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Abstract 

Successful locomotion depends on postural control to establish and maintain appropriate 

postural orientation of body segments relative to one another and to the environment, and to 

ensure dynamic stability of the moving body. This paper provides a framework for considering 

dynamic postural control, highlighting the importance of coordination, consistency, and 

challenges to postural control posed by various locomotor tasks such as turning and backward 

walking.  The impacts of aging and various movement disorders on postural control are 

discussed broadly in an effort to provide a general overview of the field and recommendations 

for assessment of dynamic postural control across different populations in both clinical and 

research settings.  Suggestions for future research on dynamic postural control during 

locomotion are also provided and include discussion of opportunities afforded by new and 

developing technologies, the need for long-term monitoring of locomotor performance in 

everyday activities, gaps in our knowledge of how targeted intervention approaches modify 

dynamic postural control, and the relative paucity of literature regarding dynamic postural 

control in movement disorder populations other than Parkinson disease. 

  



Upright, bipedal locomotion is a hallmark of human mobility, allowing for independent 

movement through a variety of environments for various purposes.  Successful locomotion 

depends on postural control to establish and maintain appropriate postural orientation of body 

segments relative to one another and to the environment and to ensure dynamic stability of the 

moving body.  This process critically depends on integration of sensory inputs and must operate 

within the limits of biomechanical constraints inherent to the individual and the task (Figure 1).  

Without adequate postural control, locomotion becomes dyscoordinated, inefficient, unstable 

and potentially hazardous given the risk for falls during walking.  Given the importance of 

postural control during locomotion, the objectives of this paper are to: 1) review recent evidence 

regarding postural control during gait, highlighting how control changes during challenging 

locomotor tasks and in the face of aging and various movement disorders, 2) propose a 

framework for assessment of postural control across locomotor tasks in both clinical and 

research settings, and 3) recognize gaps in our current knowledge and areas of need for future 

research regarding postural control during locomotion. 

 

Coordination and Consistency: The Foundations of Dynamic Postural Control 

 During ongoing locomotion, the basic stepping patterns for forward walking have for 

some time been well characterized with regard to expected average joint movement profiles and 

patterns of muscle activity.  These fundamental, spatiotemporal patterns of coordination within 

and between limbs (Figure 2) provide the foundation for dynamic postural control during gait.  

Locomotion may be controlled by internal models that determine the difference between actual 

and desired body locations within the environment, and then transmit this “error” signal to 

neurons that subsequently work to diminish this difference by sending commands that will result 

in moving the body closer to the desired, or referent, position.1  In this schema, muscle 

activation is dependent upon the mismatch between the actual and referent positions, with the 

referent position being constantly shifted in the desired direction of locomotion as one continues 



to progress through the environment.  Postural control in the fore-aft direction during gait may 

be maintained through a series of controlled falls that are passively and actively stabilized.2  

One example of active stabilization is the braking of the COM during the transition into double 

support, with older adults adopting reduced step lengths and reduced gait speeds that may 

assist in maintaining effective COM control.3  The capacity to regulate COM braking is also 

reduced in those with PD relative to controls and may be related to non-dopaminergic midbrain 

lesions.4 

While much insight can be gained about postural control through assessment of 

fundamental coordination of movement, there is increasing recognition that consistency of step 

to step performance, once thought to reflect noise in the control system, provides an important 

additional level of information about locomotor control (Figure 2).  In fact, variability has been 

identified as an important and unique domain of gait that is impacted by aging and disease, 

related to fall risk and predictive of future mobility decline in older adults5-9.  For example, stride 

time variability is increased in those with high level gait disorders10 and movement disorders 

such as Huntington disease (HD) and PD11 12.  In fact, pre-manifest mutations carriers for HD 

can be distinguished from healthy controls based upon stride to stride variability.13  In addition, 

carriers of the LRRK2-G2019S mutation demonstrate higher gait variability than non-carriers in 

fast and dual task walking conditions14.  Furthermore, among those with PD, fallers and freezers 

exhibit higher stride time variability than non-fallers and non-freezers.12 15  Step length and step 

timing are also more variable during gait initiation in PD.16   

Both coordination and consistency can be incorporated into single measures of gait 

performance.  One example of such a measure is phase coordination index (PCI), which 

examines temporal coordination of interlimb phasing and variability of this phasing across 

strides.17  PCI reveals poorer or less consistent interlimb phasing is also associated with aging, 

PD, and freezing of gait17-21.  Performance of more challenging gait tasks such as backward 

walking and turning, as well as forced manipulations of step length and cadence away from 



preferred baseline values during forward walking, are associated with reduced coordination as 

measured by PCI, with old being more affected than young, those with PD being more affected 

than age-matched controls, and those with PD and history of freezing being more affected than 

those with PD but no history of freezing.18 22   

Recent work suggests that upper extremity coordination during bimanual tasks requiring 

anti-phase movements is affected by forced manipulations of amplitude and cadence in a 

manner very similar to the effects on actual locomotion as outlined in the preceding paragraph.23  

Other studies also suggest clear links between locomotor control and upper extremity control in 

health and disease.  For example, studies showing freezing of upper extremity movements and 

their correlation with freezing of gait suggest the possibility of common control mechanisms for 

coordination of bilateral upper extremity and bilateral lower extremity tasks.23-25  Moreover, arm 

swing is clearly coordinated with lower extremity movement during typical gait, suggesting 

persistence of the basic quadrupedal limb coordination pattern during bipedal gait.26  However, 

this coordination is task-dependent, as the arms can be uncoupled from the lower limbs for use 

in voluntary activities such as carrying objects.  Changing movement of the arms impacts 

locomotor coordination, with prevention of arm swing resulting in a switch from anti-phase 

coordination between the pelvic and scapular girdles to an in-phase pattern.27  Reduced arm 

swing is common in PD and correlates with rigidity and bradykinesia28.  Arm swing amplitude 

and phasing relative to the lower extremities improve with both levodopa and deep brain 

stimulation.29  Given the mounting evidence for the importance of upper extremity control in gait, 

comprehensive clinical assessments and future research studies should consider both lower 

extremity and upper extremity coordination and consistency to obtain a complete picture of 

dynamic postural control during gait.         

 

Beyond Coordination and Consistency: Postural Control in Challenging Gait Tasks 



While coordination and consistency form the foundations of postural control, ability to 

regulate posture in the face of challenging gait tasks is equally important to successful 

locomotion (Figure 2).  The ability to produce a coordinated and consistent forward walking 

pattern is not sufficient, and as such it is important to consider how postural control changes in 

the face of different environments, goals, biomechanical constraints and sensory conditions 

(Figure 1).  A thorough evaluation of dynamic postural control, whether done for clinical or 

research purposes, should assess performance in a variety of conditions.  Suggested conditions 

include walking at different speeds, in different directions, with eyes closed and with head turns, 

with biomechanical constraints such as obstacles and narrow base of support (i.e. tandem 

walking), and in dual task paradigms where additional non-locomotor demands are placed on 

the system (Table 1).  The following paragraphs highlight some of these areas, while others are 

covered in more detail elsewhere in this special issue. 

Postural control is influenced by the integration of visual, vestibular, and somatosensory 

inputs.  With increasing age, a more conscious strategy for locomotor and postural control may 

be utilized as evidenced by increases in cortical BOLD signals in vestibular, somatosensory and 

visual areas of the cerebral cortex in older compared to younger adults during imagined 

walking.30   Simple means of exploring the role of sensory inputs include walking with eyes 

closed and with head turns (Table 1).  Walking at different speeds also probes sensory inputs, 

as vestibular influences on gait are reduced during faster walking and running relative to slower 

walking31 32.  More complex experimental methods use perturbations presented during gait 

initiation and walking to probe the role of sensory inputs.  For example, Rogers et al.33 

introduced a sudden drop or elevation of the support surface to assess the contribution of 

somatosensory information during gait initiation, demonstrating that controls and people with PD 

can rapidly adapt to this type of perturbation.  This suggests a feedforward neural control of gait 

initiation in which sensory information regarding limb load and/or foot pressure can modulate 

temporal and spatial components of step initiation. 



  Other perturbation paradigms introduce unexpected movements of the support surface 

during ongoing walking.  Perturbation studies support the concept of modular or synergistic 

control of gait, hypothesizing that changes in the basic gait pattern in response to perturbations 

or even to increased loads can be accomplished through variations in temporal recruitment from 

a library of locomotor muscle synergies, with this recruitment being accomplished  through 

different parallel pathways at the spinal, brainstem, and cortical levels.34 35  The specific 

strategies employed depend upon the particular demands of the perturbation.  For example, 

mediolateral translations of the support surface during gait result in shorter steps with wider step 

width to allow for stability and adaptability.36 37  Other tasks, such as tandem walking and 

obstacle negotiation, introduce specific biomechanical constraints (Table 1).  Tandem, or heel-

to-toe walking along a line, requires tighter mediolateral control of the COM given the narrow 

base of support.  Obstacles require individuals to adjust step length or step height in order to 

avoid contact with the object.  People with PD have particular difficulty increasing step length as 

compared to step height,38 and adopt a conservative strategy with reduced anterior-posterior 

and increased mediolateral center of mass motion, as well as a reduced distance between the 

center of mass and center of pressure compared to controls.39 

 Obstacle negotiation tasks also highlight the importance of the upper extremities to 

balance recovery.  Upper extremity muscle activity is higher during obstacle crossing; the upper 

extremities are coupled with the lower extremities and play a role in equilibrium control.40  The 

coupling between the upper and lower extremities during obstacle crossing is preserved in PD.41 

In conditions which mimic unsuccessful obstacle negotiation, such as sudden arrests of the 

forward movement of one leg or recovery from a trip, upper extremity movements are 

asymmetric and may assist in balance recovery by impacting orientation of other body 

segments in order to facilitate braking of the impending fall.42  As walking continues after the 

perturbation, stability is recovered and interlimb phasing between the upper and lower limbs is 



restored, with older adults requiring more cycles to recover stability and appropriate interlimb 

phasing.43 

Older adults ability to successfully negotiate obstacles may also be influenced by vision, 

which provides critical information about body position relative to the environment.44  Several 

changes in visual processing and sampling in older individuals have been related to changes in 

locomotor performance.  Ability to reweight visual information declines with aging, resulting in 

larger gait deviations in response to visual perturbations in older compared to younger 

individuals.45  Older adults also have reduced ability to maintain gaze fixation and this ability is 

correlated with gait initiation performance, with those less able to maintain fixation requiring 

more time to initiate a step.46  Gaze behaviors during ongoing locomotion are also related to 

falls47 48.  During performance of walking tasks where one is required to step on particular 

targets along the walking path, elderly fallers demonstrate premature transfer of gaze to the 

upcoming target47 and longer latencies between making a saccade to a target and initiating a 

step to that target.48  Effective gaze control is critical not just for tasks requiring specific foot 

placements, but also for turning, where transfer of gaze initiates change in locomotor trajectory. 

Changes in locomotor trajectory are critical for daily locomotor activities; in fact, turning 

steps compose up to 50% of everyday tasks.49  Relative to straight walking, local dynamic 

stability is reduced during turning50, which is accomplished by a top down temporal sequence of 

body segment rotations.  The top down rotation sequence begins with a saccade in the new 

heading direction, and this anticipatory redirection of gaze is thought to be critical for initiating 

changes in locomotor trajectory.51  Without vision, axial segments rotate more slowly and more 

synchronously during turning.52  However, the top down rotation sequence is not affected by 

walking velocity52 or sharpness of the turn. Tighter curvatures are associated with greater 

spatial anticipation of the upcoming turn, but are still executed with a top down sequence.53  The 

anticipation of turning is characterized by an upweighting of vestibular inputs just before a turn54, 

along with anticipatory postural adjustments evidenced by a posteriolateral lean.55   



 Control of locomotor direction is thought to be governed at the level of whole body 

trajectory, with implementation occurring through specific motor strategies.56  In older adults, 

strategies for changes of body orientation are characterized by a longer latency between gaze 

reorientation and body segment reorientation.57  In addition, older adults with lower balance 

confidence are more likely to use multiple steps in order to accomplish changes in direction 

more gradually than do those with higher balance confidence.58  Changes in turning 

performance are even more pronounced in movement disorders.  Individuals with cerebellar 

ataxia use more steps and require a longer time to turn, taking shorter steps with a wider step 

width and adopting a more extended knee position compared to controls.59 60  These changes in 

turning performance in cerebellar ataxia may relate to deficits in intralimb coordination and/or 

compensatory strategies to reduce instability during turns.   

Turning is also impaired in PD, in keeping with evidence that striatal activation is 

associated with turns.61  Even those with mild PD and normal straight walking performance 

often have turning difficulty.62  These early changes in turning performance can be captured 

using wearable sensors to monitor turning performance63 64, and changes in turn duration may 

be a useful measure of progression in early PD.65  In those with more advanced PD, turning is 

often obviously impaired as observed by increased turn duration, greater number of steps to 

turn66 67, and difficultly switching motor patterns from straight walking to turning.68  Performance 

of turns, and functional mobility more generally, are related to increased postural tone, 

particularly in the neck.69  Difficulty turning in PD may also be related to the inherently 

asymmetric nature of turning, which requires asymmetric step lengths and leg velocities.70  

Sharper, and therefore more asymmetric, turns are associated with increased step time 

variability and more freezing in individuals with PD and a history of freezing of gait.71  However, 

the interaction between the asymmetric nature of turning and the asymmetric nature of PD 

requires further study, as current evidence suggests that turning toward the disease-dominant 

side is associated with higher cadence but not with increased frequency of freezing72.     



Recent work on turning in PD highlights the importance of altered oculomotor control, 

noting that relative to controls individuals with PD make fewer preparatory saccades 

approaching a turn73 and initiate turns with saccades that are slower and smaller.74  Those with 

PD also demonstrate slowness of head and trunk reorientation movements which may be 

compensated by greater contribution of eye movements than of head/trunk movements to 

achieve gaze shifts associated with turning.75  In fact, the characteristics of the saccade 

initiating a turn are predictive of ensuing turn performance; turns initiated with larger, faster 

saccades are executed more quickly than turns initiated with smaller, slower saccades.74  Initial 

turning saccade amplitude and velocity, and overall turn performance, improve with subthalamic 

nucleus deep brain stimulation.76  Cueing also can improve speed of turning in PD77 and may 

reduce freezing of gait associated with turning as long as the cues are present, with minimal 

carryover to uncued conditions.72   

 Like turning, backward walking represents another challenging locomotor task that 

continues to yield key insights into locomotor control. Backward walking is associated with 

greater stride time variability than forward walking78 and is more impaired in elderly individuals, 

in fallers, and in individuals with PD.79 80  Among those with PD, both forward and backward 

walking respond similarly to levodopa and to deep brain stimulation.81 82 

The movement patterns during backward walking are remarkably similar to time-

reversed profiles of forward walking.83  Similar muscles can be utilized to control the COM 

during forward as during backward walking, with additional supraspinal elements for propulsion 

helping to partially reconfigure lower level networks that may be common to both backward and 

forward walking.84  This is debatable, however, as other studies examining locomotor 

adaptations suggest the presence of separate spinal networks for forward and backward 

walking, as the two walking directions can be adapted independently of one another during split-

belt treadmill training.85  Split-belt treadmill paradigms, as well as other approaches utilizing 

moving surfaces such as a  moving sled or rotating treadmill, have yielded many important 



insights about locomotor adaptation that are beyond the scope of this paper (for split-belt review 

see Torres-Ovideo et al.86). 

 

Current Knowledge Gaps and Future Directions 

 While our understanding of postural control during locomotion has grown substantially 

over recent years, there remain many gaps in our knowledge.  One factor that has limited our 

understanding of dynamic postural control is the difficulty inherent in neuroimaging studies of 

locomotor tasks.  For example, techniques such as functional magnetic resonance imaging 

(fMRI) are only possible if there is minimal head movement, obviating the use of fMRI and other 

movement-limited techniques in the imaging of actual locomotion.  Recent work using imagined 

locomotor tasks has begun to partially tackle this issue, while emerging techniques such as near 

infrared spectroscopy78 and high-density electroencephalography recorded during actual 

ongoing locomotion87 hold additional promise for studies of brain activity during ongoing 

locomotor activities.  These methods could also be used for tasks that pose particular 

challenges to postural control such as obstacle avoidance or walking on a narrow beam.  It 

should be noted, however, that these methods also have inherent limitations such as inability to 

assess activity in subcortical areas. 

Another major limitation of most published work is the focus on short-term measures of 

locomotion in laboratory settings.  Given the growing appreciation for the importance of gait 

variability along with the emergence of long-term monitoring technologies such as inertial 

sensors63 65, the field is ripe for studies of everyday locomotor function across days88 89.  These 

studies could provide important insights into gait stability over time in health, aging and disease.  

Studies of disease should consider not just PD, the most common movement disorder, but also 

other conditions such as progressive supranuclear palsy, essential tremor, HD, and other 

diseases that have been little studied compared to PD.  These studies would benefit from the 

use of the comprehensive battery of gait tasks outlined in Table 1.  Assessment of performance 



in different populations across different gait tasks would provide key information to enable 

determination of whether or not particular profiles exist for different conditions and whether 

difficulties in postural control on a select set of tasks might be useful for discrimination among 

conditions.  Finally, beyond comprehensive determination of how aging and different diseases 

impact coordination and consistency of postural control across tasks, there is also a clear need 

for studies that examine the effects of targeted interventions on dynamic postural control.  Given 

the growing appreciation for the role of eye movements in dynamic control of gait, future studies 

could examine the effects of eye movement training and teaching of specific visual sampling 

strategies in order to address deficits in dynamic locomotor performance across different 

populations.  Intervention studies should also consider incorporating neuroimaging to examine 

the neural underpinnings of changes in postural control through rehabilitative, pharmacologic,  

surgical or combinatorial approaches. Finally, studies are needed to guide optimization of 

training paradigms to enhance postural control and maximize transfer of benefit across 

locomotor tasks and different environmental contexts.   

 

Conclusion 

 Dynamic postural control during locomotion involves a critical interplay of environment, 

goals, biomechanical constraints, and sensory integration.  At the foundation of postural control 

is production of a fundamental, coordinated locomotor pattern where appropriate relationships 

of body segments to one another and to the environment are produced in order to provide 

progression and stability during walking.  The consistency of this coordinated pattern from step 

to step and across longer periods of time is also a key consideration, as variability of gait is a 

unique domain that provides additional predictive insight regarding fall risk and future mobility 

decline.  Higher level postural control requires adaptability in the face of challenges introduced 

through different gait tasks.  Assessment of coordination and consistency in the face of 



challenges is key to the comprehensive assessment and study of dynamic postural control.  

With the emergence of new models, new tools, and new intervention strategies the field is 

poised for substantial growth in our understanding and treatment of dynamic postural control 

across locomotor tasks.  
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Figure 1.  Model depicting factors that impact dynamic postural control during locomotion. 

 

 

 

 



 

Figure 2.  Illustration of key aspects of postural control, the foundation being coordination of a 

fundamental gait pattern, the next level being consistency of pattern production, and the top 

level being ability to modify control in the face of challenges. 
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