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Behavioral/Systems/Cognitive

Direction Discrimination Thresholds of Vestibular and
Cerebellar Nuclei Neurons

Sheng Liu,1 Tatyana Yakusheva,1 Gregory C. DeAngelis,2 and Dora E. Angelaki1

1Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, and 2Department of Brain and Cognitive Sciences,
University of Rochester, Rochester, New York 14603

To understand the roles of the vestibular system in perceptual detection and discrimination of self-motion, it is critical to account for
response variability in computing the sensitivity of vestibular neurons. Here we study responses of neurons with no eye movement
sensitivity in the vestibular (VN) and rostral fastigial nuclei (FN) using high-frequency (2 Hz) oscillatory translational motion stimuli.
The axis of translation (i.e., heading) varied slowly (1°/s) in the horizontal plane as the animal was translated back and forth. Signal
detection theory was used to compute the threshold sensitivity of VN/FN neurons for discriminating small variations in heading around
all possible directions of translation. Across the population, minimum heading discrimination thresholds averaged 16.6° � 1° SE for FN
neurons and 15.3° � 2.2° SE for VN neurons, severalfold larger than perceptual thresholds for heading discrimination. In line with
previous studies and theoretical predictions, maximum discriminability was observed for directions where firing rate changed steeply as
a function of heading, which occurs at headings approximately perpendicular to the maximum response direction. Forward/backward
heading thresholds tended to be lower than lateral motion thresholds, and the ratio of lateral over forward heading thresholds averaged
2.2 � 6.1 (geometric mean � SD) for FN neurons and 1.1 � 4.4 for VN neurons. Our findings suggest that substantial pooling and/or
selective decoding of vestibular signals from the vestibular and deep cerebellar nuclei may be important components of further process-
ing. Such a characterization of neural sensitivity is critical for understanding how early stages of vestibular processing limit behavioral
performance.

Introduction
For decades, the neural processes underlying vestibular function
have been studied primarily in relationship to reflexes. In contrast,
the neural basis of perceptual functions related to self-motion and
spatial orientation have remained relatively unexplored. Fun-
damental to sensory perception is that neuronal activity, even
in response to a single repeated stimulus, is inherently variable
(Seung and Sompolinsky, 1993; Shadlen and Newsome, 1994;
Abbott and Dayan, 1999; Pouget et al., 2000; Dayan and Abbott,
2001; Averbeck et al., 2006; Ma et al., 2006). The issue of neuronal
variability is particularly important for understanding perception
around psychophysical threshold. Yet, little is currently known
about the sensory detection and discrimination properties of vestib-
ular neurons.

Only a few studies have characterized neuronal variability,
and these have focused on spike timing of semicircular canal
afferents (Paulin and Hoffman, 1999, 2001; Sadeghi et al., 2007a).
Following the classic approach of studies in the vestibular periph-

ery (Fernández and Goldberg, 1971, 1976a,b,c; Goldberg and
Fernandez, 1971a,b; Fernandez et al., 1972; Goldberg et al., 1990;
Dickman et al., 1991; Si et al., 1997; Purcell et al., 2003; Haque et
al., 2004; Sadeghi et al., 2007b), responses of central vestibular
neurons have only been characterized in terms of average gain
and phase measurements and transfer-function approaches (for
review, see Angelaki, 2004; Cullen and Roy, 2004; Angelaki and
Cullen, 2008). These mean gain and phase measures have been
critical for understanding the role of the vestibular system in
reflexes, yet they are rather limited in helping us to understand
how the sensitivity of neurons at different levels of the vestibular
pathways place limits on perception (MacNeilage et al., 2008).

The first attempts to compare neuronal responses to vestibular
stimulation with self-motion perception used animals trained to re-
port their heading direction around straight-forward in a two-
alternative-force-choice (2AFC) task (Gu et al., 2007, 2008).
Macaques could accurately discriminate small changes in heading
direction based on vestibular cues, with thresholds in the range from
1 to 5°. By comparison, cortical neurons recorded in the dorsal me-
dial superior temporal area (MSTd) during performance of the task
were tenfold less sensitive than behavior, on average, and only the
most sensitive neurons rivaled behavioral performance (Gu et al.,
2007). Vestibular heading discrimination thresholds have never
been measured for subcortical neurons. Thus, it is not clear whether
vestibular signals in area MSTd are more or less sensitive than those
seen in earlier stages of the vestibular pathways.

We have used signal detection theory (Siebert, 1965; see also
Green and Swets, 1966; Barlow et al., 1971; Newsome et al., 1989;
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Britten et al., 1992, 1996; Uka and DeAngelis, 2003) to character-
ize the heading discrimination thresholds of neurons in the ves-
tibular nuclei (VN) and rostral fastigial nuclei (FN). We focused
on these areas because they represent early levels of processing of
otolith signals, with output projections to the thalamus (Lang et
al., 1979; Meng et al., 2001, 2007) and spinal cord (Asanuma et al.,
1983; Boyle et al., 1996; McCrea et al., 1999).

Materials and Methods
Subjects and surgery. One fascicularis monkey (Macaca fascicularis) and
two rhesus monkeys (Macaca mulatta) were used for these experiments.
The animals were chronically and stereotaxically implanted with a plastic
head-restraint ring and a guide tube platform, as well as with eye coils for
monitoring eye movements. Additional details are provided in previous
publications (Meng et al., 2005; Gu et al., 2006; Yakusheva et al., 2008).
All surgical procedures were performed under sterile conditions in ac-
cordance with institutional and National Institutes of Health guidelines.

Electrophysiological recordings. We recorded extracellularly the activi-
ties of single neurons in the vestibular and deep cerebellar nuclei using
epoxy-coated tungsten microelectrodes (FHC, 5–7 M� impedance).
Cerebellar nuclei recordings concentrated on the rostral fastigial nucleus,
but some more laterally directed penetrations (up to 4.5 mm from the
midline) encountered vestibular-responsive cells that are likely located in
the anterior interposed nucleus (Shaikh et al., 2005). Vestibular nuclei
recordings were made from the rostral medial part (Meng et al., 2005).
Electrodes were inserted into 26-gauge transdural guide tubes and ad-
vanced by a remote-controlled microdrive (FHC). Raw neural activity
was amplified, filtered (0 –10 kHz, with notch filter at 60 Hz) and passed
through a dual time-amplitude window discriminator (BAK Electron-
ics). Single units were identified based on waveform shape, latency, and
amplitude. Times of discriminated spikes were stored to disk for offline
analyses through the event channel of a CED Power 1401 interface.

Experimental protocol. We targeted the non-eye movement neurons in
the FN/VN because they represent an early stage of processing of otolith
information and because they are both strongly modulated during trans-
lation (Angelaki and Dickman, 2000; Zhou et al., 2001, 2006; Shaikh et
al., 2005). While searching for responsive cells, animals were oscillated
sinusoidally in complete darkness, either along their interaural axis or
naso-occipital axis. Once a cell was satisfactorily isolated and found to be
sensitive to translational movements, it was further tested with eye move-
ment protocols. Monkeys were trained to follow a target, back-projected
onto a screen located at a distance of 33 cm from the animal. The target
was moved at 0.5 Hz, eliciting �10° horizontal and vertical smooth-
pursuit eye movements. Neurons were also tested during fixation and
saccades to multiple horizontal and vertical targets. Only cells without
eye movement sensitivity [typically referred to as “vestibular-only” (VO)
cells] were further tested in these experiments.

In the main test, the animal was translated sinusoidally (2 Hz, �0.3G)
while simultaneously being rotated in yaw at a constant leftward or right-
ward velocity of 1°/s. Thus, the animal translated back and forth rapidly
while the axis of translation changed very gradually over time (see Fig. 1 A
for a schematic). These motion stimuli were presented in complete dark-
ness. Each “run” consisted of slightly more than a complete yaw revolu-
tion (i.e., a rotation that was always �360° but �540°, lasting 6 –9 min),
and each cell was tested with as many runs as possible (typically 5, with a
minimum of 2 and a maximum of 10 –11). For each pair of adjacent
sinusoidal cycles (each cycle lasting 0.5 s), the axis of translation had only
changed by 0.5°, considerably less than perceptual thresholds for vestib-
ular heading discrimination (Gu et al., 2007, 2008). Thus, by comparing
responses to nearby cycles we could measure the discriminability of each
neuron; i.e., the smallest difference in heading direction that an ideal
observer could discriminate based on the firing rate of the particular
neuron. Moreover, since the heading axis varied continuously over all
360°, we could quantify neuronal discriminability around all possible
reference directions to examine whether neurons were more sensitive in
discriminating among forward vs lateral directions, for example.

Data analysis. Sinusoidal responses were quantified using instanta-
neous firing rate (IFR), computed as the inverse of the interspike interval

(Fig. 1 B, C). First, peak sinusoidal modulation amplitude (half the peak-
to-trough modulation) and phase were determined for each cycle by
fitting a sinusoid (clipped off at zero response) to both the IFR and the
stimulus using a nonlinear least-squares minimization algorithm
(Levenberg-Marquardt). Second, we plotted the cycle-by-cycle response
amplitude and phase as a function of translation direction (Fig. 2), col-
lapsing data across all cycles of yaw rotation (i.e., all runs). To obtain a
reliable estimate of the mean modulation amplitude and phase for all
possible directions of translation, we subsequently fitted a spatiotempo-
ral (STC, Angelaki, 1991, 1992) tuning model to both gain and phase data
simultaneously.

Note that the raw amplitude and phase data that are fit by the STC
model (Fig. 2, filled symbols) are noisier when a particular direction of
motion elicits little response modulation. The raw phase data can be
especially noisy near response nulls (Fig. 2 B). However, because the STC
model was fitted to gain and phase data from all cycles and directions
simultaneously (Fig. 2), it provided a good way to interpolate phase and
amplitude estimates through regions where the raw data were noisy.
Thus, although the smaller the modulation amplitude the higher the
variability of the phase (Fig. 2), the fits introduce no systematic bias and
provide an average description of the phase dependence on stimulus
direction, even for parts of the tuning curve that modulated little with the
linear acceleration stimulus (Fig. 1C, left).

The STC model has four parameters; three parameters characterize the
properties of the cell’s preferred stimulus: i.e., preferred direction, as well
as response magnitude and phase for stimulation along the preferred
direction. The fourth parameter is the “tuning ratio,” which characterizes
the ratio of the response along an axis perpendicular to the preferred
direction over the response along the preferred direction. The larger the
tuning ratio, the larger is the departure from the traditional cosine-
tuning and the larger the dependence of phase on stimulus direction.
Note that the spatiotemporal model has been shown to characterize best
the translation tuning of brainstem and cerebellar vestibular neurons

Figure 1. Experimental protocol and neuronal responses. A, Schematic of the continuous
linear acceleration stimulus around the head horizontal plane. B, IFR of a FN cell during com-
bined sinusoidal translation (2 Hz; �0.3G) and constant velocity rotation (1°/s). C, Enlarged
time scale near the minimum and maximum response modulation, respectively.
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(Bush et al., 1993; Angelaki and Dickman, 2000; Shaikh et al., 2005;
Chen-Huang and Peterson, 2006). For the present analyses, only the
fitted phase parameter of the STC model was used to separate each neural
response into two half-cycles, as described below.

Our goal is to measure the sensitivity of neurons to changes in the
direction of linear acceleration (i.e., heading). To do this, we need to
compile a distribution of firing rates (across stimulus repetitions) for
each distinct direction of translation. These distributions can then be
subjected to Receiver Operating Characteristics (ROC) analysis to com-
pute discriminability (Gu et al., 2007, 2008). However, if we compute the
firing rate for each trial over the entire cycle of movement (0.5 s), positive
and negative response modulations corresponding to opposite directions
of motion would nearly cancel each other and give poor estimates of
stimulus-driven responses. To overcome this obstacle, we separated each
cycle of neuronal response into two half-cycles that correspond to the
“excitatory” and “inhibitory” portions. Because response phase is gener-
ally non-zero (and varies as a function of stimulus direction) (Angelaki and
Dickman, 2000; Dickman and Angelaki, 2002), we shifted the time of
each zero-crossing of the stimulus according to the phase of the mea-
sured neural response for that particular direction of motion, using the
phase estimated from the STC model fit described above. Recall that the
STC model fits were effective at separating excitatory and inhibitory
half-cycles of response, even for parts of the tuning curve that modulated
little with the linear acceleration stimulus (Fig. 1C, left). Thus, for each
cycle of motion (corresponding to a 0.5° change in heading direction), we
compute two firing rates, each corresponding to one half-cycle of the
neural response. Heading directions for these two half-cycles correspond
to opposite stimulus directions, such that each stimulus cycle yields two
firing rates corresponding to headings that differ by 180°.

Having transformed raw responses into firing rates for each direction
of motion, we constructed direction tuning curves with fine resolution
(Fig. 3 A, B). Next, using ROC analysis (Britten et al., 1992; Prince et al.,
2000; Uka and DeAngelis, 2003; Gu et al., 2007), we compute a neuronal
direction discrimination threshold that quantifies the ability of an ideal
observer to discriminate between nearby directions of motion based on
the firing rates of a particular cell. To compute a neuronal threshold for a
particular “reference” motion direction (e.g., 0°), we obtain firing rates
for pairs of directions to the left and right of the reference direction (e.g.,
�1°, �2°, etc.) (Fig. 4 B). For each pair of symmetrically spaced “com-
parison” directions, distributions of firing rates are compiled and an
ROC metric (Green and Swets, 1966) is computed. The proportion of
“rightward choices” (relative to the particular reference direction) ob-
tained for a particular pair of comparison directions is taken as the area
under the corresponding ROC curve (Newsome et al., 1989; Britten et al.,
1992). The proportion of rightward choices of the ideal observer is then

Figure 2. Quantification of response tuning, including response amplitude and phase as a
function of heading direction. A, Response amplitude is plotted as a function of heading direc-
tion for each cycle of translation (filled symbols). The best fit of a spatiotemporal model is shown
as the gray curve. B, Response phase values (obtained from sinusoidal fits to each cycle re-
sponse) are plotted as a function of heading direction (filled symbols), along with the model fit
(gray curve). The tuning ratio for this cell was 0.12. Data shown are superimposed from five runs
(yaw revolutions) for the same FN cell as illustrated in Figure 1.

Figure 3. Firing rate as a function of heading direction for an example FN neuron. A, Data
from the two half-cycles are shown by black and gray symbols, respectively (data pooled across
5 runs). B, Firing rate from the second half of each response cycle is shifted by 180° to overlap
with data from the first half-cycle. C, Computed neuronal threshold plotted against reference
heading direction. Data shown are from the same cell as in Figures 1 and 2. A vertical dashed line
illustrates that the minimum discrimination threshold is observed away from the preferred
direction, where tuning changes rapidly.
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plotted against the angular separation between
reference and comparison directions, yield-
ing a neurometric function. The neurometric
function is fit by a cumulative Gaussian func-
tion (Fig. 4C), and neuronal threshold is de-
fined as the SD of the Gaussian, which
corresponds to 84% correct performance.
Note that it takes 1 s for translational motion
direction to change by 1°. Thus, data from four
sequential half-cycles (each lasting 0.25 s) were
combined to compute neuronal thresholds to a
resolution of 1°.

Although several full cycles of yaw rotation
(runs) were collected for each neuron, isola-
tion often deteriorated during this long exper-
imental protocol (each run takes 6 –9 min to
complete). Thus, we instituted an off-line eval-
uation procedure to select runs for quantitative
analysis. If single cell isolation is well main-
tained, the firing rate for the first half-cycle
should be similar to that for the second half-cycle after 180° of yaw
rotation. Thus, for each run, we calculated the correlation coefficient
between firing rates obtained in the first half-cycle and the second half-
cycle, after shifting the directions of motion corresponding to the second
half-cycles by 180°. If neural response and tuning are stable, these two sets
of firing rates should be well correlated. The median correlation coeffi-
cient was 0.53 across neurons. Only runs for which the correlation coef-
ficient was larger than 0.5 have been included for further analysis.
Because we required a minimum of two good runs to compute reliable
neuronal thresholds, this criterion eliminated approximately one-third
of the recorded neurons from further quantitative analysis. This exclu-
sion criterion was important to ensure that neuronal thresholds were not
overestimated due to less than ideal cell isolation.

The number of runs that met these criteria ranged from 2 to 9 across
the population of neurons, with a mean of 4.1. Thus, the number of
observations in each firing rate distribution for ROC analysis varied from
8 to 36. A potential concern is that discrimination thresholds might be
overestimated for cells with smaller numbers of observations. The num-
ber of observations would be expected to determine the variance of the
estimated threshold, but should not bias the estimate. To confirm this,
we performed two additional analyses. First, using all neurons in our
sample (n � 61), we found no correlation between minimum neuronal
threshold and the number of runs used for analysis ( p � 0.24, Spearman
rank correlation). Second, for neurons tested with five or more runs (n �
20), we randomly subsampled (with replacement) smaller sets of trials
that matched the smallest number of runs in the study (n � 2). For each
cell, this subsampling procedure was repeated 5 times. We then com-
pared, on a cell by cell basis, the minimum neuronal threshold computed
from the whole dataset with the thresholds computed using the smaller
subsample of runs, and we found no significant difference between the
two (Wilcoxon signed-rank test, p � 0.23; type II regression slope � 1.02,
95% confidence interval � [0.94, 1.12]). Thus, the number of observa-
tions did not bias the outcome with respect to neuronal sensitivity.

Because of the continuous variation of yaw angle in a run, each dataset
can be used for multiple (ROC) analyses, each corresponding to a differ-
ent reference direction in the horizontal plane. Thus, we have computed
heading discrimination thresholds for a wide range of reference head-
ings, including 0°/180° (lateral motion) and �90° (forward/backward
motion), in steps of 5°. This allowed us to quantify the performance of
each neuron for discriminating heading around different reference di-
rections. Moreover, for each reference, the ROC analysis can be per-
formed for pairs of directions that span different ranges; here, we have
varied this range from �5° (narrowest) to �45° (widest). The values
reported in the Results correspond to a range of comparison direc-
tions of �20° (40°), which was found to produce near-optimal results.

It is important to emphasize that this analysis procedure is applicable
to all cells, including those sensitive to yaw rotation, for multiple reasons.
First, at the behavioral level, human linear acceleration thresholds are not
influenced by simultaneous yaw rotation (Turner et al., 2008). Second,

for a neuron with a typical gain of 1–2 spikes/s per degree per second, the
rotation speed of 1°/s would evoke 1–2 spikes/s, which is typically 50 –100
times (mean � 66.1) less than the peak-to-trough response to linear
acceleration (Fig. 2). Finally, the constant yaw velocity of 1°/s is common
to all linear acceleration cycles, thus at most resulting in a change in the
mean firing rate of the cell. Because we are quantifying fine discrimina-
tion thresholds (i.e., how much firing rates vary for nearby cycles), a
common response to the 1°/s yaw rotation stimulus will not affect the
heading discrimination thresholds appreciably.

To determine whether a measured distribution was significantly dif-
ferent from uniform, we performed a resampling analysis (Takahashi et
al., 2007). Briefly, the sum squared error (across bins) between the mea-
sured distribution and an ideal uniform distribution containing the same
number of observations was first obtained. Next, a random distribution
is generated by drawing the same number of data points from a uniform
distribution and the sum squared error is again calculated between this
random distribution and the ideal uniform distribution. This second step
is repeated 1000 times to generate a distribution of sum squared error
values that represent random deviations from an ideal uniform distribu-
tion. If the sum squared error for the experimentally measured distribu-
tion lay outside the 95% confidence interval of values from the
randomized distributions, then the measured distribution is considered
to be significantly different from uniform ( p � 0.05).

Results
We present data from 41 rostral FN and 20 VN cells recorded in
three monkeys. None of the cells responded to eye movements,
but modulated during whole-body translation in the horizontal
plane. Only runs from neurons during which single-unit isola-
tion was maintained have been included in the quantitative anal-
yses (see Materials and Methods). Figure 1 shows an example
neuronal response during the main experimental protocol, which
consists of a combination of 2 Hz translation and constant veloc-
ity (1°/s) yaw rotation. A convenient way to think of the stimulus
is to consider it a 2 Hz sinusoidal translation whose direction
changes very gradually in the horizontal plane (Fig. 1A), in steps
of 0.5° (the duration of each cycle) (see Materials and Methods).
Because it is difficult to visualize the 2 Hz sinusoidal modulation
of firing rate when looking at a whole run (Fig. 1B), two five-cycle
segments, one taken near the minimum response direction and
the other near the maximum direction (Fig. 1B, marked with
vertical dashed lines), are illustrated in Figure 1C. A clear 2 Hz
modulation of IFR is visible in Figure 1C, right, but is absent in
Figure 1C, left. Thus, the modulation amplitude in response to
translation is smoothly modulated with the changing direction of
the linear acceleration stimulus.

Figure 4. Quantification of neuronal threshold for a single reference direction. A, Tuning curve, plotting firing rate (mean � SE)
as a function of heading direction in the range of �20° around the reference heading. Positive angles indicate rightward direc-
tions; negative angles indicate leftward directions (relative to the reference). B, Firing rate distributions for four pairs of compar-
ison headings, �20° �12°, �2°, and �1° relative to the reference. C, Example neurometric function showing proportion
rightward decisions of an ideal observer as a function of heading direction. Each data point corresponds to an ROC value computed
from a pair of firing rate distributions like those shown in B. Solid line shows a cumulative Gaussian fit to the neurometric function.
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The amplitude and phase of the sinusoidal response modula-
tion were characterized as a function of heading direction (reso-
lution: 0.5°) by fitting a sinusoid to the neural response on a
cycle-by-cycle basis (Fig. 2, symbols) (see also Materials and
Methods). The dependence of amplitude and phase on heading
direction was then quantified by fitting a spatiotemporal model
to the data (Fig. 2, light gray lines) (Angelaki, 1991, 1992; Schor
and Angelaki, 1992). Fitting was applied to the aggregate data
from multiple experimental runs, each of which consists of �360°
of constant velocity yaw rotation (see Materials and Methods). This
cell had a preferred (i.e., maximum) response direction at 155°
and a tuning ratio (i.e., minimum response/maximum response,
see Materials and Methods) of 0.12. The fitted phase values as a
function of heading direction were subsequently used to separate
each response into two half-cycles.

Our goal is to characterize the cycle-by-cycle variability in
firing rate in a parameter-free way that does not depend on how
well a particular function fits the sinusoidal response modulation
of a particular cell. For this reason, we did not make use of the
fitted amplitude function from the previous analysis. Instead, we
simply computed firing rates in response to each different direc-
tion of translation. However, because the linear acceleration
stimulus was sinusoidal, each cycle of neural response was first
split into two half-cycles. This was done by detecting the zero-
crossing of the linear acceleration stimulus and shifting it accord-
ing to the estimated phase of the neural response (from Fig. 2B,
gray curve). Then we computed a firing rate (i.e., spike count
divided by 0.25 s) for each half-cycle of translation.

Figure 3A illustrates how the firing rate for each of the two
half-cycles depends on heading direction for the same example
neuron as in Figure 2 (black dots: firing rate for the first half-
cycle; gray dots: firing rate for the second half-cycle). The two
tuning functions are, as expected, shifted by 180° because firing
rate in the second half-cycle should be the same as that during the
first half-cycle for the opposite stimulus direction. Thus, to in-
crease the power of the ROC analysis, the two sets of responses
were combined by shifting the gray dots by 180°, as illustrated in
Figure 3B. This process was repeated for each cycle of yaw rota-
tion, and the data from all runs were pooled for each neuron.
Next we describe how ROC analysis was applied to these data to
compute neuronal direction discrimination thresholds for differ-
ent reference directions.

Computing neurometric functions and neuronal thresholds
We illustrate the ROC analysis procedure using a particular ref-
erence direction (95°) for the example neuron (this direction is
recast as 0° heading in Fig. 4). For illustration, this reference
heading was chosen to lie in a rapidly changing portion of the
cell’s tuning curve (Fig. 3B). We then group together all firing
rates within each 1° heading bin, starting with the reference head-
ing and extending outward �20° from it. As expected from Fig-
ure 3B, the tuning curve of the cell over this narrow heading range
around the reference direction is monotonic (Fig. 4A). This cell
fires more strongly for rightward (positive) than leftward (nega-
tive) headings, relative to the reference heading.

The purpose of ROC analysis here is to quantify the sensitivity
of the neuron to small changes in heading direction. For this
purpose, one needs to quantify the overlap of two firing rate
distributions, corresponding to a pair of heading directions sym-
metrically placed around the reference. Such pairs of distribu-
tions are illustrated for the example neuron in Figure 4B. When
the two comparison headings are far apart (i.e., �20° or �12°
relative to the reference), the firing rate distributions overlap

little. As a result, an ideal observer would be able to distinguish
whether a given firing rate came from the leftward or rightward
distribution with a high degree of certainty. However, when the
two comparison directions are closely spaced (i.e., �1° or �2°
relative to the reference), the firing rate distributions overlap
extensively, thus making the task of an ideal observer difficult.

This intuition is quantified using ROC analysis (Britten et al.,
1992; Gu et al., 2007). For each pair of heading directions around
the reference, an “ROC value” is computed which reflects the
probability that an ideal observer could accurately report whether
the heading was “rightward” or “leftward” (relative to the refer-
ence) based on a draw from the neuron’s firing rate distribution.
“Neurometric” functions can then be constructed by plotting
ROC values for each pair of comparison directions (Fig. 4C).
Quantification of this relationship captures the sensitivity of the
neuron to directional signals in the same manner that psycho-
metric functions capture perceptual sensitivity to directional sig-
nals in a 2AFC task (Britten et al., 1992; Purushothaman and
Bradley, 2005; Gu et al., 2007). The neurometric function is sum-
marized by fitting a cumulative Gaussian function to the data
(Fig. 4C, smooth curve). From this fit, the neuronal threshold is
defined as the SD of the underlying Gaussian (� � 10.6° for the
example of Fig. 4). Thus, for each reference heading selected, we
obtain a neuronal discrimination threshold.

Summary of neuronal thresholds
For each cell, ROC analysis was applied across the full range of
possible reference headings, in steps of 5°, as illustrated for the
example cell in Figure 3C. The asterisk and vertical dashed line
mark the minimum threshold, obtained for a reference heading
of 95°, which for this cell occurred 60° away from the preferred
response direction (155°, see above). Where the minimum
threshold occurs depends both on the tuning curve slope (which
determines the separation of the distribution means (Fig. 4B)
and on the firing rate variability (which determines the width or
variance of the firing rate distributions). Note also that the ROC
analysis applied here does not make any a priori assumptions
about the shape of the tuning curve or the firing rate distributions
(Britten et al., 1992). Thus, estimation of neuronal thresholds
using ROC analysis applies to both cosine-tuned and spatiotem-
porally tuned neurons (discussed further below).

Using this procedure, we could examine discrimination
performance around different axes including 0°/180° (lateral
motion) and �90° (forward/backward motion). Minimum
neuronal thresholds varied from 2.3° to 36.6° across the popula-
tion of neurons studied (Fig. 5A) and distributions of minimum
thresholds were similar for FN and VN cells (mean � SE: 16.6° �
1° for FN vs 15.3° � 2.2° for VN; Wilcoxon rank test p � 0.3;
ranges: 5.2–31.2° and 2.3–36.6°, respectively). Only 3 neurons
had minimum thresholds �5°.

The distribution of reference directions corresponding to
minimum neuronal thresholds was not uniform for FN neurons
(uniformity test p � 0.01). The majority of FN cells (25/41, 61%)
had their minimum thresholds within �30° of the forward/back-
ward reference directions, whereas only 8/41 (19.5%) had their
minimum thresholds within �30° of the lateral axis (0°/180°, Fig.
5B). This distribution of minimum threshold directions is related
to the fact that FN neurons tend to prefer lateral directions, as
discussed further below (Shaikh et al., 2005).

In contrast to FN, the proportion of VN neurons with mini-
mum thresholds near the fore-aft direction (5/20, 25%) was sim-
ilar to the proportion (6/20, 30%) with minimum thresholds
near the lateral (interaural) axis. Indeed, both the distribution of
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the minimum threshold directions and
the distribution of preferred directions for
VN neurons were not significantly differ-
ent from uniform (uniformity test; p �
0.6, and p � 0.7, respectively). The
absence of a biased distribution of direc-
tion preferences for VN might be due to
the small sample size, as a preponder-
ance of lateral-preferring neurons has
been reported previously in a larger
population of neurons (Angelaki and
Dickman, 2000; Dickman and Angelaki,
2002; see Discussion).

What is the relationship between head-
ing directions that elicit maximal firing
rate and maximal discriminability (mini-
mum threshold)? For the example cell of
Figures 1– 4, the minimum threshold and
maximum response directions were 60°
apart. As illustrated by the distribution in
Figure 5C, the absolute value of the differ-
ence between minimum threshold and
maximum response directions across the
FN and VN cell populations ranged from
45° to 135°, with a mean value of 88.2 � 2
(SE). For 33/41 (80.5%) FN cells and 8/20
(40%) VN cells, the difference between
the minimum threshold direction and
maximum response direction was within
�10° of 90°.

The relationship between minimum
threshold and maximum response direc-
tions could depend on how much the spa-
tiotemporal tuning of the cell departs from cosine tuning, a
property that is captured by the tuning ratio (Bush et al., 1993; see
Materials and Methods and Angelaki and Dickman, 2000). Fig-
ure 6 A plots the distribution of tuning ratios for our sample of
neurons. There was a weak, marginally significant correlation
between tuning ratio and minimum neuronal threshold (r �
�0.31, p � 0.017, Spearman rank correlation) (Fig. 6B), such
that neurons with larger tuning ratios tended to have slightly
smaller minimum thresholds.

In Figure 6C we explore this relationship further by plotting
the tuning ratio as a function of the absolute difference between
minimum threshold and maximum response directions. If this
relationship depended solely on tuning-curve slope, one would
expect a “V-shaped” relationship; that is, cosine-tuned neurons
(tuning ratio � 0) should have a direction difference of 90°,
whereas spatiotemporal neurons with large tuning ratios should
have a difference of 45–135°. A correlation analysis on data folded
around the 90° direction difference (such that the expected rela-
tionship would be linear) revealed a very weak correlation that
was opposite in sign to the expected relationship (r � 0.30, p �
0.019, Spearman rank correlation). These results are consistent
with the expectation that the location of the minimum discrimi-
nation threshold depends considerably on the response variabil-
ity of each neuron, and not solely on the tuning function.

It is of considerable interest to know whether neuronal dis-
crimination thresholds depend on the reference direction relative
to straight ahead. We directly compared neuronal thresholds for
forward/backward versus lateral directions in the scatter plots of
Figure 7 (see also Table 1). For FN cells, the geometric mean
threshold (127.6°) for lateral directions was significantly larger

than that (58.8°) for forward directions (Wilcoxon rank test, p �
0.001), and also larger than that (58.9°) for backward directions
(Wilcoxon rank test, p � 0.001). For VN cells, the geometric
mean threshold (77.9°) for lateral headings was not significantly
different from that (72.3°) for forward headings (Wilcoxon rank
test p � 0.8) and backward headings (55.6°) (Wilcoxon rank test
p � 0.2). The ratio of lateral: forward heading thresholds aver-
aged 2.2 � 6.1 for FN neurons (geometric mean � geometric SD)
and 1.1 � 4.4 for VN neurons (median values of 2.5 and 1.0,
respectively). Thus, the distribution of heading preferences in the
FN leads to greater discrimination capacity around forward di-
rections than lateral directions.

There are two parameters in our analysis that can affect the
exact values of neuronal thresholds obtained for FN/VN cells.
First, the calculations were based on firing rates computed during
each half-cycle of motion (250 ms). Extracting firing rates from
smaller time windows centered on the peak response might give
more sensitive responses. As illustrated in Figure 8A, neuronal
thresholds increased nearly exponentially when the time window
for counting spikes was reduced below 50 ms (all intervals were
centered on the middle of each half-cycle response). Thus, max-
imal discriminability required some integration time for estimat-
ing firing rates, and too short a time window had adverse effects
on heading thresholds. However, this relationship asymptotes by
�100 ms (Fig. 8A); counting spikes over longer time intervals
does not substantially improve discrimination thresholds.

Second, the neurometric function for each reference heading
was constructed by computing ROC values for symmetric pairs of
headings that spanned a 40° range around the reference. How-
ever, choice of this range will affect the exact value of threshold.

Figure 5. Summary of neuronal thresholds. A, Distribution of minimum neuronal thresholds for 41 FN and 20 VN cells.
B, Distribution of reference heading directions for which minimum neuronal thresholds were obtained. C, Distribution of the
difference between minimum threshold direction and the maximum response direction. Open bars, FN cells; striped bars, VN cells.

Figure 6. Relationship between minimum discrimination threshold and tuning ratio. A, Distribution of tuning ratio in VN (n �
20, striped bars) and FN (n � 41, open bars). B, Scatter plot of tuning ratio versus minimum discrimination threshold. C, Scatter
plot of tuning ratio versus the absolute difference between minimum threshold direction and maximum response direction. Filled
symbols, FN cells (n � 41); open symbols, VN cells (n � 20).

444 • J. Neurosci., January 13, 2010 • 30(2):439 – 448 Liu et al. • Discrimination Thresholds of Vestibular and Cerebellar Neurons



Small ranges are best for estimating thresholds around steep por-
tions of the tuning curves (as in Fig. 4), and using too large a range
will overestimate threshold by incorporating data from less steep
portions of the tuning curve. In contrast, larger ranges are bene-
ficial to reliably quantify thresholds for portions of the tuning
curve that are relatively flat since a narrow range may produce
ROC values that vary little. How average thresholds depend on
the range of comparison directions is illustrated in Figure 8B. For
this analysis, the reference heading was chosen as that which
produced the minimum threshold, hence these data are obtained
from the steep portion of each tuning curve. Thresholds were
lowest for comparison heading ranges between 20° and 40°, but
increased for smaller and larger ranges as expected from the con-
siderations above. The comparisons in Figure 8 illustrate that the
parameters used to compute neuronal thresholds in our standard
analysis are near-optimal for maximizing neuronal sensitivity.

Discussion
We have used signal detection theory (ROC analysis) to measure,
for the first time, how firing rate variability shapes the direction
discriminability of subcortical vestibular neurons that code linear
acceleration. This was done by characterizing firing rates during 2
Hz translation, as the direction of heading changed smoothly and
gradually in the horizontal plane. This analysis quantifies how
small changes in motion direction can be discriminated by neu-
rons. The most sensitive neurons could discriminate among
headings that differed by a few degrees, but most neurons were
much less sensitive. The minimum threshold directions for FN
neurons were not uniformly distributed, but tended to cluster
around the forward/backward axis. As a result, heading discrim-
ination thresholds were significantly lower for forward/backward
than lateral directions.

Comparison with previous studies: parameters that
determine direction discrimination thresholds
The only comparable study in which heading discrimination
thresholds were measured during vestibular stimulation reported
neuronal thresholds of 26.8° � 2.9° and 14.6° � 3.2° (geometric
mean � geometric SD for two different macaques) for discrimi-
nation around the forward direction in cortical area MSTd (Gu et
al., 2007). MSTd thresholds are lower than FN/VN thresholds
(Table 1; Wilcoxon rank test, p � 0.001). In both studies, stimuli
were not tailored to the stimulus preferences of each neuron (as
previously done to maximize neuronal sensitivity in visual cor-
tex) (Britten et al., 1992; Celebrini and Newsome, 1994; Uka and
DeAngelis, 2003, 2006). Because we recorded from every neuron
sensitive to translation, these numbers represent a largely unbi-

Figure 7. A, Comparison of neuronal thresholds for forward versus lateral reference head-
ings. B, Analogous comparison for backward versus lateral reference headings. The histograms
on top and right illustrate the corresponding distributions (capped at a threshold value of 900).
Arrows illustrate geometric means (Table 1). Filled symbols, FN cells (n � 41); open symbols,
VN cells (n � 20). Note that each cell is plotted twice, showing data for both rightward and
leftward motion.

Table 1. Threshold (geometric mean � geometric SD), separately by animal and
heading direction

Minimum threshold Forward Backward Lateral motion

FN/threshold (°)
Animal F (n � 24) 15.2 � 1.5° 72.1 � 3.7° 65.6 � 2.5° 104.7 � 3.1°
Animal N (n � 12) 13.3 � 1.4° 30.4 � 1.7° 40 � 2° 206.4 � 3.3°
Animal D (n � 5) 23 � 1.2° 108.3 � 2.3° 88 � 2.6° 104.1 � 1.7°
All monkeys 15.4 � 1.5° 58.8 � 3.2° 58.9 � 2.4° 127.6 � 3.1°

VN/threshold (°)
Animal F (n � 10) 14.7 � 1.6° 64.6 � 1.9° 48.7 � 2° 74.6 � 2.4°
Animal N (n � 10) 9.6 � 2.5° 81 � 3.4° 63.5 � 2° 81.4 � 3.4°
All monkeys 11.9 � 2.2° 72.3 � 2.7° 55.6 � 2° 77.9 � 2.9°

Figure 8. A, Dependence of neuronal thresholds on the length of the time window (centered
on the middle of each response half-cycle) in which firing rates were computed. B, Dependence
of thresholds on the range of comparison headings used to construct the neurometric function
using ROC analysis. This dependence is illustrated for the reference heading that produced the
minimum threshold for each neuron using a time interval of 250 ms and a 40° heading range.
Filled symbols, FN cells (n � 41); open symbols, VN cells (n � 20). Data illustrate mean � SE.
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ased sampling of the vestibular-only cell population in the rostral
FN and VN.

The difference in neuronal sensitivity between FN/VN and
MSTd is interesting, as it might suggest an improvement in neu-
ronal heading sensitivity from early vestibular areas to the cortex.
Although neuronal processing cannot create new information, it
is nevertheless possible for heading sensitivity to increase from
FN/VN to MSTd. For example, the more sensitive neurons in
FN/VN could project to MSTd, or the cortical circuits could ef-
fectively remove correlations among their vestibular inputs, thus
increasing the fidelity of the explicit code in cortex. Note, how-
ever, that we cannot firmly conclude that MSTd neurons are
more sensitive than FN/VN cells because the motion stimuli were
different in the two studies. Here, we have used 2 Hz sinusoidal
oscillations with peak accelerations of 0.3G, whereas Gu et al.
(2007) used Gaussian velocity transients with peak accelerations
of 0.1G. It would therefore be valuable to directly compare neu-
ronal thresholds between cortical and subcortical neuronal pop-
ulations using identical stimuli.

An important finding of the present study is that maximum
direction discriminability is observed, on average, perpendicular
to the preferred direction of FN/VN neurons (Fig. 5C). This ob-
servation is consistent with previous studies (Purushothaman
and Bradley, 2005; Gu et al., 2007, 2008) and theoretical predic-
tions based on Fisher information (Seung and Sompolinsky,
1993; Pouget et al., 1998), which show that maximum discrim-
inability is observed for directions where firing rate changes
steeply. In contrast, discriminability is expected to be very poor
when a neuron is operating around directions that elicit near-
maximal firing rates. More specifically, two response parameters
influence direction discrimination thresholds: the slope of the
tuning curve around the reference direction and the variability in
firing rate. Thus, the overlap of the firing rate distributions in
Figure 4B depends (1) on how far apart the means are, which is
determined by tuning curve slope for a given pair of nearby head-
ings, and (2) on the variance of the distributions, which measures
response variability.

For cosine-tuned cells, the steepest slope of the tuning curve
occurs for directions �90° away from the maximum response
direction. In our data, however, the minimum threshold was
observed to occur within a range of 45–135° relative to the max-
imum response direction (see example in Fig. 3 and distribution
in Fig. 5C). Moreover, the distance between minimum threshold
and maximum response directions was not strongly dependent
on tuning ratio, which measures the departure from idealized
cosine tuning. Thus, the location of minimum response thresh-
old appears to depend substantially on both the tuning properties
and response variability.

Previous recordings of FN responses have revealed a predom-
inance of neurons that prefer lateral motion directions (Shaikh et
al., 2005). Thus, the greater heading discriminability for forward/
backward compared with lateral headings arises from the cluster-
ing of preferred directions along the lateral axis for FN neurons.
Previous studies have also described a predominance of lateral-
versus forward/backward-preferring neurons in the VN of awake
macaques (Angelaki and Dickman, 2000; Dickman and Angelaki,
2002) and decerebrate cats and rats (Schor et al., 1984; Bush et al.,
1993). However, such a preferential distribution was not ob-
served here, perhaps due to the modest size of the VN sample.

Rostral VN and FN: projections and potential functions
The non-eye movement cell type in the rostral VN/FN that was
targeted in the present experiments has been previously shown to

participate in several important computations in the vestibular
system (for review, see Angelaki and Cullen, 2008; Green and
Angelaki, 2009). First, they reflect a population solution to a sen-
sory ambiguity inherent in otolith afferents, which respond iden-
tically to translational motion (for example, running forward)
and gravitational accelerations experienced as we reorient rela-
tive to gravity. In contrast, the VN/FN population activity en-
codes both inertial motion and orientation relative to gravity
(Angelaki et al., 2004). Second, these same neurons carry infor-
mation about vestibular “exafference,” i.e., they distinguish
between rotations that are self-generated and those that are ex-
ternally applied (McCrea et al., 1999; Roy and Cullen, 2001;
Brooks and Cullen, 2009).

Vestibular neurons in the rostral VN and FN could project to
multiple regions involved in vestibular processing. Both areas
have strong projections to the upper cervical spinal cord
(Asanuma et al., 1983; Boyle et al., 1996; Gdowski and McCrea,
1999). Neurons in the VN/FN are also heavily interconnected
with each other (Noda et al., 1990; Homma et al., 1995), as well as
with areas of the anterior and posterior vermis, including the
nodulus/uvula of the vestibulo-cerebellum (Armstrong and
Schild, 1978; Kotchabhakdi and Walberg, 1978; Noda et al., 1990;
Wylie et al., 1994). Finally, both areas project to the ventral pos-
terior thalamus (Lang et al., 1979; Meng et al., 2001, 2007), from
which signals can be distributed to sensorimotor cortex (Huerta et
al., 1986; Akbarian et al., 1992). However, it is not presently known
which of the two areas contributes more to heading perception.

Relationship to heading perception
Unlike previous neural recordings in area MSTd, which were
performed while trained animals performed a 2AFC heading dis-
crimination task (Gu et al., 2007), we do not know the behavioral
thresholds of the animals used in the present study. Thus, the
present experiments do not allow a direct comparison between
neural activity in FN/VN and perception, but some indirect com-
parisons are worth noting. First, heading direction discrimina-
tion thresholds around straight-forward in darkness have been
reported to be in the range of 1–5° for both macaques and human
subjects (Smith et al., 2002; Adeyemo et al., 2007; Gu et al., 2007;
Fetsch et al., 2009). Given the much larger average neuronal
thresholds reported here, additional processing beyond that al-
ready taking place in the vestibular and deep cerebellar nuclei
may be needed to account for the precision of vestibular heading
perception. Alternatively, behavior could depend on the activity
of the most sensitive neurons, which have sensitivity that ap-
proaches behavioral thresholds (Fig. 5A). However, to account
for behavior in this manner would require a highly selective de-
coding of the most sensitive neurons.

Second, behavioral studies in both macaques and human sub-
jects have shown that perceptual heading discrimination thresh-
olds increase with the eccentricity of the reference heading away
from straight-forward (Smith et al., 2002; Adeyemo et al., 2007;
Fetsch et al., 2009). In human subjects, we have observed that
heading discrimination thresholds increase approximately two-
fold when the heading references changes from forward to lateral
(Adeyemo et al., 2007). By comparison, the ratio of lateral over
forward heading thresholds averaged 2.2 � 6.1 (geometric
mean � geometric SD) and 1.1 � 4.4 for FN and VN, respec-
tively. Thus, at least for FN, the variation in neuronal thresholds
with eccentricity is comparable to the twofold increase in human
behavioral thresholds.

It would be valuable to quantify heading discriminability in the
VN/FN while trained animals perform a heading discrimination
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task (as in Gu et al., 2007). Simultaneous neural and behavioral
testing would allow comparison of neuronal and psychophysical
thresholds under identical conditions, and would also allow one
to examine correlations between responses of subcortical neu-
rons and the monkey’s perceptual choices (Britten et al., 1996; Gu
et al., 2007, 2008). Whether trial-by-trial correlations between
perception and neural firing rates exist for subcortical neurons is
at present unknown. Such data could clarify the respective roles
of VN versus FN in heading perception.
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