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Therapeutic Efficacy of Antibodies Lacking FccR
against Lethal Dengue Virus Infection Is Due to
Neutralizing Potency and Blocking of Enhancing
Antibodies
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Abstract

Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are life-threatening complications following infection
with one of the four serotypes of dengue virus (DENV). At present, no vaccine or antiviral therapies are available against
dengue. Here, we characterized a panel of eight human or mouse-human chimeric monoclonal antibodies (MAbs) and their
modified variants lacking effector function and dissected the mechanism by which some protect against antibody-
enhanced lethal DENV infection. We found that neutralizing modified MAbs that recognize the fusion loop or the A strand
epitopes on domains II and III of the envelope protein, respectively, act therapeutically by competing with and/or displacing
enhancing antibodies. By analyzing these relationships, we developed a novel in vitro suppression-of-enhancement assay
that predicts the ability of modified MAbs to act therapeutically against antibody-enhanced disease in vivo. These studies
provide new insight into the biology of DENV pathogenesis and the requirements for antibodies to treat lethal DENV
disease.
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Introduction

The four serotypes of dengue virus (DENV) are transmitted

by Aedes aegypti and Ae. albopictus mosquitoes and are endemic

predominantly in tropical and sub-tropical regions of the world

[1,2]. Syndromes associated with DENV infection range from

inapparent infection to classic dengue fever (DF), a debilitating

self-limited disease, to life-threatening dengue hemorrhagic

fever/dengue shock syndrome (DHF/DSS), characterized by

vascular permeability and hypotensive shock [3]. Due to several

factors, including geographic expansion of the DENV mosquito

vectors and increased global urbanization, trade, and travel

[4,5], there has been a substantial increase in both the incidence

of dengue epidemics and co-circulation of the four DENV

serotypes in the same region [6]. This has resulted in an

increased number of severe cases in dengue-endemic regions

previously known for epidemics of only mild disease [1,7–10].

While several tetravalent dengue vaccines are currently in

various stages of clinical evaluation [11–14], no vaccine or

therapy has been licensed to prevent or treat DENV-induced

disease.

DENV is a member of the Flavivirus genus and is closely related

to other medically important arboviruses including West Nile

(WNV), Japanese encephalitis, tick-borne encephalitis, and yellow

fever viruses [15,16]. DENV has a 10.7-kb, positive-sense RNA

genome with 59 and 39 untranslated regions flanking a polyprotein

that encodes three structural and seven non-structural proteins

[17]. Among the three structural proteins, the pre-membrane

(prM/M) and envelope (E) proteins are the primary antigenic

targets of the humoral immune response in humans [18–20]. The

E protein is comprised of three domains (I (EDI), II (EDII) and III

(EDIII) [21–24]), with EDII and EDIII containing the fusion

peptide [25] and putative viral receptor binding site(s) [26,27],

respectively. For DENV, the most potently neutralizing antibodies

generated in mice thus far target two sites on EDIII, correspond-

ing to epitopes on the lateral ridge and A-strand [26,28–31].

However, in human dengue-immune serum after primary DENV

infection, highly neutralizing type-specific antibodies appear to be

directed to quaternary epitopes on adjacent E proteins present

only on virons [32]. A large proportion of human anti-DENV

antibodies appear to be cross-reactive and to target the fusion loop

or prM [18,19].
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Epidemiological analysis has established that a previous DENV

infection is the greatest risk factor for the development of severe

disease [33–37]. Infection with one serotype is believed to provide

life-long immunity against re-infection with the same serotype but

does not provide sustained protection against re-infection with a

different serotype [38,39]. Indeed, adaptive B and T cell responses

may be poorly inhibitory against re-infection with a second

serotype, and in a small percentage (,1%) of cases, even

exacerbate disease. One hypothesis, termed antibody-dependent

enhancement, is that antibodies from a previous infection facilitate

virus entry into Fcc-receptor (FccR)-bearing target cells, thereby

increasing viral load and ultimately disease severity [40].

Experimental evidence in cell culture and in animal models

supports this concept [41–44]. In a mouse model of ADE, passive

transfer of monoclonal antibodies (MAb) or polyvalent serotype-

cross-reactive serum, when administered at sub-neutralizing

concentrations, was sufficient to enhance infection and cause

lethal disease with DENV2 strain D2S10 in interferon a/b and c-

receptor deficient (AG129) mice [42,43]. Recently, we showed that

passive transfer of genetically engineered MAbs lacking binding to

FccR and C1q was sufficient to reduce viral load and TNF-a levels

and to prevent lethal disease in vivo, even when administered one

or two days after infection. Here, we evaluated the therapeutic

activity of a larger panel of MAbs targeting different epitopes on

the E protein following both a virus-only as well as an antibody-

enhanced lethal infection. We determined that the two most

potent therapeutic MAbs acted by competitively displacing either

fusion-loop specific MAbs or enhancing polyclonal serum

antibodies targeting a proximal epitope. Using this information,

we designed a novel suppression-of-enhancement assay in human

FccRIIA-expressing K562 cells that predicts the ability of

modified MAbs to act therapeutically against antibody-enhanced

disease in vivo. Our observations provide new insight into the

mechanism by which therapeutic MAbs prevent an antibody-

enhanced lethal DENV infection.

Results

Neutralizing MAbs lacking effector functions prevent
virus-only lethal disease

Severe forms of DENV infection, including DHF/DSS, can be

fatal, as no specific antiviral therapy is currently available. As such,

we extended previous observations of the prophylactic and

therapeutic efficacy of the EDII fusion loop-specific MAb E60

[42] by studying a larger panel of neutralizing MAbs targeting

additional E protein epitopes, including the dimer interface (E44)

on EDII and the C-C9 loop (E87) and A-strand (E76 and 87.1) on

EDIII (Figure 1A).

Although secondary infection with a different DENV serotype is

the greatest risk factor for severe DENV disease, DHF/DSS also

has been reported following primary infection [45]. Thus, for a

genetically-modified MAb to be a viable therapeutic option, it

must protect following both a virus-only and an antibody-

enhanced lethal DENV infection. To assess the ability of MAbs

to protect in a direct model of lethal DENV infection, AG129

mice were infected with a lethal dose (46106 PFU) of DENV2

D2S10 and 24 hours later, administered 20 mg of individual

genetically modified MAbs lacking the ability to bind FccR or

C1q. Notably, all of the modified MAbs tested prevented

development of overt disease and protected against death in this

model (P,0.05 for all MAbs as compared to untreated mice,

Figure 1B, Table S1). We subsequently assessed whether these

MAbs also protected against antibody-enhanced lethal DENV

infection. Anti-DENV1 serum was administered 24 hours prior to

a sub-lethal infection (105 PFU) of DENV2 D2S10, and animals

were treated 24 hours post-infection with 20 mg of genetically-

modified MAbs lacking effector functions, where the N297Q

variant MAbs are fully aglycosylated and the LALA variant MAbs

remain glycosylated but incapable of binding either FccR or C1q

[42,46]. Of those tested, only the EDII fusion loop-specific E60

N297Q and EDIII A strand-specific 87.1 LALA MAbs completely

prevented mortality (P,0.01, Figure 1C and Table S1). In

comparison, the EDIII-A-strand-specific MAb E76 N297Q

showed partial protection (P,0.05), whereas MAbs E44 N297Q

(EDII dimer interface) and E87 N297Q (EDIII C-C9 loop)

provided no protection against lethal disease (Figure 1C, Table
S1).

Neutralization potency does not correlate with
therapeutic efficacy across epitope classes in vivo

To determine why some MAbs had therapeutic activity in the

virus-only lethal infection model but not in the context of

antibody-enhanced infection, we examined several properties

including epitope specificity, neutralization potency, and avidity.

We first assessed whether neutralization potency correlated with in

vivo therapeutic potential. The neutralizing activity against

DENV2 D2S10 of each of the MAbs was assessed using a flow

cytometry-based assay with human monocytic U937 cells

expressing DC-SIGN, a known attachment factor for DENV

[47]. The potency of each intact and modified MAb was assessed

and expressed as the 50% neutralization titer (NT50 in ng/ml of

MAb). No significant difference was observed between each intact

MAb and its modified variant. The NT50 of therapeutically

effective MAbs E60 N297Q (EDII fusion loop) and 87.1 LALA

(EDIII A strand) were 72 ng/mL and 24 ng/mL, respectively. In

comparison, the NT50 of MAbs E44 N297Q (EDIII C-C9 loop)

and E87 N297Q (EDII dimer interface), which bound other

epitopes in EDII and EDIII and lacked therapeutic activity, were

similar (68 ng/mL and 95 ng/mL, respectively) (Table 1). Thus,

NT50 values among MAbs targeting different epitopes failed to

Author Summary

The four dengue virus serotypes (DENV1-4) cause the most
prevalent mosquito-transmitted viral disease globally,
infecting 50–100 million people annually in tropical and
sub-tropical regions worldwide, yet no vaccine or therapy
has been licensed to prevent or treat dengue. The greatest
risk factor for severe dengue disease is a previous infection
with a different serotype, which is thought to be due in
part to a phenomenon known as antibody-dependent
enhancement (ADE) whereby anti-DENV antibodies from a
prior infection augment DENV infection of target Fcg
receptor (FcgR)-expressing cells. We previously developed
a mouse model that demonstrates antibody-enhanced
lethal DENV disease and showed that genetically-modified
antibodies incapable of interacting with the FcgR eliminate
ADE in vitro and in vivo. In this study, we studied a larger
panel of modified MAbs that recognize different regions of
the DENV envelope protein. While all modified MAbs acted
therapeutically to prevent a lethal, virus-only DENV
infection, only certain MAbs effectively protected mice
following an antibody-enhanced lethal infection. We
determined that therapeutically effective MAbs following
an ADE infection worked by competing for binding of
enhancing antibodies on the DENV virion. Based on this,
we designed an in vitro suppression-of-enhancement assay
that predicted the ability of modified MAbs to act
therapeutically in vivo.

Mechanism of Therapeutic Anti-Dengue Monoclonals
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Figure 1. Anti-DENV MAbs are therapeutic following a virus-only or antibody-enhanced lethal infection. A. Ribbon diagram of the
DENV2 E protein homodimer (PDB ID code 1OAN) [23]. EDI is red, EDII is yellow and EDIII is blue. The epitopes targeted by MAbs in Table 1 include

Mechanism of Therapeutic Anti-Dengue Monoclonals
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demonstrate a clear relationship between neutralizing potency and

in vivo therapeutic efficacy in the context of antibody-enhanced

lethal infections (Spearman r 0.47, P = 0.45).

MAb avidity correlates with neutralization potency but
not in vivo therapeutic efficacy across different epitopes

We hypothesized that MAb avidity, the strength of binding

between a bivalent antibody and two ligands on a single virion or

across virions, might correlate better with therapeutic efficacy

following an antibody-enhanced lethal infection. To test this

hypothesis, we measured the avidity (Kdapp) of binding, using a

direct, virion-coated ELISA [30]. While we noted a correlation

between MAb neutralization titer and avidity (Spearman r 0.9,

P,0.083), analogous to our neutralization data, we did not

observe a relationship between MAb avidity and therapeutic

efficacy (Spearman r 0.32, P,0.68) by MAbs targeting non-fusion

loop epitopes (Table 1).

Neutralization potency and avidity of MAbs that bind to
the fusion loop epitope correlate with therapeutic
activity following antibody-enhanced lethal disease

As neutralization potency and avidity failed to correlate directly

with the therapeutic efficacy of our modified MAbs across different

epitopes, we investigated whether epitope specificity had greater

predictive potential. As MAb E60 N297Q was highly protective

even 48 hours following antibody-enhanced DENV infection [42],

we hypothesized that the fusion loop epitope might be an

important target for therapeutic MAbs. Therefore, we tested the

therapeutic activity following either a virus-only or an antibody-

enhanced lethal DENV infection of three additional modified

MAbs that also target the EDII fusion loop but displayed between

2- to 8-fold reduced neutralization potency compared to MAb E60

N297Q: 82.11 LALA (NT50 131 ng/ml), E18 N297Q (NT50

363 ng/mL) and E28 N297Q (NT50 544 ng/mL) (Table 1).

Whereas all of the animals treated with MAb 82.11 LALA, E18

N297Q or E28 N297Q survived infection after a virus-only lethal

challenge (P,0.01 compared to PBS-treated mice, Figure 2A and

Table S2), MAbs E18 N297Q and E28 N297Q failed to confer a

therapeutic benefit following an antibody-enhanced lethal infec-

tion (Figure 2B, Table S2). MAb 82.11 LALA protected 50%

(3/6) of animals following an antibody-enhanced infection, though

this difference trended but did not attain statistical significance

compared to non-treated control animals (Figure 2B, Table S2).

In contrast to the experiments with non-fusion loop-specific MAbs,

studies with MAbs targeting the same fusion loop epitope suggest

that neutralization potency can predict therapeutic efficacy

following an antibody-enhanced infection (Spearman r 0.9487,

P,0.083).

To explain the correlation between in vitro neutralizing potency

and in vivo therapeutic efficacy within fusion loop-specific MAbs,

we generated a model of competitive displacement. Recent work

has suggested that a significant fraction of the human anti-

flavivirus E protein antibody response is directed against the fusion

loop epitope in EDII [20,48–50]. We hypothesized that these

cross-reactive antibodies found in DENV-immune serum are of

intermediate or low affinity and bind to the heterologous virus at a

stoichiometry insufficient for neutralization but adequate for

enhancement of infection [51]. However, after administration of

a therapeutic, high-affinity, genetically-modified fusion loop-

specific MAb, natural dissociation of the enhancing antibody

occurs, and the more avid therapeutic MAb binds to the fusion

loop epitope, effectively preventing enhancing antibodies from

binding again to the virion. Additionally, highly avid modified

MAbs would compete favorably with enhancing antibodies for

binding to nascently-produced virions. In this scenario, modified

MAbs lacking effector functions either coat the virion allowing for

direct neutralization or compete against cross-reactive fusion-loop

enhancing antibodies in serum, such that the stoichiometry

required for enhancement [51] is not reached. To test this

hypothesis, we used 4G2, a weakly neutralizing (NT50 of 393 ng/

mL) mouse MAb that binds to the fusion loop epitope [49] to

enhance an otherwise sub-lethal DENV2 D2S10 infection and

administered 20 mg of the modified MAbs 24 hours post-infection.

E60 N297Q, the most therapeutic fusion loop-specific MAb in the

context of a polyvalent serum-enhanced infection, again achieved

100% protection (P,0.01) when administered after a 4G2-

enhanced infection, whereas MAb 82.11 LALA was less thera-

peutic (P,0.05), protecting 4 of 6 treated animals (Figure 2C,
Table S3). None of the animals treated with MAb E18 N297Q

succumbed to infection (P,0.05), although all demonstrated signs

of illness (P,0.05 as compared to E60 N297Q-treated mice,

Table S3). However, mice treated with MAb E28 N297Q all

succumbed to 4G2-enhanced DENV2 D2S10 infection. These

data support a model in which modified fusion loop-specific MAbs

of sufficient avidity and neutralizing potency compete effectively

for binding sites in the context of enhancing polyvalent DENV-

immune serum or other fusion loop-specific MAbs to prevent

disease.

Modified fusion loop-specific MAbs compete with
enhancing antibodies targeting the same or proximal
epitopes

We next evaluated directly whether MAb E60 (EDII fusion

loop-specific) could effectively compete for binding with less potent

fusion loop-specific MAbs, as compared to either therapeutic MAb

87.1 (EDIII A strand-specific) or non-therapeutic MAb E87 (EDII

C-C9 loop-specific) that both target distinct epitopes. After directly

coating DENV2 virions on microtiter plates, we added the

moderately neutralizing mouse MAb 4G2 at 1 mg/mL mixed with

increasing concentrations (0.1, 1 and 10 mg/mL) of modified

human MAbs followed by an anti-mouse, Fc-specific secondary

MAb. Binding of mouse MAb 4G2 was not affected by the amount

of bound E87 (non-therapeutic, C-C9 loop-specific) (P = 0.64 by

Friedman’s analysis of data combined from seven experiments). In

contrast, both MAb E60 (therapeutic, fusion loop-specific) and,

surprisingly, MAb 87.1 (therapeutic, A strand-specific) altered

binding of MAb 4G2; higher concentrations of MAb E60 and

MAb 87.1 resulted in lower amounts of MAb 4G2 bound

(P#0.001 for both E60 and 87.1 by Friedman’s analysis of data

combined from seven experiments, Figure 3A). Less potently

neutralizing and non-therapeutic fusion loop-specific MAbs

competed as or less effectively against MAb 4G2 for binding to

the fusion loop epitope (Figure S1A).

the fusion loop (green), dimer interface (white), C-C9 loop (orange) and A strand (magenta). B. AG129 mice were administered a lethal dose of DENV2
D2S10 and 24 hours later were treated with 20 mg of modified MAbs (n = 5 per group from 2 independent experiments). C. AG129 mice were
administered an enhancing dose of polyvalent DENV1-immune mouse serum, infected with DENV2 D2S10, and 24 hours later treated with 20 mg of
modified MAbs. (n = 3–19 per group from at least 2 independent experiments for each modified MAb). See Table S1 for numbers of mice in each
group. A Kaplan-Meier survival curve is shown (B–C), and log-rank analysis was used for statistical comparison.
doi:10.1371/journal.ppat.1003157.g001

Mechanism of Therapeutic Anti-Dengue Monoclonals

PLOS Pathogens | www.plospathogens.org 4 February 2013 | Volume 9 | Issue 2 | e1003157



T
a

b
le

1
.

In
vi

tr
o

ch
ar

ac
te

ri
st

ic
s

o
f

in
ta

ct
an

d
m

o
d

if
ie

d
M

A
b

s.

M
A

b
S

o
u

rc
e

E
p

it
o

p
e

C
ro

ss
-r

e
a

ct
iv

it
y

S
e

ro
ty

p
e

A
v

e
ra

g
e

N
T

5
0

(n
g

/m
l)

,
n

o
n

-
m

o
d

if
ie

d
a

A
v

e
ra

g
e

N
T

5
0

(n
g

/m
l)

,
F

cR
-

m
o

d
if

ie
d

a

K
d

a
p

p
a

re
n

t,
n

o
n

-m
o

d
if

ie
d

M
A

b
(n

M
)b

K
d

a
p

p
a

re
n

t,
F

cR
-m

o
d

if
ie

d
M

A
b

(n
M

)b

In
vi

vo
th

e
ra

p
e

u
ti

c
o

u
tc

o
m

e
c
:

L
e

th
a

l
v

ir
u

s-
o

n
ly

o
r

A
D

E
o

r
B

o
th

E
6

0
2

7
ED

II
fu

si
o

n
lo

o
p

D
V

1
,2

,3
,4

h
Ig

G
1

4
9

7
2

1
.1

4
1

.1
8

B
o

th

8
2

.1
1

1
9

ED
II

fu
si

o
n

lo
o

p
D

V
1

,2
,3

,4
h

Ig
G

1
1

2
3

1
3

1
1

.0
2

0
.9

1
V

ir
u

s-
o

n
ly

E
1

8
2

7
ED

II
fu

si
o

n
lo

o
p

D
V

1
,2

,3
,4

h
Ig

G
1

2
6

8
3

6
3

2
.7

4
3

.4
6

V
ir

u
s-

o
n

ly

E
2

8
2

7
ED

II
fu

si
o

n
lo

o
p

D
V

1
,2

,3
,4

h
Ig

G
1

5
0

2
5

4
4

2
.7

0
2

.8
8

V
ir

u
s-

o
n

ly

8
7

.1
1

9
ED

III
A

st
ra

n
d

D
V

1
,2

,3
h

Ig
G

1
3

5
2

4
0

.5
5

0
.3

4
B

o
th

E
7

6
2

7
ED

III
A

st
ra

n
d

D
V

1
,2

h
Ig

G
1

2
1

4
3

0
.8

4
1

.1
0

B
o

th

E
4

4
2

7
ED

I/
II

d
im

e
r

in
te

rf
ac

e
D

V
2

o
n

ly
h

Ig
G

1
1

2
2

6
8

0
.1

4
0

.8
4

V
ir

u
s-

o
n

ly

E
8

7
2

7
ED

III
LR

C
-C

9
lo

o
p

D
V

2
o

n
ly

h
Ig

G
1

7
0

9
5

1
.0

7
1

.4
3

V
ir

u
s-

o
n

ly

E
1

1
1

2
7

A
n

ti
-D

EN
V

1
D

V
1

o
n

ly
h

Ig
G

1
N

N
d

N
N

d
N

B
e

N
B

e
N

D
g

2
2

.3
1

9
A

n
ti

-D
EN

V
4

D
V

4
o

n
ly

h
Ig

G
1

N
N

d
N

N
d

N
D

f
N

D
f

N
D

g

4
G

2
A

T
C

C
ED

II
fu

si
o

n
lo

o
p

D
V

1
,2

,3
,4

m
Ig

G
2

a
3

9
3

–
N

D
f

N
D

f
N

D
g

a
T

h
e

d
at

a
p

re
se

n
te

d
is

th
e

av
e

ra
g

e
o

f
tw

o
to

fi
ve

re
p

lic
at

e
s

o
f

d
u

p
lic

at
e

m
e

as
u

re
s.

b
T

h
e

d
at

a
p

re
se

n
te

d
is

th
e

av
e

ra
g

e
o

f
tw

o
to

fo
u

r
re

p
lic

at
e

s
o

f
d

u
p

lic
at

e
m

e
as

u
re

s.
c
‘‘I

n
vi

vo
th

e
ra

p
e

u
ti

c
o

u
tc

o
m

e
’’

re
fe

rs
to

le
th

al
,

vi
ru

s-
o

n
ly

D
EN

V
2

D
2

S1
0

ch
al

le
n

g
e

o
r

m
o

u
se

an
ti

-D
EN

V
1

-e
n

h
an

ce
d

D
EN

V
2

D
2

S1
0

in
fe

ct
io

n
(A

D
E)

.
d

‘‘N
N

’’
in

d
ic

at
e

s
th

at
th

e
M

A
b

d
id

n
o

t
n

e
u

tr
al

iz
e

D
EN

V
2

D
2

S1
0

.
e
‘‘N

B
’’

in
d

ic
at

e
s

th
at

th
e

M
A

b
d

id
n

o
t

b
in

d
to

D
EN

V
2

D
2

S1
0

b
y

d
ir

e
ct

ca
p

tu
re

EL
IS

A
.

f ‘‘N
D

’’
in

d
ic

at
e

s
th

at
th

e
av

id
it

y
fo

r
M

A
b

4
G

2
w

as
n

o
t

te
st

e
d

vi
a

d
ir

e
ct

ca
p

tu
re

EL
IS

A
.

g
‘‘N

D
’’

in
d

ic
at

e
s

th
at

th
e

th
e

ra
p

e
u

ti
c

e
ff

ic
ac

y
fo

r
th

e
se

M
A

b
s

w
as

n
o

t
as

se
ss

e
d

u
n

d
e

r
th

e
co

n
d

it
io

n
s

sp
e

ci
fi

e
d

in
fo

o
tn

o
te

‘‘c
’’.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

p
at

.1
0

0
3

1
5

7
.t

0
0

1

Mechanism of Therapeutic Anti-Dengue Monoclonals

PLOS Pathogens | www.plospathogens.org 5 February 2013 | Volume 9 | Issue 2 | e1003157



Figure 2. Modified MAbs targeting the fusion loop epitope prevent antibody-enhanced lethal DENV infection in relation to their
neutralizing potency. A. AG129 mice were administered a lethal dose of DENV2 D2S10 and 24 hours later were treated with 20 mg of modified
MAb targeting the fusion loop (n = 3–6 per group from 2 independent experiments). See Table S2 for numbers of mice in each group. B. AG129 mice
were administered an enhancing dose of polyvalent DENV1-immune mouse serum, infected with DENV2 D2S10, and 24 hours later treated with
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We next tested whether modified MAbs targeting the same

or different epitopes with respect to the enhancing MAb 4G2

(fusion loop-specific MAb) could suppress enhancement in vitro.

We mixed serial dilutions of both 4G2 and the modified MAbs

E60 N297Q (therapeutic EDII fusion loop-specific, Figure
S2A), 87.1 LALA (EDIII, A strand-specific, Figure S2B) and

E87 N297Q (EDII dimer interface-specific, Figure S2C) in

the following ratios: 100% 4G2; 95% 4G2 and 5% modified

MAb; 85% 4G2 and 15% modified MAb; 75% 4G2 and 25%

modified MAb. Each MAb combination was incubated with

DENV2 D2S10 virus and used to infect K562 cells, a human

erythroleukemic cell line that expresses FccRIIA (CD32A) and

is non-permissive in the absence of enhancing anti-DENV

antibodies. Infection was monitored after 48 hours by intra-

cellular DENV antigen staining and quantified by flow

cytometry. Peak enhancement with MAb 4G2 occurred at

466 ng/mL and resulted in ,7 to 15% of the cells becoming

infected (Figure S2). However, when E60 N297Q or 87.1

LALA, MAbs that were effective therapeutically and lack the

ability to engage Fcc receptors, comprised only 5% of the MAb

population, peak enhancement by 4G2 was reduced by 33%

and 65%, respectively (Figure 3B, Figure S2). Remarkably,

when 4G2 and the modified MAbs were mixed in a 75%: 25%

ratio, E60 N297Q and 87.1 LALA both reduced infection by

85% and 86%, respectively (Figure 3D, Figure S2). In

comparison, mixture of 5% of the non-therapeutic modified

MAb E87 N297Q, reduced enhancement by only 21%

(P,0.04, compared to E60 N297Q and P,0.02 compared to

87.1 LALA), and by 57% (P,0.01, compared to E60 N297Q

and P,0.02 compared to 87.1 LALA) when a 75%: 25%

mixture was used (Figure 3B–3D). Similarly to E87 N297Q,

MAbs E18 N297Q and E28 N297Q, both fusion loop-specific

but non-therapeutic MAbs, reduced enhancement by 19% and

6% when E18 N297Q and E28 N297Q were 5% of the MAb

population, respectively, and by 46% when either E18 N297Q

or E28 N297Q comprised 25% of the MAb population

(Figure S1B–D). Thus, highly avid, fusion-loop specific

MAb E60 N297Q and A-strand-specific MAb 87.1 LALA

minimized in vitro enhancement, presumably by preventing

binding of the enhancing fusion loop-specific MAb 4G2.

Furthermore, the ability of the modified MAbs to prevent 4G2-

mediated enhancement in vitro correlated with in vivo thera-

peutic activity in the context of anti-DENV polyvalent serum-

enhanced infection.

Given the results in K562 cells with mixtures of modified

MAbs and decreased 4G2-mediated enhancement, we wanted

to evaluate further this relationship in vivo. We administered

20 mg of MAb 4G2 24 hours prior to infection with DENV2

D2S10 and then treated mice one day post-infection with

20 mg of MAb E60 N297Q (EDII fusion loop-specific)), 87.1

LALA (EDIII A strand-specific), or E87 N297Q (EDIII C-C9-

loop-specific). While MAb E87 N297Q was not therapeuti-

cally protective against a 4G2-enhanced lethal infection, E60

N297Q and 87.1 LALA protected against mortality in 6 of 6

and 5 of 6 animals, respectively (P,0.05, Figure 3E, Table
S3). Thus, potently neutralizing, fusion loop-specific (E60

N297Q) and A strand-specific (87.1 LALA) MAbs both

prevent antibody-enhanced disease, likely by displacing

binding of enhancing MAbs that target the fusion loop

epitope.

The stoichiometric relationship of modified and intact
MAbs in relation to enhancement in vitro and in vivo

We next assessed how different ratios of intact and genetically

modified variants affected enhancement in K562 cells in vitro. We

selected the two most therapeutically effective, modified MAbs

(E60 N297Q (EDII fusion loop) and 87.1 LALA (EDIII A strand)),

and mixed them with the intact parent MAbs in the following

proportions: 100% intact MAb, 90% intact and 10% modified

MAb, 75% intact and 25% modified MAb, 50% of each MAb,

25% intact and 75% modified MAb, 10% intact and 90%

modified MAb, and 100% modified MAb. While several mixtures

of E60 parent:E60 N297Q showed reduced enhancement, only

the combination of 10% intact:90% modified was non-enhancing

in vitro, suggesting that the majority of the antibody mixture must

not bind to Fcc receptors in order to abolish enhancement of

DENV infection when MAb pairs are of comparable neutralizing

potency and avidity (Figure 4A). The combination of intact 87.1

and 87.1 LALA also demonstrated a complete reduction in

enhancement, but this occurred under conditions where a lower

ratio of intact to modified mAb was required (ratios of 25%

intact:75% aglycosylated (Figure 4B)). The relative differences in

enhancement profiles observed between the E60:E60 N297Q and

87.1:87.1 LALA MAb pairs could be due to the small difference in

the avidity and neutralization potency of the intact and modified

MAb. Similar relationships between modified and intact MAb

pairs were observed when studying MAbs that were moderately

(E76/E76 N297Q) and poorly (E18/E18 N297Q) therapeutic

(data not shown).

Using combinations of intact E60 and modified E60 N297Q

(EDII fusion loop-specific MAb), we evaluated whether the

requirement for 90% of the MAb mixture to lack FccR binding

for suppression of enhancement in vitro translated into therapeutic

efficacy in vivo. The same ratios were mixed in a total of 20 mg and

administered therapeutically 24 hours after serum-enhanced

DENV2 infection of AG129 mice. Notably, and consistent with

our data in K562 cells, complete therapeutic protection in vivo

required 90% of the E60 mixture to be present in the modified

form (P,0.02, Figure 4C). Mixtures that were combined in a

ratio of less than 9:1 showed reduced or no therapeutic efficacy

(Figure 4C). This in vivo data suggests that when the same MAb is

used for enhancement and therapy (intact versus modified), the

majority of the mixture must lack the capacity for binding FccR to

avoid enhancement. Thus, a low stoichiometric threshold of

binding is likely sufficient for enhancement of infection and

disease.

Suppression of enhancement in K562 cells in vitro
predicts in vivo efficacy

Given the results with intact and modified MAbs, we evaluated

whether we could use this in vitro relationship to predict the ability

of modified MAbs to be therapeutically effective in vivo in the

context of immune serum-enhanced DENV infection. Initially,

using DENV1-immune mouse serum, we identified the serum

dilution (1:180) responsible for peak enhancement of DENV2

D2S10 in K562 cells (Figure 5A). We then tested the ability of

20 mg of modified MAbs (n = 3–6 per group from 2 independent experiments). See Table S2 for numbers of mice in each group. C. AG129 mice were
administered an enhancing quantity (20 mg) of 4G2 MAb, infected with DENV2 D2S10, and 24 hours later treated with 20 mg of modified MAb (n = 3–
9 per group from at least 2 independent experiments). See Table S3 for numbers of mice in each group. A Kaplan-Meier survival curve is shown, and
log-rank analysis was used for statistical comparison.
doi:10.1371/journal.ppat.1003157.g002
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A

B C

D E

Figure 3. Fusion loop- and A strand-specific modified MAbs can compete for binding with fusion loop-specific MAbs of lesser
neutralizing potency. A. Fusion loop-specific mouse MAb 4G2 was incubated at 1 mg/mL with MAbs E60, 87.1 or E87 at 10, 1 or 0.1 mg/mL human
MAb prior to addition to DENV2-virion coated plates (for each MAb concentration, data is represented as mean +/2 SEM). Anti-mouse, Fc-specific
secondary MAb was then added, followed by PNPP substrate. Optical density (OD) values are shown on the y-axis and were calculated after
subtracting the average background (binding of mouse Fcc-chain specific secondary antibody in the absence of 4G2) from the raw OD. Statistically
significant differences in 4G2 binding across the different human MAb concentrations were calculated using a Kruskal-Wallis analysis from triplicate
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values within each experiment. This data shown is representative of seven independent experiments. B–D. MAb 4G2 was pre-mixed with MAb E60
N297Q, MAb 87.1 LALA or MAb E87 N297Q in ratios of 95% 4G2/5% modified MAb (B), 85% 4G2/15% modified MAb (C), or 75% 4G2/25% modified
MAb (D). For each 4G2/modified MAb mixture, a Gaussian distribution was used to fit the enhancement curve (Figure S2). The area under the curve
(AUC) was calculated for each curve, and relative infection was expressed by dividing the AUC in the presence of modified MAbs by the AUC
measured with 4G2 (no modified MAb) only. The data displayed are the average of three to seven independent experiments +/2 SEM. Comparisons
between the MAb combinations E87 N297Q/4G2 and E60 N297Q/4G2 or 87.1 LALA/4G2 were performed using a Kruskal-Wallis test. E. AG129 mice
(n = 3–6 per group from one or two experiments) were administered an enhancing quantity (20 mg) of 4G2 MAb, infected with DENV2 D2S10, and
24 hours later treated with 20 mg of modified MAb. A Kaplan-Meier survival curve is shown, and log-rank analysis was used for statistical comparison.
doi:10.1371/journal.ppat.1003157.g003

Figure 4. A high ratio of modified to non-modified MAb is necessary to prevent enhancement in vitro and in vivo. A–B. Non-modified
and modified MAbs E60/E60 N297Q (A) and 87.1/87.1 LALA (B) were pre-mixed at ratios of 100% intact MAb, 75% intact:25% modified MAb, 50%
intact:50% modified MAb, 25% intact:75% modified MAb and 10% intact:90% modified MAb. The data is plotted as the average of duplicate values
where the absolute percent infection of K562 cells is shown on the y-axis. This data is representative of two or three independent experiments. C.
AG129 mice (n = 3 per experimental group and n = 5 for non-treated control group) were administered a polyvalent DENV1-immune enhancing
mouse serum, infected with DENV2 D2S10, and 24 hours later treated with a total of 20 mg of E60/E60 N297Q MAbs in the same combinations tested
in vitro in (A). A Kaplan-Meier survival curve is shown, and log-rank analysis was used for statistical comparison.
doi:10.1371/journal.ppat.1003157.g004
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modified MAbs to reduce enhancement in K562 cells by pre-

incubating D2S10 with the peak enhancing dilution of DENV1-

immune serum for 30 minutes, then adding increasing amounts of

modified MAbs for 30 minutes, followed by incubation with K562

cells for 48 hours. Importantly, the concentrations of DENV-

immune serum and virus used in the in vitro assay were comparable

to those used in the in vivo infections. At concentrations of

2,000 ng/mL and 1,000 ng/mL, modified MAbs with moderate

to strong (.60% protection) therapeutic activity in vivo were more

efficient (P,0.05) at suppressing ADE in K562 cells than MAbs

that were less therapeutically active (Figure 5B and 5C). The

three most therapeutically effective MAbs (87.1 LALA, E60

N297Q and E76 N297Q) reduced enhancement on average by

88%, 70% and 65%, respectively, when added at 1,000 ng/mL

while less protective MAbs (82.11 LALA, E44 N297Q, E87

N297Q, E18 N297Q and E28 N297Q) reduced enhancement less

efficiently (Figure 5C). This trend also was observed when

DENV1-immune serum was added at a different enhancing

concentration (1:540 dilution) (data not shown). Based on these

data that differentiate in vitro therapeutic from non-therapeutic

MAbs, we established ,50% reduction at 1,000 ng/mL as the

criterion for predicting therapeutic efficacy using the suppression-

of-enhancement assay.

Modified MAbs prevent enhancement by human DENV-
immune serum in K562 cells and in vivo

As the K562 cell-based assay with mouse polyclonal anti-

DENV1 serum and modified MAbs appeared to predict in vivo

outcomes, we repeated the experiments with DENV-immune

human serum; this was important as humans and mice produce

overlapping yet distinct antibody repertoires against flavivirus

epitopes [19,48,52,53]. We evaluated whether modified MAbs

reduced enhancement in K562 cells using human DENV-immune

serum collected years after a primary DENV4 infection. The peak

serum enhancement dilution again was identified as between 1:180

and 1:540 (Figure 6A). In contrast to the limited protection

provided by the modified MAbs following a mouse DENV1-serum

enhanced infection, most modified MAbs suppressed enhance-

ment by DENV4 human immune serum below the 50% cut-off at

the higher (P,0.05; E18 N297Q and E28 N297Q, P,0.08), yet

physiologically relevant concentrations (1 and 2 mg/mL) of

modified MAb (Figure 6B, Figure S3), while non-binding,

DENV4-specific MAb 22.3 LALA did not (Figure 6B). Similar

results were obtained when primary DENV1 or DENV3 human

immune serum was tested (Figure S3).

To determine whether the enhancement data with human

serum predicted protection in vivo, we administered normal human

serum (NHS) or enhancing amounts of anti-DENV4 human

immune serum 24 hours prior to a sub-lethal infection with

DENV2 D2S10, and tested the therapeutic efficacy of the

modified MAbs. As expected, all mice pre-treated with NHS

survived infection without any signs of morbidity. All mice

receiving enhancing anti-DENV4 human immune serum and

treated with a modified MAb (E60 N297Q, 87.1 LALA, 82.11

LALA, E87 N297Q, and E28 N297Q) survived lethal enhanced

infection with minimal signs of disease (P,0.05 for all modified

MAbs compared to PBS-treated controls, Figure 6C), whereas

mice treated with modified, DENV4-specific MAb 22.3 LALA did

not (Figure 6C). Thus, the suppression-of-enhancement assay in

K562 cells correlated with the therapeutic efficacy of modified

MAbs in vivo in an antibody-enhanced lethal DENV model in the

context of both mouse and human DENV immune serum.

Moreover, and for reasons that likely relate to the distinct

repertoire of cross-reactive enhancing antibodies in human serum,

modified MAbs against the EDIII A-strand, EDIII C-C9 loop, and

EDII fusion loop all efficiently suppressed antibody enhancement

in cell culture and in vivo.

Discussion

In this report, we analyzed a panel of eight MAbs that bind to

several epitopes on the dengue virion, including the fusion loop

and dimer interface on EDII and the A strand and C-C9 loop on

EDIII. We determined that differences exist between the ability of

modified MAbs lacking the capacity to engage FccR and C1q to

act therapeutically following a virus-only lethal infection and an

antibody-enhanced lethal infection. Analysis of MAb characteris-

tics such as binding avidity and neutralization potency did not

clearly define an in vitro correlate of in vivo efficacy across different

epitopes, but were more predictive when studying MAbs targeting

a specific class, such as those binding the fusion loop epitope.

Further analysis suggested that modified, fusion loop- and A-

strand-specific MAbs act therapeutically by competing against

enhancing antibodies in polyvalent serum that recognize the same

or proximal epitopes. By studying these relationships, for the first

time, we established a novel in vitro suppression-of-enhancement

assay with polyclonal mouse and human anti-DENV immune

serum that appears to predict the ability of modified MAbs to act

therapeutically against ADE in vivo. Thus, we provide in vivo data

that support in vitro observations about the mechanism of ADE as

well as a means to suppress ADE in vivo.

Multiple parameters, including neutralization potency, avidity

and epitope specificity, affect whether a modified MAb is

therapeutic against an antibody-enhanced DENV infection. In

our panel, in addition to binding to either the fusion loop or A-

strand epitope, a therapeutic MAb needed to be strongly

neutralizing (NT50,100 ng/mL), which itself is a function of

epitope accessibility on the virion, mechanism of inhibition, and

avidity of binding [51]. Four of the MAbs tested (E60, 82.11, E18,

and E28) recognize similar residues within the EDII fusion loop

([54] and S. Sukupolvi-Petty and M.S. Diamond, unpublished

data), but two (E18 and E28) had lower neutralizing potency and

avidity of binding to the virion, and, correspondingly, showed less

or no therapeutic activity in vivo following DENV enhancement by

polyvalent mouse serum. While the avidity of binding to solid-

phase DENV2 for 82.11 LALA and E60 N297Q was comparable,

E60 N297Q is ,2.5 fold more neutralizing, suggesting that the

two MAbs might bind overlapping yet slightly distinct epitopes, or

that the ensemble of viral conformations in solution [55] allows for

enhanced recognition of E60 relative to 82.11. Analogously, when

comparing two modified MAbs targeting the A-strand in EDIII,

MAb 87.1 LALA showed higher avidity of binding and

therapeutic efficacy in vivo compared to MAb E76 N297Q.

Although further study is warranted, our data suggest that within

an epitope class, there is a direct relationship between MAb avidity

and neutralization potential in vitro and therapeutic efficacy in vivo.

Studies comparing therapeutic efficacy following virus-only and

mouse antibody-enhanced lethal DENV2 infections revealed that

all modified MAbs tested were therapeutic following a virus-only

infection, but only two (E60 N297Q and 87.1 LALA) were

completely protective following antibody-enhanced infection with

DENV1-immune mouse serum. This observation suggests a direct

interplay between the enhancing antibodies in polyvalent serum

and the neutralizing therapeutic MAbs that determines outcome.

Thus, a second parameter affecting therapeutic efficacy is the

ability of a modified MAb to out-compete the enhancing

antibodies in polyvalent immune serum for binding to the virion.

This concept is supported by functional data in vitro and in vivo

Mechanism of Therapeutic Anti-Dengue Monoclonals
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Figure 5. In vitro suppression-of-enhancement assay predicts therapeutic efficacy of MAbs in vivo with enhancing polyvalent DENV-
immune serum from mice. A. The peak enhancing titer (PENT = 1:180) for DENV1-immune mouse serum was determined in K562 cells. B. DENV1-
immune mouse serum was diluted 1:180 (PENT) and incubated with modified MAbs at six 2-fold dilutions beginning at 2,000 ng/mL. Relative
infection was calculated by dividing the percent infection in the presence of modified MAbs by the percent infection measured with mouse DENV1-
immune serum alone. The data displayed are the average of duplicate values and are representative of four independent experiments. A { indicates
modified MAbs that are statistically therapeutic in vivo following mouse DENV1-enhanced, lethal DENV2 infection. C. The average infection across
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using the weakly neutralizing, fusion loop-specific MAb 4G2 and a

panel of modified fusion loop-specific MAbs. In cellular assays, the

more avid and strongly neutralizing MAb E60 N297Q was more

effective at suppressing 4G2-enhanced infection in K562 cells than

the less potent E18 N297Q and E28 N297Q MAbs. Consistent

with this, E60 N297Q but not E28 N297Q prevented mortality as

a therapeutic when MAb 4G2 was used to enhance a sub-lethal

DENV2 D2S10 infection. Our data support a model in which

therapeutic activity occurs when high-affinity, modified MAbs can

bind to virions and neutralize infection by competing with and/or

displacing enhancing antibodies for binding to similar epitopes.

An additional parameter that likely affects therapeutic efficacy

of a MAb against antibody-enhanced DENV infection is its

mechanism of action: whether the MAb binds prior to or following

attachment of the virion to the target cell. However, the

interpretation is not straightforward, as mechanism of neutraliza-

tion of a given MAb may be affected by several variables: (a)

stoichiometry and relative fractional occupancy at a given

concentration [51]; (b) cell type and repertoire of attachment

ligands or receptors [51,54]; (c) virus particle maturation [56]; and

(d) dynamic state of the virion [55]. From in vitro ADE experiments

using K562 cells and non-modified MAbs, we can conclude that

all MAbs (excluding E44 as it was not available for these studies)

have the capacity to neutralize infection via a post-attachment

mechanism at saturating concentrations (Figure 4 and Figure
S2). Following uptake via FccR, antibody-enhanced DENV may

still be neutralized by MAbs that block post-attachment – this

phenomenon of trans-dominant neutralization of ADE by MAbs

was described previously with the anti-WNV MAb E16 [57], a

MAb that neutralizes WNV infection by blocking the structural

changes required for viral fusion [58,59]. Indeed, at saturating

concentrations, all of the non-modified WT MAbs in our panel

reduce K562 infection to background levels (Figures 4A and B,

and Figure S2, right side of the curve), most likely by blocking

fusion, a critical step required for release of the DENV genome

into the cytosol following receptor-mediated endocytosis. To

distinguish this post-attachment neutralization pattern from a

MAb that blocks via a pre-attachment mechanism and cannot

prevent infection in a K562 assay, we can compare these data to

the effects of anti-fusion loop MAb E60 on WNV infection. MAb

E60 cannot prevent WNV infection in K562 cells even at

saturating concentrations (E. Mehlhop and M.S. Diamond,

unpublished data). The inability of MAb E60 to neutralize

WNV in K562 cells occurs because WNV virions are present in a

mature state to a far greater degree than DENV and therefore

have a lower stoichiometry of binding for the fusion loop epitope

[56,60]. For WNV, MAb E60 fails to achieve a stoichiometry

sufficient to block fusion of virus that has entered via FccR-

dependent enhancement. In contrast, in the current study, all

MAbs appear to act in a post-attachment mechanism in K562 cells

at saturating concentrations. However, in vivo, it is unlikely that the

modified MAbs circulate at saturating concentrations, given the

large amount of DENV virus and antigen present. Thus, the

relevant question becomes which MAbs can reduce enhancement

(generated by either polyvalent DENV-immune sera or MAbs

such as fusion loop-specific 4G2) most efficiently when the

modified MAbs are at sub-saturating concentrations. Under these

conditions, therapeutically effective MAbs (87.1 LALA and E60

N297Q) show greater efficacy than the other MAbs evaluated,

likely due to their ability to compete for binding with enhancing

antibodies, which interferes with FccR crosslinking and limits

DENV uptake and infection.

Remarkably, MAb 87.1 LALA, which maps to the A strand of

EDIII, also was effective against anti-fusion loop MAb 4G2-

mediated lethal DENV infection. While not as potent as MAb

E60, MAb 87.1 appeared to compete with fusion loop-specific

MAb 4G2 in the solid-phase DENV2 ELISA and also suppressed

4G2-induced enhancement in K562 cells. One possible explana-

tion is that the A-strand epitope on EDIII is located next to the

EDII fusion loop on adjacent DENV E proteins within a dimer

[23], such that on the virion in solution, high avidity binding of

87.1 LALA prevents lower-avidity fusion loop-specific enhancing

MAbs (e.g., 4G2) from binding. While all MAbs tested appear to

block DENV in a post-attachment mechanism at saturating

concentrations, MAb 87.1 may be more potent at blocking fusion

at sub-saturating concentrations than MAb E60. This hypothesis

may explain why 87.1 LALA is more efficient at reducing 4G2-

enhanced DENV infection in K562 cells, but less efficient at

competing with MAb 4G2 in a fixed-virion ELISA than MAb E60

N297Q. Another possible explanation is that binding of the A-

strand MAb 87.1 LALA alters the conformation of the mature

DENV virion [61,62], enhancing exposure of the fusion loop

epitope and increasing binding and neutralization. Even though

E87 N297Q is unable to compete for binding with fusion loop-

specific MAb 4G2 in the solid phase assay, it can still bind to the

virion and contribute to the stoichiometry required to neutralize

DENV, thus accounting for the ,50% reduction in in vitro

enhancement when E87 N297Q comprises 25% of the antibody

mixture. Despite this, E87 N297Q did not have therapeutic

activity in vivo when 4G2 was used as the enhancing MAb. In

addition, MAb E87 N297Q was less efficient at reducing MAb

4G2-enhanced infection than the therapeutically effective MAbs

E60 N297Q and 87.1 LALA at any of the three conditions tested

(5%, 15% or 25% modified MAb). Although more study is

warranted, we speculate that the MAbs which bind epitopes that

do not displace 4G2 enhancing MAbs did not protect in vivo

because they failed to reach a stoichiometry that was sufficient for

neutralization or do not block a post-attachment step (e.g., viral

fusion).

Previous studies have established that the epitope repertoire of

anti-flavivirus neutralizing antibody in mouse and human serum is

different. Mice were found to generate neutralizing antibody

responses against epitopes in EDIII (,30%) [24,26,28,30,63,64]

that can be serotype-specific [29,30,65] or cross-reactive

[28,29,31,66]. In comparison, DENV-immune human serum

preferentially targets the fusion loop epitope in EDII [52,53] as

well as complex quaternary epitopes near the EDI-DII hinge that

span adjacent E proteins within a dimer [32], with little EDIII-

specific neutralizing antibody generated (10–15%) [48,64,67,68].

While it has not been explicitly studied, it seems plausible that the

epitope repertoire for enhancing antibodies against DENV in

human and mouse serum also vary. In support of this, we observed

differences in the ability of modified MAbs to prevent antibody-

enhanced lethal DENV infection when DENV-immune mouse or

human serum was used. Only E60 N297Q, 87.1 LALA and E76

N297Q were therapeutically effective against infection enhanced

with anti-DENV1-immune mouse serum. In contrast, all modified

DENV2-reactive MAbs were therapeutic following an infection

four experiments at 1,000 ng/mL of modified MAb (mean +/2 SEM shown for each MAb). P,0.04 was obtained when comparing the average relative
infection values for therapeutic to non-therapeutic MAbs using a Wilcoxon rank-sum analysis. The solid line indicates relative infection of 0.5 (50%
infection).
doi:10.1371/journal.ppat.1003157.g005
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enhanced with DENV4-immune human serum. These data likely

imply one of two non-mutually exclusive hypotheses: (a) cross-

reactive enhancing MAbs present in DENV-immune human

serum are weakly avid, such that higher affinity modified MAbs

can bind and/or displace the enhancing antibodies, resulting in

therapeutic protection in vivo; (b) cross-reactive enhancing MAbs

present in DENV-immune human serum bind distinct epitopes,

which do not interfere with binding and neutralization by

modified MAbs targeting the EDII fusion loop, EDII dimer

interface, EDIII A strand, or EDIII C-C9 epitopes. In possible

support of this, recent studies of the human antibody repertoire

against DENV suggest that anti-prM antibodies are a major

component of the cross-reactive response and promote enhance-

ment in vivo [18,20]. Future studies that test the therapeutic

efficacy of modified E protein MAbs in the presence of enhancing

concentrations of prM-specific MAbs will be important to

perform.

One limitation of this study is the passive transfer model used to

develop lethal DENV disease; we tested limited concentrations of

enhancing polyvalent immune serum to distinguish between

therapeutic and non-therapeutic modified MAbs. In the future,

a more detailed dose-response study with different enhancing sera

or MAbs will be needed to determine the range of efficacy of

modified MAbs in mediating protection. In addition, while the

passive transfer model of enhancement and protection may be

relevant for infant DHF/DSS where potentially enhancing

antibodies are received passively in utero, it remains uncertain if

similar principles apply during natural secondary DENV infection.

In summary, our results suggest a model in which neutraliza-

tion, avidity, and epitope specificity contribute to the therapeutic

efficacy of modified MAbs. Despite the differences between mouse

and human polyvalent antibody repertoires, the suppression-of-

enhancement assay in K562 cells accurately predicted in vivo

therapeutic efficacy in both situations. While further study is

needed, this assay could be used to screen additional modified

MAbs for potential use as DENV therapeutics. Overall, given

these promising results, we suggest that further exploration of the

utility of modified MAbs as therapy for DENV infections is

warranted.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee at the University of California Berkeley (R252-1012B).

Viruses and cell lines
All viruses were propagated in Aedes albopictus C6/36 cells

(American Type Culture Collection) and titered by plaque assay

on baby hamster kidney cells (BHK21, clone 15) [69]. DENV2

D2S10 was generated as previously described [70]. All in vitro

neutralization and enhancement assays and sub-lethal in vivo

infections were performed with non-concentrated virus. DENV2

D2S10 virus was concentrated by ultra-centrifugation for use in

the virion ELISA and by centrifugation using 100,000 MWCO

Amicon filters (Millipore) for lethal, virus-only in vivo infections.

U937-DC-SIGN (gift from A. de Silva, University of North

Carolina, Chapel Hill) and K562 cells were used for flow

cytometry-based in vitro neutralization [71] and enhancement

assays [64], respectively.

Generation and purification of mouse anti-DENV non-
modified and aglycosylated MAbs

Mouse MAbs E60, E18 and E28 were generated against WNV

E protein, but are cross-reactive with DENV E protein [54]. Anti-

DENV2 MAb E44, E76, and E87 were generated against DENV2

and described previously [28]. All mouse MAbs were purified by

protein A affinity chromatography (Invitrogen, Carlsbad, CA) and

have been mapped previously [29,72]. The generation of a

chimeric human-mouse E60 MAb with the human IgG1 constant

region and the mouse VH and VL region was performed as

described previously [72]. The generation of chimeric E18, E28,

E44, E76, and E87 MAbs was performed similarly. Point

mutations in the Fc region (N297Q) that abolish Fcc receptor

and C1q binding were introduced by QuikChange mutagenesis

(Stratagene). All recombinant MAbs were produced after trans-

fection of HEK-293T cells, harvesting of supernatant, and

purification by protein A affinity chromatography. The accession

numbers for the sequences of the VH-VL regions of the

recombinant MAbs are as follows: E18_VL KC254882 E18_VH

KC254883 E28_VL KC254884 E28_VH KC254885 E44_VL

KC254886 E44_VH KC254887 E60_VL KC254888 E60_VH

KC254889 E76_VL KC254890 E76_VH KC254891 E87_VL

KC254892 E87_VH KC254893.

Generation and purification of human anti-DENV MAbs
MAbs 87.1 and 82.11 are fully human MAbs, and their

generation has been described previously [20]. Production of the

LALA variants was performed according to a previously published

protocol [20]. Recombinant MAbs were produced in HEK-293T

cells and purified by sequential protein A affinity chromatography

and size-exclusion chromatography. The accession numbers for

the sequences of the VH-VL regions of the recombinant human

MAbs are as follows: DV82VH KC294013, DV82VL KC294014,

DV87VH KC294015, DV87VL KC294016.

Clinical serum samples from dengue patients
The single DENV1- and DENV3-immune human sera samples

used in the in vitro suppression-of-ADE assay were de-identified

and pre-collected as part of the Nicaraguan Pediatric Dengue

Hospital-based Study [73]. Both serum samples were collected

three months post-symptom onset and were obtained from

individuals with a primary DENV infection [74,75]. The protocol

for the study was reviewed and approved by the Institutional

Review Boards (IRB) of the University of California (UC),

Berkeley, and of the Nicaraguan Ministry of Health. Parents or

Figure 6. In vitro suppression-of-enhancement assay correlates with therapeutic efficacy of MAbs in vivo with enhancing polyvalent
DENV-immune serum from humans. A. The PENT (1:540) for DENV4-immune human serum was determined in K562 cells. B. DENV4-immune
human serum diluted 1:540 was incubated with modified MAbs at 1,000 ng/mL. Relative infection was calculated as described in Figure 5. The data
displayed are combined from five independent experiments, and the mean +/2 SEM is displayed for each MAb. A sign rank test was used to
determine whether relative infection with each modified MAb was significantly lower than relative infection of 0.5 (50% infection), * P,0.05, **
P,0.08. C. AG129 mice (n = 3 per experimental group and n = 6 for non-treated control group) were administered an enhancing dose of DENV4-
immune human serum, infected with DENV2 D2S10, and 24 hours later treated with 20 mg of modified MAbs. A Kaplan-Meier survival curve is shown,
and log-rank analysis was used for statistical comparison.
doi:10.1371/journal.ppat.1003157.g006
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legal guardians of all subjects provided written informed consent,

and subjects 6 years of age and older provided assent.

The primary DENV4-immune human serum sample used for in

vitro suppression-of-ADE and in vivo ADE experiments was a gift

from Dr. Aravinda de Silva (University of North Carolina (UNC),

Chapel Hill) and were received as de-identified and pre-collected

samples, and as such were not considered part of human subjects

research by the IRB at UC Berkeley. Convalescent DENV-

immune sera were obtained at UNC Chapel Hill from volunteers

who had experienced natural DENV infections during travel

abroad. The protocol for recruiting and collecting blood samples

from returned travelers was approved by the IRB of UNC Chapel

Hill. Written informed consent was obtained from all subjects

before collecting blood.

AG129 mouse infections
All procedures were pre-approved and conducted according to

UC Berkeley Animal Care and Use Committee guidelines. AG129

mice [76] were bred at UC Berkeley.

Production of mouse anti-DENV serum
AG129 mice were infected intraperitoneally (i.p.) with 105 PFU

of DENV1 strain 448 (gift from S. Kliks). Six to eight weeks post-

infection, mice were sacrificed, and whole blood was collected by

terminal cardiac puncture. Serum was isolated from whole blood

by centrifugation, heat inactivated, and stored at 280uC.

In vivo therapeutic experiments
DENV2 D2S10 enhanced disease: AG129 mice were

administered either 25 ml mouse anti-DENV1-immune serum or

200 ml human anti-DENV-4 immune serum or 20 mg of MAb

4G2 (in 200 ml final volume) i.p. 24 hours prior to infection with

an intravenous (i.v.) sub-lethal, 105 PFU dose of DENV2 D2S10.

DENV2 D2S10 virus-only lethal disease: AG129 mice were

infected i.v. with 46106 PFU of DENV2 D2S10. Treatment
model: Mice were administered 25 ml of DENV1-immune serum

on Day 21, 105 PFU of DENV2 D2S10 on Day 0, and 20 mg of

modified MAbs in a final volume of 100 ml i.v. 24 hours following

infection (Day +1). All animals were monitored carefully for

morbidity and mortality for 10 days following infection.

DENV neutralization assay
The neutralization titer of each parent and modified MAb was

measured using the U937-DC-SIGN flow cytometry-based

neutralization assay as described [71]. NT50 titers were calculated

as described previously [42]. Each NT50 titer is the average of

between 3 and 5 individual experiments, with the exception of E44

N297Q (1 experiment).

DENV enhancement assay
Polyvalent serum: Enhancement curves were generated as

described in [64]. Briefly, eight, three-fold dilutions of DENV-

immune serum beginning at 1:10 were pre-mixed with DENV2

D2S10 prior to addition to K562 cells. A Gaussian distribution

was used to fit each enhancement curve, where percent infection

was recorded on the y-axis and log-reciprocal serum dilution on

the x-axis. The area under the curve (AUC) for each enhancement

infection was calculated using Prism software. MAb competi-
tion: Intact and modified MAbs were pre-mixed in different ratios

at a starting concentration of 40 mg/mL. Eight 3-fold dilutions

were incubated in either duplicate or triplicate with DENV2

D2S10 at an MOI of 0.1 in a 1:1 ratio before being added to K562

cells for an enhancement of infection assay [64].

In vitro suppression-of-enhancement assay
DENV-immune serum was diluted to the concentration that

resulted in the greatest enhancement of DENV2 infection in K562

cells. DENV2 D2S10 virus at an MOI of 0.1 and serum were

mixed together in equal volumes for 30 to 45 minutes at 37uC.

Modified MAbs were prepared in five 2-fold dilutions beginning at

2,000 ng/mL, added to the polyvalent serum/virus mixture, and

incubated for an additional 30–45 minutes prior to the addition of

56104 K562 cells. The cells were washed 2 hours following

infection and fixed and stained for viral antigen. Relative infection

was expressed as the average percent infection for each duplicate

divided by the percent infection measured without modified

antibody (positive control, between 7 and 15%).

Direct capture virion and competition ELISA
Avidity ELISA: DENV2 D2S10 virus was isolated by ultra-

centrifugation at 53,0006g for 2 hours at 4uC and resuspended in

cold PBS with 20% FBS. Concentrated virus was diluted to

56104 pfu in carbonate coating buffer, pH 9.6, and 50 ml was

added to each well of a 96-well flat-bottomed plate as described

previously [30]. The plate was coated overnight at 4uC and

washed thoroughly with PBS with 0.1% Tween-20 (PBS-T) prior

to blocking (5% milk w/v in PBS-T) for one hour. Both the non-

modified and modified MAbs were diluted to 120 mg/mL in

blocking buffer and titrated two-fold for a total of 12 serial

dilutions. Each MAb dilution was added in duplicate to the coated

plate for one hour. The plates were washed with PBS-T and

incubated with an alkaline phosphatase (AP)-conjugated goat anti-

human secondary antibody (Meridian) and AP substrate PNPP

(Sigma) for one hour each, with additional PBS-T washes in

between each step. The reaction was developed for 45 minutes,

and the absorbance was read at 405 nm on a UV-plate reader

(Bio-Tek) using KC Junior software. Competition ELISA:
Ninety-six-well flat-bottomed plates were coated with DENV2 as

described above. Mouse MAb 4G2 was diluted to 1 mg/mL and

mixed with human mAb diluted to 10, 1 and 0.1 mg/mL in a

separate 96-well plate, and 100 ml of the mixture was added. After

one hour, the plates were washed and incubated with goat anti-

mouse Fcc-specific biotinylated secondary (Jackson) followed by

Streptavidin-AP (Invitrogen) and the plates were developed with

PNPP as described above.

Statistical analyses
All graphs were produced using GraphPad Prism 5 software (La

Jolla, CA). Statistical analysis was performed using Stata v10

(College Station, TX) and Prism 5 software. Comparison between

NT50 titers of non-modified and modified MAb pairs was

conducted using a Wilcoxon rank-sum analysis. Comparison of

survival rates was conducted using a non-parametric log rank test.

A Spearman rho (r) was calculated to assess correlations between

modified MAb NT50 titer, avidity, and therapeutic efficacy (0–

100% survival). A Kruskal-Wallis test was used to compare 4G2

binding across increasing concentrations of human MAb, and a

Friedman’s analysis (matched pairs Kruskal-Wallis) was conducted

by combining all data for each MAb tested. A Wilcoxon rank-sum

test was used to compare differences in the percent reduction of

4G2-enhanced D2S10 infection in K562 cells with different

mixtures of modified MAb as well as in the enhancement-

suppression assay using mouse DENV1-immune serum to

compare relative infection between therapeutic MAbs and non-

therapeutic MAbs. A sign rank test was used to determine whether

1,000 ng/mL of modified MAb could reduce an infection

enhanced with DENV4-immune serum significantly lower than

50%.
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Supporting Information

Figure S1 Neutralizing potency contributes to compet-
itive binding of fusion-loop specific MAbs. A. Mouse
MAb 4G2 (fusion loop-specific) was incubated at 1 mg/mL with

anti-fusion loop MAbs 82.11, E18 or E28 at 10, 1 or 0.1 mg/mL

human MAb prior to addition to DENV2-virion coated plates (for

each MAb concentration, data is represented as mean +/2 SEM).

Anti-mouse, Fc-specific secondary MAb was then added, followed

by PNPP substrate. Optical density (OD) values are shown on the

y-axis and were calculated after subtracting the average back-

ground (binding of mouse Fcc-chain-specific secondary antibody).

Statistically significant differences in 4G2 binding across the

different human MAb concentrations were calculated using a

Kruskal-Wallis test from triplicate values within each experiment.

These data are representative of three independent experiments.

B–D. MAb 4G2 was pre-mixed with MAb E40 N297Q, MAb

E18 N297Q or MAb E28 N297Q in ratios of 95% 4G2/5%

modified MAb (B), 85% 4G2/15% modified MAb (C), or 75%

4G2/25% modified MAb (D). For each 4G2/modified MAb

mixture, a Gaussian distribution was used to fit each enhancement

curve. The area under the curve (AUC) was calculated for each

curve, and relative infection was expressed by dividing the AUC in

the presence of modified MAbs by the AUC measured with 4G2

only (no modified MAb). The data displayed are the average of

three to seven independent experiments +/2 SEM, and

comparison between the MAb combinations E60 N297Q/4G2

and E18 N297Q/4G2 or E28 N297Q/4G2 was performed using

a Kruskal-Wallis test.

(TIF)

Figure S2 In vitro ADE assay with fusion loop-specific
MAb 4G2 and modified MAbs. MAbs E60 N297Q (A), 87.1

LALA (B) and E87 N297Q (C) were mixed with MAb 4G2 at the

concentrations specified in a starting dilution of 40 mg/mL. The

percent infection of K562 cells is shown on the y-axis and log

antibody concentration (ng/mL) on the x-axis. A Gaussian

distribution was used to fit each curve separately.

(EPS)

Figure S3 Modified MAbs reduce in vitro enhancement
by human DENV-immune serum. DENV1-immune (A),

DENV3-immune (B), and DENV4-immune (C) human serum

were diluted 1:540 (peak enhancement identified in Figure 6A)

and incubated with modified MAbs at six 2-fold dilutions

beginning at 2,000 ng/mL. Relative infection was calculated by

dividing the percentage infection in the presence of modified

MAbs by the percent infection measured with human immune

serum alone. The data displayed are representative of three

(DENV1-immune serum, DENV3-immune serum) or five

(DENV4-immune serum) independent experiments. The dashed

line indicates relative infection of 0.5 (50% infection).

(EPS)

Table S1 Therapeutic efficacy of modified MAb vari-
ants targeting different epitopes.
(DOC)

Table S2 Therapeutic efficacy of modified MAb vari-
ants targeting the fusion loop.
(DOC)

Table S3 Therapeutic efficacy of modified MAb vari-
ants following 4G2-enhanced, lethal DENV2 D2S10
infection.
(DOC)
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