in our study and others, indicative of a deficit in motor 239 

program switching, may be simply a function of global bradykinesia.  Regardless, it is clear that 240 

the overall time required to change from one movement paradigm to another in response to an 241 

external stimulus is greater in PD.  This difficulty may contribute to FOG which is often 242 

triggered by a change in movement, such as switching from straight walking to turning. The 243 

modest delay in switching between simple motor programs observed in the present study may 244 

manifest in a much longer delay or freeze when the motor programs are more complicated (i.e. 245 

gait).  A delay in switching could also be a contributing factor in falls, as a delay in selecting and 246 

executing the proper motor response to an unanticipated perturbation or change in body position 247 

may not allow enough to time to catch oneself before a point of no return. Finally, our study 248 

supports previous work showing deficits in oculomotor function in PD. Visual information plays 249 

an important role in gait and people with PD show deficits in saccade performance that relate to 250 

impaired turning performance 
17

 and may contribute to FOG and falls.  251 
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 While the basal ganglia are often described as having distinct loops for oculomotor and 252 

motor control, evidence suggests that the subthalamic nucleus (STN) may play key roles in the 253 

control of both eye and limb movements, indicating overlap of the oculomotor and motor loops. 254 

Some neurons within the STN respond to voluntary saccades as well as limb movements 
25

.  The 255 

timing and characteristics of saccade-related potentials in STN suggest that these cells are 256 

responsible for broad non-specific inhibitory output to inhibit unwanted motor programs, 257 

whether for the eyes or the limbs 
26

.  Disruption of this inhibitory output from the STN could 258 

account for impairments in voluntary saccades 
27

 and limb movements.  Abnormal STN output 259 

may also contribute to difficulty turning that can trigger FOG, as evidenced by the fact that STN 260 

deep brain stimulation can alleviate off-period freezing 
28-30

.  The apparent overlap between 261 

oculomotor and motor control in the basal ganglia provides a potential anatomical substrate 262 

where a pathophysiological disruption could contribute to impaired eye and limb movements and 263 

also to turning difficulties.  Our data suggest that eye and lower limb switching are mildly 264 

correlated, supporting the potential for overlap between oculomotor and lower limb control by 265 

the basal ganglia and a global bradykinesia that appears to influence eye and limb movements 266 

similarly.  In line with a center surround hypothesis 
1
, the common bradykinesia of the eyes and 267 

lower limbs may be due to over-activity of the subthalamic nucleus leading to excessive 268 

inhibitory output from the basal ganglia. In support of a global bradykinetic cause for delays in 269 

switching movement orientation in the tasks we studied, our global bradykinesia score obtained 270 

from the MDS-UPDRS-III correlated with lower limb orientation switch times, as did the PIGD 271 

score. 272 

 While we conclude that differences in switch time between PD and CON are driven by 273 

bradykinesia, it is important to consider alternative hypotheses.  Since the switch task involved 274 
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reacting to an auditory stimulus, differences in switch times could be attributed to differences in 275 

RT between PD and CON. However, RT did not differ between groups for either the lower limb 276 

or eyes, thus RT is unlikely to have contributed to group differences in switch time. An 277 

alternative hypothesis to our bradykinesia explanation is that PD suffer from a deficit in the 278 

ability to select and execute a new or different motor program, and that this deficit is at least 279 

partially independent of bradykinesia. If this were the case, we would expect group differences in 280 

switch time to remain even after controlling for movement velocity (normalized switch times), 281 

indicated that bradykinesia does not fully explain the effect of group on switch time. However, 282 

this was not the case as normalized switch times were very similar between PD and CON for 283 

both the eyes and lower limb.  Further support for our bradykinesia hypothesis is that movement 284 

velocity and switch time were highly correlated in both the eyes and lower limb across all 285 

subjects, and that there were no differences between freezers and non-freezers in the ability to 286 

switch movement orientation.  287 

4.1 Limitations 288 

 During the movement velocity and orientation switch tasks, participants were provided 289 

with visual cues in the form of targets.  A large body of existing literature supports the use of 290 

various types of visual cueing strategies for improving movement in PD.  Therefore, it is 291 

possible that movement amplitude and switching ability were enhanced in PD by the presence  of 292 

targets.  Additionally, the lower limb and eye movements required for the tasks herein were of 293 

relatively small amplitude (20cm for the lower limb and 25 degrees for the eyes).  Since the 294 

performance of those with PD compared well with controls in terms of movement amplitude, it is 295 

possible that the inter-target distance chosen was too small to elicit hypokinetic movement in 296 

PD.  297 



Running Title: Movement orientation switching in PD  

4.2 Conclusions and future directions 298 

 Switching between movement contexts is impaired in PD and affects not only upper and 299 

lower limb movements, but eye movements as well, and the severity of dysfunction is similar 300 

between eyes and lower limb.  It appears that global bradykinesia may be a factor affecting 301 

switching ability in PD. Future work should explore movement switching ability of the lower 302 

limbs during more complex and functionally relevant tasks, such as during locomotion. 303 
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FIGURES  403 

 404 

Figure 1. Experimental set-up. (A) Participants were seated in a chair with their head positioned 405 

in a chinrest to minimize head movement and with their head tilted downward.  A binocular 406 

head-mounted eye tracking device was secured to their head in this position.   A black platform 407 

was positioned on the floor in front of the subjects. The platform was angled 45 degrees to the 408 

floor with round white targets positioned on the face of the platform.   (B) Configuration of 409 

targets for the orientation switch task. (C) Configuration of targets for the reaction time task. 410 
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 411 

Figure 2. Correlation between eye and lower limb switch times for CON (top) and PD (bottom).  412 

 413 
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 414 

Figure 3. Correlations of lower limb switch time (left column) and movement velocity (right 415 

column) with MDS-UPDRS III, Bradykinesia, PIGD, and FOG in subject with PD only. 416 
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