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Abstract 

Previous studies demonstrated a leaning after-effect (LAE) following standing or walking 

on an inclined surface consistent with a long-lasting, somatosensory memory for body 

orientation relative to the surface. Here, we asked whether providing a brief visual 

reference during LAE resets postural orientation to the new visual reference. The results 

showed that subjects immediately return to upright when eyes were opened briefly during 

the post-incline period. However, the subjects also immediately resumed leaning after 

closing their eyes again following 20 s of eyes open. The duration of LAE was not 

influenced by 1 or 2 brief periods of vision. Also, the amplitude of the lean following the 

brief vision period was often larger than when subjects had their eyes closed for the entire 

post-incline period. These results suggest a powerful somatosensory memory contribution 

to postural orientation in space that is not eliminated or recalibrated with brief exposure to 

a visual reference.



  

Introduction 

Upright standing posture with respect to vertical requires central integration of visual, 

somatosensory, vestibular, and graviceptive inputs to adapt to changes in sensory conditions. 

These sensory inputs must be integrated and interpreted with respect to a stable frame of 

reference, or set point, for the task (Gurfinkel et al. 1995).. Recent work by Kluzik et al. (2005, 

2007) has shown the body-to-support surface relationship is a particularly important reference 

for the CNS internal representation of postural orientation. This relationship between standing 

posture and the support surface orientation in space acts on global, whole body control and is 

subject to adaptive modification. Following standing on an inclined surface, most individuals 

demonstrate a post-incline leaning after-effect (LAE) in which they lean to maintain a similar 

trunk to support surface orientation as experienced during the upright standing on an incline. 

LAE occurs whether subjects experience stance or walking on an incline with either the eyes 

open or eyes closed. However, subjects do not lean when standing on a flat surface after 

experience on an incline when a visual reference is available. The present study investigates 

whether provision of a brief visual reference in the midst of ongoing LAE eliminates the 

somatosensory memory and quickly resets the postural system to a new vertical body orientation. 

Visual information is known to be an important reference for postural orientation (e.g., 

Berthoz et al. 1975; Lestienne et al. 1977; Soechting & Berthoz 1979; Clement et al. 1985). 

Studies that have manipulated visual information during adaptive after-effects have revealed at 

least two qualitatively different phenomena. A stable visual reference can cause complete 

cancellation, or dumping, of optokinetic after-nystagmus (OKAN) and post-rotatory nystagmus 

(Cohen et al. 1977; Waespe and Schwarz 1986). Alternatively, vision may have the effect of 

canceling an after-effect while a visual reference is present, and the after-effect may resume 

again once vision is removed. This has been demonstrated for podokinetic after-rotation 



  

(PKAR), in which subjects unintentionally turn in circles after walking on a rotating surface 

(Jürgens et al. 1999; Falvo et al. 2009). 

The difference in effects of a visual reference on after-effect may be related to the source 

of the stimulus. OKAN is solely caused by vision (see Cohen et al. 1977) and post-rotatory 

nystagmus by vestibular stimulation, whereas somatosensory experience is the basis for the 

establishment of PKAR (Weber et al. 1998; Jürgens et al. 1999). LAE, like PKAR, is also 

primarily dependent upon somatosensory experience for its establishment, so we hypothesized 

that providing visual information would cancel LAE when vision was present, but that LAE 

would resume once vision was removed. 

 

Methods 

Participants 

The experimental protocol was approved by the Institutional Review Board at Oregon 

Health & Sciences University and was performed in accordance with the 1964 Helsinki 

Declaration. Prior to testing all subjects provided written informed consent. Eleven people (6 

men and 5 women, mean (±SD) age 30.9 ± 8.4 years) participated in this study. However, only 

nine subjects were included in the analysis, as two subjects did not demonstrate LAE responses. 

 

Experimental setup 

Subjects stood with each foot on a separate force platform (see Kluzik et al. 2005 for 

more details) with malleoli aligned to the axis of pitch rotation. Foot placement on the force 

platforms was constant across trials. The visual environment was standardized using an artificial 

surround composed of an arrangement of horizontal and vertical stripes that varied in width and 



  

tone (see Peterka 2002). Subjects wore headphones and listened to an audio book to distract them 

from focusing on their posture and to mask background noise. Questions about the story were 

asked afterward to ensure that participants focused on the story. An easily audible beeper was 

located next to the subject to indicate time to open or close the eyes. Eye-lid movements were 

observed with a video camera located above the visual surround so the experimenter could 

monitor eye movements during the trials and ensure that subjects were responding appropriately 

to the beeper. 

 

Procedure 

Each trial consisted of 8.5 min of quiet stance on the force platforms. For all trials, inclination of 

the platforms was zero for the first minute and then changed to a 5°, toes up position at a rate of 

1°/s (Fig. 1a). This 5° inclination was maintained for 2.5 min, after which the platform returned 

to a horizontal position at a rate of 5 deg/s. Subjects continued to stand on the horizontal surface 

for another 5 min. Four experimental conditions were tested in 9 trials. There was at least 1 h 

between each trial, during which subjects walked (including stair climbing) in order to wash-out 

possible after-effects.  

The four conditions altered the presence and duration of available visual input (Fig. 1b). 

In the Control No Vision trials (CNV, 2 trials), subjects kept their eyes closed during the entire 

trial. CNV corresponded to the experimental trials in Kluzik et al. (2005), measuring the 

complete LAE response. In the Control Vision trials (CV, 2 trials), the eyes were opened 10 s 

after the platform returned to a horizontal position and remained opened for the rest of the trial. 

(The maximal leaning peak was always within the 10 s of eyes closed that immediately followed 

return of the platform to a horizontal position.) In the other vision conditions, vision was 

available for one, Vision 1 (V1, 3 trials) or two, Vision 2 (V2, 2 trials) periods of 20 s. Three 



  

trials of V1 were administered, rather than two, as our primary interest was the V1 trials 

examining the effects of a single period of vision on LAE. Inclusion of three rather than two 

trials of V1 in the analyses does not change the results reported herein. Subjects opened and 

closed their eyes upon sounding of a beeper located on their shirt and were allowed to practice 

responding to the beeper prior to beginning any trials. Before each trial, subjects were told how 

many beeps could be expected. The 9 trials were subdivided into three test days, mostly on 

alternating days with a maximum of 4 trials per test day. To ensure that similar control trials 

were not tested in 1 day, the nine trials were ordered rationally. Test day order as well as trial 

order per test day was randomized. 

 

 

Data Analysis 

 

Four ground reaction force vectors were measured by four strain gauges in each force 

platform with a sample frequency of 100 Hz. From these data, anterior–posterior center of 

pressure (CoP) was calculated. The CoP evolution was low-pass filtered with a 4th order 

Butterworth filter with a cut-off frequency of 0.1 Hz. 

To determine how visual information affected the leaning behavior, the peak amplitude 

of each period of leaning, duration of each period of leaning, and the overall duration of leaning 

were measured from the CoP displacements. Peak amplitude for each lean was defined as the 

most anterior position of the COP obtained during a particular period of leaning. Duration of 

each period of leaning was defined by determining the onset and offset times of a leaning 

response. Baseline values were defined as the average COP position during the first 60 s of 

standing with eyes closed on a flat surface. Onset of leaning was defined as the point in time 

when the COP moved anteriorly more than 2SD above baseline, and offset was the time when 



  

COP position returned to within 2 SD of baseline. For CNV and CV trials, only one peak and 

one lean duration were calculated as there was only one period of leaning in each trial of these 

conditions. For V1 trials, two period of leaning were present as the subject leaned first upon 

returning to a flat position from a toes up position, returned to near vertical upon opening the 

eyes, and then leaned again upon closing the eyes. For V2 trials, three peaks were present as 

there were two instances of opening and then closing the eyes. As such, for V1 and V2 trials, for 

each period of leaning we determined peak amplitude and duration of each lean. Finally, for each 

condition, we also determined overall duration of the entire LAE response across the trial from 

onset of the first lean to offset of the final lean. 

One-way repeated measures ANOVAs were used to test for differences in peak 

amplitude, duration of each lean, and total duration of LAE response across visual conditions. In 

addition, paired t-tests were used to compare peak amplitudes of leaning for the second lean of 

V1 and the second and third leans of V2 to the corresponding COP values at equivalent times in 

the CNV condition. For example, peaks of the second leans in V1 and V2 were compared to 

CNV values 20 s earlier than the time of these second peaks to account for the 20 s period of 

eyes open that intervened in the V1 and V2 trials. The peak of the third lean in V2 was compared 

to the CNV value 40 s earlier than this third lean of V2 to account for the two 20 s period of 

intervening eyes open in the V2 trials. All statistical analyses were conducted using NCSS 

software with P = 0.05 (Hintze 2007). Paired t-tests were Bonferroni corrected to account for 

multiple comparisons, with significance level set at P = .016 for each paired t-test. 

Results 

All subjects demonstrated LAE and visual information had a significant effect on the 

LAE response. Upon opening the eyes, subjects quickly returned to a near vertical position. Once 



  

subjects opened their eyes and maintained eyes open, they remained in an upright position for the 

rest of the trial. During brief exposure to visual references in the V1 and V2 conditions, however, 

all subjects immediately resumed leaning upon closing their eyes again, often leaning farther 

than they would have if they had kept their eyes closed (Fig. 2).   

 

Amplitude of Leans 

Across all conditions, peak amplitude for the first bout of leaning was similar, attesting to 

the consistency of repeated LAEs (Fig. 1c). Amplitude of the subsequent LAE peaks in the V1 

and V2 trials, however, was significantly smaller than the first lean, reflecting the exponential 

decline of the leaning after-effect across time (P < 0.001, Fig. 1c). 

 

Peak Lean Values Relative to Control No Vision Condition 

Recovery of post-incline leaning upon resumption of eyes closed exceeded the amount of 

lean at an equivalent time during trials not interrupted by visual input (Fig. 1c and d). The peak 

amplitudes of the second leans in V1 and V2, as well as the third lean in V2, were all 

significantly higher than corresponding COP position values in the CNV trial (P < 0.005). Peak 

amplitude for the second lean of V1 was 90.6 ± 6.6 mm compared to a value of 62.7 ± 4.8 mm at 

the matched time in CNV. Peak amplitude for the second lean of V2 was 102.1 ± 10.3 mm 

compared to a value of 55.3 ± 12.0 mm at the matched time in CNV. Peak amplitude for the third 

lean of V2 was 87.9 ± 6.1 mm compared to a value of 57.4 ± 10.9 mm at the matched time in 

CNV. 

 

Duration of Leans 



  

Opening the eyes in the midst of a LAE and then closing them again did not significantly 

alter the course of the lean. The total duration of the LAE response from onset of the first lean to 

offset of the final lean was not significantly different between CNV, V1, and V2 conditions (Fig. 

1d). 

Maintaining eyes open in the CV condition (Fig. 1d) resulted in significantly shorter 

overall duration of leaning than all other condition (P < 0.05). In fact, the duration of individual 

leans for all conditions in which the eyes were opened was significantly shorter than in CNV 

condition when the eyes remained closed for the entire trial (P < 0.001, Fig. 1d). This reflects the 

rapid return to a vertical position each time the eyes were opened. 

 

Discussion 

Visual information resulted in a rapid elimination of leaning after-effects but leaning 

after-effects resumed as soon as vision was removed again. These results are consistent with a 

powerful somatosensory memory contribution to postural orientation in space that is not 

eliminated or recalibrated with brief exposure to a visual reference. 

The resumption of LAE with eye closure after a brief period of reorientation to vision 

excludes the notion that visual information is critical for this postural adaptation. That is, periods 

of visual information do not result in an altered interpretation of somatosensory information. 

Vision may serve as an extrinsic reference frame for proprioceptive verticality but does not 

recalibrate the proprioceptive set point for postural orientation. 

It is noteworthy that recovery of leaning upon removal of vision was somewhat greater 

than leaning in trials lacking vision. The origin of this overshoot upon elimination of vision is 

unknown. In contrast to a study by Nashner and Berthoz (1978), this overshoot does not seem to 



  

be a consequence of a temporary stop in the decay of LAE as the interjections of periods of 

vision did not result in prolongation of the LAE response. The time course of the LAE was not 

affected by one or more periods of reorientation to visual vertical. High inertial forces due to a 

rather fast recovery to a leaning orientation might contribute to the overshoot. 

The striking effect of vision on LAE suggests that during periods of vision, individuals 

immediately switch from an alignment based upon proprioceptive memory of the relationship 

between the trunk and the support surface to an alignment based upon actual visual vertical 

(Kluzik et al. 2005). Upon removal of vision, subjects return to postural alignment based on the 

memory of proprioceptive vertical experienced during the conditioning period of standing (or 

walking) on the incline (Kluzik et al. 2007b). It is not clear why individuals align to this memory 

of proprioceptive vertical rather than aligning to current vestibular vertical or to the now 

horizontal support surface. This may relate to individual inherent preferences for different 

sources of sensory input (Kluzik et al. 2005). Since we intentionally selected only individuals 

who demonstrated strong LAE, the participants all likely relied heavily on proprioceptive, 

kinematic information for postural alignment, rather than kinetic forces under the feet (Kluzik et 

al. 2005). It is worth noting that LAE as described here may only occur in response to toes up 

platform tilt following which the aftereffect is a forward lean. Toes down platform tilt in healthy 

individuals results in much smaller backward lean, likely as a result of the physical limitations of 

the base of support (Schweigart and Mergner 2008). 

We hypothesized that the LAE was due to a somatosensory memory, rather than visual or 

vestibular memory so that the interjection of a period of visual input would not result in a 

dumping of the response as has been seen with optokinetic after-nystagmus and vestibular 

nystagmus (Cohen et al. 1977; Waespe and Schwarz 1986). These phenomena, based, 



  

respectively, upon visual and vestibular memory, are distinct from the LAE, which relies upon 

proprioceptive memory. LAE also appears to be distinct from leans induced via galvanic 

vestibular stimulation, which occur in the frontal plane when the head is not turned and only 

occur in the sagittal plane when the head is turned to the side (Popov et al. 1986). 

Our previous studies showed that the adaptive mechanisms underlying LAE regulate the 

relationship of the trunk to the surface inclination, rather than acting more locally at the level of 

the ankle joint (Kluzik et al. 2005, 2007a and b). Podokinetic after-rotation is also thought to 

represent a recalibration of the relationship between the trunk and the surface (Weber et al. 

1998). In fact, the recovery of the LAE was similar to the recovery of podokinetic after-rotation 

following a brief visual interjection (Jürgens et al. 1999; Falvo et al. 2009). Podokinetic after-

rotation, like LAE, likely relies upon proprioceptive memory involving orientation of the foot to 

the trunk in yaw space. This seems an interesting similarity in postural and locomotor adaptive 

control mechanisms, especially since LAE can be observed not only after standing on an incline 

but also after stepping on an incline (Kluzik et al. 2007b). Future work directly comparing LAE 

and podokinetic after-rotation responses in the same individuals may help to further elucidate the 

potentially shared mechanisms underlying postural and locomotor adaptive responses. 
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Figure 1.  Illustration of the platform positions (a), conditions examined (b), as well as peak 

amplitudes (c) and durations (d) of leaning for different periods of each condition. (A) In every 

condition, the platform was horizontal (0°) for 1 min, then tilted to 5° where it stayed for 2.5 min 

before returning to a horizontal position. (B) Conditions from top to bottom: Control No Vision 

eyes closed during entire trial, Control Vision eyes are opened 10 s after the platform returns to 

horizontal and remain open during the rest of the trial, Vision 1 10 s after the platform returned 

to horizontal the eyes were opened for a period of 20 s and then closed for the rest of the trial, 

Vision 2 similar to Vision 1 except the eyes were opened for two 20 s periods spaced 30 s apart. 

In Panels C and D, the first, second, and third leans as appropriate for each condition are shown. 

The total duration of all periods of leaning summed is shown in D and designated as “total”. * = 

significantly different from 1st leans of all conditions, # = significantly different from Control 

No Vision. Values are means ± SEs. 

 

Figure 2.  Illustration of average responses of three individual subjects in the various conditions. 

Each column depicts responses from a single subject across conditions, while rows depict 

responses across subjects within a condition. The top row shows Control Vision vs. Control No 

Vision responses (panels A1–A3), the middle row shows Vision 1 vs. Control No Vision 

responses (panels B1–B3), and the bottom row shows Vision 2 vs. Control No Vision responses 

(panels C1–C3). All graphs show anterior/posterior center of pressure versus time, with positive 

values reflecting anterior movement of the center of pressure. 



  

Table 1.  Peak Amplitude, Timing, and Duration of LAE Responses 

Condition Peak 

Amplitude 

(mm) 

Time of Peak (s) Duration (s) Corresponding 

CNV Value 

Control No Vision 125.3 ± 2.9 221.5 ± 4.0 199.6 ± 23.0 N/A 

Control Vision 124.0 ± 2.9 222.1± 4.0 75.6 ± 20.8† N/A 

V1 (1
st
 peak) 123.9 ± 3.0 222.1 ± 3.9 19.6 ± 20.8† N/A 

V2 (1
st
 peak) 125.2 ± 2.9 220.4 ± 3.9 23.5 ± 24.4† N/A 

V1 (second peak) 90.1 ± 6.6* 284.0 ± 4.4* 76.3 ± 23.0† 62.7 ± 4.8† 

V2 (second peak) 102.1 ± 10.3* 270.9 ± 5.4* 16.5 ± 30.9† 55.3 ± 12.0† 

V2 (third peak) 87.9 ± 6.1* 320.8 ± 5.0*^ 35.3 ± 26.1† 57.4 ± 10.9† 

V1 Overall N/A N/A 134.3 ± 29.2 N/A 

V2 Overall N/A N/A 134.7 ± 33.1 N/A 

Values are means ± SEs. 

 * = significantly different from CNVa, CVa, V1a, and V2a 

^ = significantly different from V1b and V2b 

† = significantly different from CNVa 
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