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diffuse optical tomography 
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1School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK 
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*h.dehghani@cs.bham.ac.uk 

Abstract: The spectrally constrained diffuse optical tomography (DOT) 
method relies on incorporating spectral prior information directly into the 
image reconstruction algorithm, thereby correlating the underlying optical 
properties across multiple wavelengths. Although this method has been 
shown to provide a solution that is stable, the use of conventional Tikhonov-
type regularization techniques can lead to additional crosstalk between 
parameters, particularly in linear, single-step dynamic imaging applications. 
This is due mainly to the suboptimal regularization of the spectral Jacobian 
matrix, which smoothes not only the image-data space, but also the spectral 
mapping space. In this work a novel regularization technique based on the 
singular value decomposition (SVD) is presented that preserves the spectral 
prior information while regularizing the Jacobian matrix, leading to 
dramatically reduced crosstalk between the recovered parameters. Using 
simulated data, images of changes in oxygenated and deoxygenated 
hemoglobin concentrations are reconstructed via the SVD-based approach 
and compared with images reconstructed by using non-spectral and 
conventional spectral methods. In a 2D, two wavelength example, it is 
shown that the proposed approach provides a 98% reduction in crosstalk 
between recovered parameters as compared with conventional spectral 
reconstruction algorithms, and 60% as compared with non-spectrally 
constrained algorithms. Using a subject specific multilayered model of the 
human head, a noiseless dynamic simulation of cortical activation is 
performed to further demonstrate such improvement in crosstalk. However, 
with the addition of realistic noise in the data, both non-spectral and 
proposed algorithms perform similarly, indicating that the use of spectrally 
constrained reconstruction algorithms in dynamic DOT may be limited by 
the contrast of the signal as well as the noise characteristics of the system. 
© 2012 Optical Society of America 
OCIS codes: (110.6960) Tomography; (170.2655) Functional monitoring and imaging; 
(170.3010) Image reconstruction techniques; (170.3660) Light propagation in tissues. 
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1. Introduction 

Diffuse optical tomography (DOT) is finding widespread application in the diagnosis and 
characterization of breast cancer [1–5], monitoring brain function [6–14], and small animal 
imaging for the study of disease detection, progression and treatment [15–18]. Specifically in 
DOT of human brain function, an imaging cap that uses an array of continuous-wave, near-
infrared (NIR) light sources and detectors are placed on the scalp surface, allowing 
measurement of light level variance due to underlying functional changes [19]. A minimum of 
two sets of measurements are typically required to allow dynamic imaging, i.e. an activation 
set and a reference set, where the differences between these sets are used to recover spatial 
maps of hemodynamic changes within the brain, which relies on a forward model for light 
propagation in tissue. The image reconstruction problem in this case is single-step and linear, 
but remains ill-conditioned and ill-posed [20,21]. 

The two primary chromophore species of interest in cerebral hemodynamics studies are 
oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). Given their difference in the near-
infrared absorption spectra (Fig. 1), measurements at two wavelengths are typically sufficient 
to recover the change in concentration for both chromophores [22]. Most existing optical 
neuroimaging systems are equipped with two wavelengths of light sources, including the 
CW5 (690 and 830 nm) [14,23], the DYNOT (760 and 830 nm) [12,14,24], and the high-
density-DOT imaging system at Washington University School of Medicine (750 and 850 
nm) [9,10,13,25]. For this reason our analyses in this work will be focused on the dual-
wavelength setup using 750 and 850 nm. 

The spectrally constrained image reconstruction method was first documented by Corlu 
[26] in non-linear DOT, wherein absolute concentrations of chromophores are solved 
iteratively with a minimization function [21]. When compared with non-spectral methods, 
whereby images of absorption and scattering coefficients are first recovered and then un-
mixed to provide chromophore concentrations, spectrally constrained reconstruction 
techniques are found to suppress artifacts in water and scattering power images, and also 
reduce crosstalk between chromophores and scatter parameters in breast imaging [27–29]. Li 
[30] further demonstrated that when considering dynamic (also known as temporal or 
differential) imaging, linear DOT algorithms that incorporate spectral priors directly in the 
image reconstruction, correlate the absorption coefficients across multiple wavelengths, 
thereby providing a solution that is more stable, albeit with an increase in crosstalk between 
chromophores. Such crosstalk is partially due to the suboptimal regularization and update of 
the Jacobian matrix (which relates a small change in measured data to changes in optical  
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Fig. 1. Absorption spectra for oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) in the near-
infrared spectrum. The molar extinction coefficients used in this work are indicated by the four 
red-dots in this figure, which are 0.1193 mm−1 and 0.3236 mm−1 for HbO2 and HbR at 750 nm, 
and 0.2436 mm−1 and 0.1592 mm−1 for HbO2 and HbR at 850 nm. 

parameters) as pointed out by Eames [31], who proposed a Jacobian normalization technique 
in non-linear DOT that allows more uniform regularization and parameter update in image 
reconstruction, hence reducing imaging crosstalk. However in DOT of brain function where 
the imaging problem is linear and measurements are mostly reflectance rather than 
transmittance, such normalization techniques would inappropriately bias the measurement 
sensitivities towards deeper regions within the brain and cause significant imaging error. 

In this work we address and resolve this crosstalk issue by proposing a novel 
regularization technique based on the singular value decomposition (SVD). While previous 
DOT literature has focused on using the SVD as a tool to understand the relationship between 
DOT measurements (in terms of number and location) and image quality [32] and to guide 
optimization of detector placement [17,33], the approach we take is to integrate the SVD 
directly into the image reconstruction algorithm. Previous applications in the use of SVD-
based truncation methods for Jacobian inversion are well documented [34], however, our 
approach differs from previous work since we are not using the SVD approach to achieve a 
pseudo-inverse of the spectral Jacobian, but instead using it to regularize the wavelength 
dependant Jacobian, and then calculate the pseudo-inverse of its spectral counterpart. 

Qualitative and quantitative evaluations are conducted among non-spectral method and 
spectral methods (using conventional and SVD-based regularization respectively) first on a 
two dimensional (2D) circular model and then on a three dimensional (3D) subject specific 
head geometry. The 2D model provides an initial proof-of-concept analysis whereas the 3D 
model has more degrees of freedom, is highly ill-determined and more realistic to in vivo 
diffuse optical tomography of human brain studies. 

2. Theory 

2.1 Non-spectral method 

The non-spectrally constrained image reconstruction problem consists of two steps. The goal 
of the first step is the recovery of a temporal change of absorption λµ∆  at wavelength λ for a 
selection of wavelengths. This requires two sets of boundary data ,refλΦ  and λΦ  at each 
wavelength λ which are acquired before and after a change of absorption, λµ∆ . Given that 

λµ∆  is relatively small, the forward problem can be linearized by the Rytov approximation 
(whereby the log of the intensity measurements are considered) [20] 
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 ,ref Jλ λ λ λ λµΦ −Φ = ∆Φ = ∆   (1) 

where Jλ  is the wavelength dependent Jacobian matrix for wavelength λ, with a size of 
number of measurements by number of nodes. Since Jλ is non-invertible, the Moore-Penrose 
generalized inverse is applied 

 ( ) 12T TJ J J Iλ λ λ λ λ λµ α
−

∆ = + ∆Φ   (2) 

where 2
λα  is the Tikhonov regularization parameter [20,35]. Assuming a dual-wavelength 

system and two chromophores of interest, we have 

 1 2

2
s

HbO
M

HbR
λ

λ

µ
µ

∆ ∆   
=   ∆ ∆  

  (3) 

where sM  is the spectral composition matrix (containing spectral prior information) of the 
following form 

 1, 1 2, 1

1, 2 2, 2

c c
s

c c

M λ λ

λ λ

ε ε
ε ε
 

=  
 

  (4) 

where ,c λε  is the molar extinction coefficient of the absorbing chromophore c at wavelength λ 
(Fig. 1). Hence the second step inverse problem is a spectral decomposition process 

 12 1

2
s

HbO
M

HbR
λ

λ

µ
µ

− ∆∆   
=    ∆∆   

  (5) 

This step provides the mapping from images of change in wavelength dependent 
absorptions to images of change in chromophore concentrations. 

2.2 Spectral method using conventional regularization 

Instead of reconstructing changes in absorption at each wavelength (Eq. (2)) and then 
spectrally decomposing these into changes of chromophore concentrations (Eq. (5)), the 
spectral prior information sM  can be directly incorporated into the forward problem by 
constructing a spectral Jacobian matrix sJ  

 1 1, 1 1 2, 1

2 1, 2 2 2, 2

c c
s

c c

J J
J

J J
λ λ λ λ

λ λ λ λ

ε ε
ε ε

• • 
=  • • 

  (6) 

By doing so the forward problem can be expressed as 

 1 2

2

T T

sT T

HbO
J

HbR
λ

λ

   ∆Φ ∆
=   

∆Φ ∆  
  (7) 

and the spectral image reconstruction using conventional Tikhonov regularization becomes 

 ( ) 12 12

2

TT
T T

s s s s TT

HbO
J J J I

HbR
λ

λ

α
−    ∆Φ∆

= +   
∆Φ∆   

  (8) 

where 2
sα  is the spectral Tikhonov regularization parameter. Here it is worth noting that the 

weight of regularization is directly associated with image resolution [33]. Previous works 
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have found that 2
sα  (in Eq. (8)) must be smaller than 2

λα  (in Eq. (2)) in order to achieve 
equivalent image resolution between non-spectral and spectral methods [30]. The spectral 
method allows a direct mapping between changes in measurements and changes in 
chromophore concentrations, bypassing the absorption-based transition step in the non-
spectral method. Furthermore, measurements at multiple wavelengths are utilized 
simultaneously and absorption coefficients are correlated across these wavelengths within the 
image reconstruction. However the regularization technique utilized here regularizes not only 
the underlying wavelength dependent Jacobian matrices Jλ  but also the spectral prior 
information sM  incorporated within the spectral Jacobian matrix sJ , which results in 
numerical error in the form of crosstalk on the reconstructed images, as demonstrated later in 
Section 3.1. 

2.3 Spectral method using SVD based regularization 

Instead of constructing the spectral Jacobian matrix first and performing the regularization 
second, we propose an alternative regularization technique that reverses the order of these two 
operations. This is achieved by first applying the singular value decomposition (SVD) on each 
wavelength dependent Jacobian matrix, which yields a triplet of matrices 

 ,( ) , 1: ( )T T
iJ USV Udiag V i rank Jλ λ λσ= = =   (9) 

where U and V are orthonormal matrices containing the singular vectors of Jλ , and S is a 
diagonal matrix that contains the i number of singular values of Jλ , i.e., ,iλσ . Since applying 

Tikhonov regularization of weight 2α  changes the singular values of Jλ  from ,iλσ  to 
2 2

,iλσ α+ (Fig. 2), we can recompose the regularized Jλ , denoted Ĵλ , as 

 2ˆ ( ) TJ U S S diag Vλ λα= • +   (10) 

We can then construct the regularized sJ , denoted ˆ
sJ , as 

 1 1, 1 1 2, 1

2 1, 2 2 2, 2

ˆ ˆ
ˆ

ˆ ˆ
c c

s
c c

J J
J

J J
λ λ λ λ

λ λ λ λ

ε ε

ε ε

 • •
 =
 • • 

  (11) 

 
Fig. 2. Singular value spectra of the 750nm (blue line) and 850 nm (red line) wavelength 
Jacobian matrices of the 2D circular model as described in section 3.1, before (solid line) and 
after (dashed line) Tikhonov regularization. 
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The inverse problem therefore becomes 

 ( ) 1 12

2

ˆ ˆ
TT

T T
s s s TT

HbO
J J J

HbR
λ

λ

−    ∆Φ∆
=   

∆Φ∆   
  (12) 

The advantage here is that regularization is applied to the Jacobian matrix while (unlike all 
other previously proposed methods) the spectral prior information sM  is exactly preserved 
and therefore contains all information needed for the wavelength unmixing operation. In 
addition, 2

λα  in the non-spectral method is now directly used in the spectral method, avoiding 
the operation to find an equivalent 2

sα  for comparative studies which can be problematic due 
to its subjective choice. 

3. Methods and results 

3.1 Two-dimensional circular model 

To compare the image performance on crosstalk among all three methods as described in 
sections 2.1-2.3, a set of proof-of-concept simulations were carried out on a 2D circular 
model. Using a well-defined numerical model has the benefit of knowing the exact location 
and magnitude of the targets, allowing accurate analysis of the reconstructed images. The 
simulated 2D model consists of a uniform circular mesh of radius 43 mm with 1785 nodes 
corresponding to 3418 linear triangular elements. Sixteen co-located source/detector fibers are 
modeled equidistant on the external boundary and were used for continuous-wave data 
collection, giving rise 240 (16 × 15 where the source fiber is not used for detection) 
differential measurements per wavelength (Fig. 3). The model was assumed to be 
homogeneous with µa = 0.017 mm−1, µ′s = 0.74 mm−1 at 750 nm, and µa = 0.019 mm−1, µ′s = 
0.64 mm−1 at 850 nm. A target of 5 mm in radius was located at three different depths, i.e. 13 
mm, 28 mm and 43 mm, corresponding to a modeled ΔHbO2 = +0.05mM (Figs. 5(a)–5(c)), 
Target). Forward data was generated using NIRFAST [36], which is a modeling and image 
reconstruction toolbox based on the Diffusion Approximation. For regularization, we found 
that in order to achieve comparable image resolution and contrast between these three 
methods, a lower value of α was required for the conventional spectral method ( sα  in Eq. (8)) 
as compared to the non-spectral method ( λα  in Eq. (2)) and the proposed SVD approach ( λα  
in Eq. (10)), which was in line with previous finding [30]. Specifically we chose 

210λα
−= × the maximum singular value of Jλ  and 35 10sα

−= × × the maximum singular 
value of sJ  in this comparative study. 

 
Fig. 3. Schematic view showing the placement of 16 co-located sources (red squares) and 16 
detectors (blue cross) on the boundary of a 2D circular model. Note for each source excitation, 
the same fiber is not used as detector, giving rise to 240 differential measurements in total. 

Linear, single-step reconstructed images of hemodynamic changes using non-spectral 
(denoted ‘Non-Spec’), spectral with conventional regularization (‘Conv-Spec’), and spectral 
with SVD-based regularization (‘Svd-Spec’) are shown in Figs. 4–6 with 0%, 0.2% and 0.5% 
added Gaussian random noise respectively. Within each figure, three scenarios (a-c) having 
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the ΔHbO2 target moving towards the center of the circular model are presented, emulating a 
gradual decrease in signal-to-noise ratio (SNR) in the measurement; that is as the target moves 
deeper within the domain, the magnitude of the detected differential signal decreases. It is 
evident from Fig. 4 that in the case of 0% noise a region of crosstalk can be easily identified 
in the recovered ΔHbR images along with some imaging artifacts due to measurement 
sensitivity distribution for all three methods, with ‘Svd-Spec’ demonstrating the least 
magnitude of crosstalk and imaging artifacts while ‘Conv-Spec’ produces the most. As noise 
increases to 0.2%, imaging artifacts due to noise appear although at smaller magnitudes as 
compared to the crosstalk. When noise reaches 0.5% the artifacts begin to dominate the ΔHbR 
concentration images for both the ‘Svd-Spec’ and ‘Non-Spec’. When the target is at the center 
of the model (43 mm from boundary, Fig. 6(c)), the recovered images from ‘Svd-Spec’ and 
‘Non-Spec’ become indistinguishable. In comparison, crosstalk and imaging artifacts in 
‘Conv-Spec’ still dominate the ΔHbR concentration images even at 0.5% noise level. 

For quantitative analysis, the crosstalk of ΔHbO2 into ΔHbR, defined as the mean value of 
the known region of crosstalk in the ΔHbR concentration image divided by the mean value of 
the known target region in the ΔHbO2 concentration image, are calculated. In Fig. 7 the 
plotted crosstalk versus depth of target is shown for all cases presented in Figs. 4–6. Again it 
can be seen that crosstalk increases along with depth of target due to decreasing magnitude of 
the differential signal and/or SNR. On average, crosstalk is ~ 32 10−×  for ‘Svd-Spec’, 
representing a 60% reduction from ~ 35 10−×  for ‘Non-Spec’, and a 98% reduction from ~10−1 
for ‘Conv-Spec’. At 0.5% noise the imaging artifacts dominate over the crosstalk for both 
‘Svd-Spec’ and ‘Non-Spec’, particularly when the target is located at the center of the model 
(Fig. 6(c)), where crosstalk for both methods are approximately 35 10−× , indicating little 
difference between the two methods, however still much better as compared to conventional 
spectral reconstruction, ‘Conv-Spec’. These simulations were repeated with a ΔHbR target 
and similar results were obtained. 

 
Fig. 4. Reconstructed images of ΔHbO2 (upper row) and ΔHbR (lower row) concentration at 
three different locations (a-c) using methods ‘Svd-Spec’, ‘Non-Spec’ and ‘Conv-Spec’ with 0% 
noise. 
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Fig. 5. Same as Fig. 4, but with 0.2% added noise. 

 
Fig. 6. Same as Fig. 4, but with 0.5% added noise. 
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Fig. 7. Crosstalk versus depth of target: 13, 28, 43 mm, representing scenario (a)–(c) in Figs. 4–
6, respectively. 

3.2 Three-dimensional head model 

Next we extended our analysis to a more realistic, three-dimensional finite element head 
model (FEM) created using the Mimics software package [37]. The 1-mm-resolution model 
consisted of 1,087,223 nodes corresponding to 6,289,566 linear tetrahedral elements, with 
each node labeled by one of the five segmented head tissue types, namely scalp, skull, 
cerebrospinal (CSF), gray matter and white matter, as shown in Figs. 8(a)-8(b). These 
structural priors were obtained from T1-weighted MPRAGE (echo time (TE) = 3.13 ms, 
repetition time (TR) = 2400 ms, flip angle = 8°, 1 x 1 x 1 mm isotropic voxels) and T2-
weighted (TE = 84 ms, flip angle = 120°, 1 x 1 x 4 mm voxels) scans of the same subject 
collected from a Siemens Trio (Erlagen, Germany) 3T scanner at Washington University 
School of Medicine. In-house automated algorithms, which involve a series of iterative 
thresholding, region growing, and masking technique for tissue specification, were applied to 
both MRI data sets. Tissue optical properties assigned to this heterogeneous head model were 
values used in previous in vivo study [25] at 750 nm and 850 nm (Table 1), which are the two 
wavelengths equipped in the current HD-DOT system at Washington University School of 
Medicine [38] and can be adapted to other and more wavelengths. 

Table 1. Head tissue optical properties at 750 nm and 850 nm 

µa (mm−1)/µ′s (mm−1) 750 nm 850 nm 
Scalp 0.0170/0.74 0.0190/0.64 
Skull 0.0116/0.94 0.0139/0.84 
CSF 0.004/0.3 0.004/0.3 

Gray Matter 0.0180/0.8359 0.0192/0.6726 
White Matter 0.0167/1.1908 0.0208/1.0107 

A high-density (HD) imaging array which contains 24 sources and 28 detectors as 
described previously [9,38], was placed on the back of the head over the visual cortex, Figs. 
8(c) and 8(d). Within this optode arrangement, nearest neighbor measurements can be defined 
based on source-detector separations, Fig. 8(e). In this study, 260 differential measurements 
per wavelength were used to image the hemodynamic change of human brain function, which 
include first, second and third nearest neighbor measurements, corresponding to a maximum 
source-detector separation of 40 mm. 

A high-density (HD) imaging array which contains 24 sources and 28 detectors as 
described previously [9,38], was placed on the back of the head over the visual cortex, Figs. 
8(c) and 8(d). Within this optode arrangement, nearest neighbor measurements can be defined  

#170675 - $15.00 USD Received 18 Jun 2012; revised 2 Aug 2012; accepted 4 Aug 2012; published 9 Aug 2012
(C) 2012 OSA 1 September 2012 / Vol. 3,  No. 9 / BIOMEDICAL OPTICS EXPRESS  2045



 
Fig. 8. (a) Posterior surface rendered view of the 3D FEM head model, (b) segmented tissues 
shown on an axial slice taken through the 3D model noted by the black solid line in (a), with 
scalp, skull, CSF, gray and white matter indicated from dark to light in grayscale, (c) posterior 
and (d) lateral schematic view showing the placement of the high-density imaging array over 
the visual cortex with 24 sources (red squares) and 28 detectors (blue circles), (e) first to third 
nearest neighbor measurement (1NN-3NN) definitions with separation of 13, 30, and 40 mm 
respectively. 

based on source-detector separations, Fig. 8(e). In this study, 260 differential measurements 
per wavelength were used to image the hemodynamic change of human brain function, which 
include first, second and third nearest neighbor measurements, corresponding to a maximum 
source-detector separation of 40 mm. 

Instead of presenting a ΔHbO2 concentration target as in the 2D circular model, here we 
modeled a ΔHbR concentration target for the 3D head model. To generate the forward data, 
we simulated a focal activation of ΔHbR = −0.01mM and 1 cm in radius on the right 
hemisphere of the visual cortex (Figs. 9(a) and 9(b)) as the type of brain activation one would 
expect from a retinotopic mapping study [38]. Gaussian random noise of 0.1%, 0.14% and 1% 
in amplitude was added to first, second and third nearest neighbor measurements respectively 
to mimic our current in vivo performance [39]. Similar to the current in vivo data collection 
strategy (whereby data is collected at a sampling rate of ~10 Hz and then block averaged), ten 
sets of noise added data were generated and individually reconstructed, and averaged to 
produce the final image. Image reconstruction was performed with a ‘whole brain’ structural 
constraint that limits the recovered activation on the gray and white matter only [11,40]. The 
optimal values of regularization were λα  = 10−2 × the maximum singular value of Jλ , which 
were found to provide good imaging quality based on our previous human [38] and animal 
[41] DOT studies. The conventional spectral method was excluded in this part of the study 
due to earlier shown severe crosstalk between chromophores, which was also seen but not 
presented. 

Reconstructed chromophore concentration images of simulated brain activation using non-
spectral (‘Non-Spec’) and spectral method with SVD-based regularization (‘Svd-Spec’) with 
noise free and noise added data are displayed on the surface rendered FEM model of the brain 
in Fig. 9. Similar to our finding with the 2D model, a region of crosstalk of ΔHbR into ΔHbO2 
is identified when noiseless data are used for image reconstruction, with the magnitude of 
crosstalk from ‘Svd-Spec’ significantly smaller than ‘Non-Spec’ (Fig. 9(c)). The crosstalk (as 
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defined in the 2D case) in Fig. 9(c) is 54.9 10−×  for ‘Svd-Spec’, representing a 95% reduction 
from 31.1 10−×  for ‘Non-Spec’. When measurement noise based on a current imaging system 
specification is added, the two methods produce images that are similar with crosstalk both at 
approximately 32 10−×  (Fig. 9(d)) showing little difference between non-spectral and spectral 
reconstruction techniques. 

 
Fig. 9. (a) Posterior surface rendered view of the 3D FEM brain model, (b) a regional field of 
view (FOV) focused on the right hemisphere of visual cortex enclosed within the black window 
in (a), showing simulated chromophore target, (c) reconstructed images of ΔHbO2 (upper row) 
and ΔHbR (lower row) concentration for ‘Svd-Spec’ and ‘Non-Spec’ method using noise free 
data, and (d) using noise added data. 

4. Discussion 

In this study we have presented a new regularization technique for linear image reconstruction 
in spectral diffuse optical tomography. This technique utilizes the singular value 
decomposition (SVD), allowing regularization on the spectral Jacobian matrix to be applied 
without altering the underlying spectral prior information. Specifically, this is achieved by 
regularizing the wavelength dependant Jacobian matrix prior to mixing with the spectral 
coefficients, a completely new method where the regularization does not affect the mapping 
of absorption changes onto chromophore concentrations, thereby providing a much more 
accurate spectral inversion technique. This method is different to previously published work, 
whereby the Jacobian is first spectrally mixed and then regularized and inverted. 

Through a series of proof-of-concept analyses using a 2D circular model, we have shown 
that the SVD-based regularization technique followed by spectral mixing dramatically reduces 
the crosstalk between chromophores. In comparison to conventional spectral method, the 
crosstalk is reduced by approximately 98%. When compared with non-spectral method, this 
technique also demonstrates 60% crosstalk reduction with noise free data and demonstrated 
consistently robust performance against crosstalk as noise increases, before the image is 
dominated by imaging artifacts due to poor SNR (Fig. 6(c)). We extended our evaluation 
analysis on a 3D subject specific head model with simulated focal activation on the visual 
cortex, with the results showing 95% reduction in crosstalk when using the proposed 
algorithm as compared to non-spectral method. 
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In the case of spectral techniques, using conventional regularization (Eq. (8)) the 
regularization parameter is applied to a spectral Jacobian (one that relates a small change in 
measurements to a change of either oxyhemoglobin or deoxyhemoglobin concentrations) and 
therefore any smoothing applied will also have an effect on the spectral mixing. However, 
using the proposed SVD-based spectral method (Eq. (12)) the spectral Jacobian is a pre-
regularized matrix (which only relates a small change in measurements to change in 
absorption) and the spectral mixing is unaffected by this regularization, therefore implying 
that the latter method should provide better crosstalk in parameter recovery. In the case of 
noise-added data, it is possible to expand Eq. (12) by adding noise to the final term on the 
right-hand-side and then demonstrate that at a certain noise level, the improvement in 
crosstalk are gradually minimized as the effect of noise on the (un-regularized) spectral matrix 
becomes dominant. 

Validation of the SVD-based method as presented in this paper has been limited at a 
specific wavelength pair, i.e. 750 and 850 nm. In this case the crosstalk between ΔHbR and 
ΔHbO2 is systematically small, owing to the large and opposite difference between their molar 
extinction coefficients at 750 and 850 nm (Fig. 1). In the concept of wavelength optimization 
[26], this means that the condition number of their spectral composition matrix sM  is 
relatively low as compared to other wavelength pairs. Nevertheless since the crosstalk 
improvement by our SVD-based method relies on no assumption on either specific spectral 
range or specific combinations of the molar extinction coefficients, we expect the 
improvement to be consistent when using other pairs of wavelengths. A full validation of this 
could be carried out over an extensive range of wavelength pairs as an extension of this work. 

When compared with the linear, one-step DOT as presented here, non-linear DOT 
reconstruction has the added benefit of iteratively updating the recovered chromophore 
concentrations simultaneously with a minimization function until the solution finally 
converges to a predefined threshold. The improvement at each iteration is therefore 
accumulative and the final recovered imaged are shown to provide better contrast and 
robustness to noise. However, in the case of dynamic (or temporal or differential) imaging, as 
shown here, appropriate regularization is shown to be critical to minimize crosstalk while 
maintaining the benefits of spectral constraints. We expect that in the presence of larger 
magnitude differential data and lower noise levels, this proposed reconstruction algorithm to 
be superior to non-spectral techniques. Finally, we expect that in line with other published 
works in spectrally constrained non-linear imaging techniques, the addition of more 
wavelengths will provide better contrast and minimize crosstalk further. 

5. Conclusion 

While incorporating spectral prior information in spectral image reconstruction correlates the 
absorption coefficients across multiple wavelengths, providing a solution that is stable, the use 
of conventional regularization techniques can result in additional crosstalk between 
chromophores. A novel regularization technique that regularizes the Jacobian using the 
singular value decomposition (SVD) prior to spectral mixing has been presented in an attempt 
to reduce this crosstalk effect. Simulations have shown that using SVD-based regularization 
can dramatically reduce the crosstalk presented in images recovered using conventional 
regularization technique in linear, single-step spectral DOT. Although our analysis has shown 
that given the current HD-DOT imaging system specification, such improvement in crosstalk 
over the non-spectral method may not be substantial, it is evident that future instruments with 
higher SNR measurements would only yield better image quality for the spectral method over 
the non-spectral method. The use of SVD in matrix regularization as described in this study is 
also potentially applicable to other one-step linear imaging problems, offering an alternative 
approach to the conventional Tikhonov regularization and should also play an important part 
in non-linear spectral imaging techniques in DOT. 
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