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Behavioral/Systems/Cognitive

Neural Correlates of Prior Expectations of Motion in the
Lateral Intraparietal and Middle Temporal Areas

Vinod Rao,1,2 Gregory C. DeAngelis,1,3 and Lawrence H. Snyder1

1Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, 2Department of Psychiatry, Massachusetts
General Hospital, Boston, Massachusetts 02114, 3Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627

Successful decision making involves combining observations of the external world with prior knowledge. Recent studies suggest that neural
activity in macaque lateral intraparietal area (LIP) provides a useful window into this process. This study examines how rapidly changing prior
knowledge about an upcoming sensory stimulus influences the computations that convert sensory signals into plans for action. Two monkeys
performed a cued direction discrimination task, in which an arrow cue presented at the start of each trial communicated the prior probability of
the direction of stimulus motion. We hypothesized that the cue would either shift the initial level of LIP activity before sensory evidence arrived,
or it would scale sensory responses according to the prior probability of each stimulus, manifesting as a change in slope of LIP firing rates. Neural
recordings demonstrated a clear shift in the activity level of LIP neurons following the arrow cue, which persisted into the presentation of the
motion stimulus. No significant change in slope of responses was observed, suggesting that sensory gain was not strongly modulated. To confirm
the latter observation, middle temporal area (MT) neurons were recorded during a version of the cued direction discrimination task, and we
found no change in MT responses resulting from the presentation of the directional cue. These results suggest that information about an
immediately upcoming stimulus does not scale the sensory response, but rather changes the amount of evidence that must be accumulated to
reach a decision in areas that are involved in planning action.

Introduction
Both prior knowledge and sensory input determine how we per-
ceive the external world. Although much research has examined
how sensory representations are used to form perceptual deci-
sions (Gold and Shadlen, 2007), considerably less work has
examined how prior knowledge is incorporated into the
decision-making process. One proposed mechanism for percep-
tual decision making is the integration-to-bound model (Link
and Heath, 1975; Mazurek et al., 2003; Smith and Ratcliff, 2004;
Gold and Shadlen, 2007). In this account, each possible choice is
associated with an integrator that accumulates the value of sen-
sory evidence in favor of that option. When the total evidence
favoring one of the options reaches a threshold, the evidence-
gathering process is halted, and that option is selected. Various
studies have suggested that activity in the lateral intraparietal area
(LIP) reflects such a decision-making process (Shadlen and New-
some, 2001; Roitman and Shadlen, 2002; Huk and Shadlen, 2005;
Hanks et al., 2006; Kiani et al., 2008). Specifically, the activity of
an LIP neuron is thought to represent the cumulative evidence in
favor of a choice indicated by an eye movement into that neuron’s

response field (RF) (Gold and Shadlen, 2007; Yang and Shadlen,
2007).

If LIP activity reflects a decision variable that determines the
choice, then LIP activity should reflect relevant prior knowledge
in one of at least two ways. First, less evidence might be required
to choose the more likely option. This could manifest as an initial
offset of LIP activity toward a bound, or as a change in bound
height for that choice option (Gold and Shadlen, 2007; Yang and
Shadlen, 2007). Alternatively, more likely stimuli might have a
larger gain on their sensory representation. An integrator of those
sensory responses would consequently accumulate greater evi-
dence in favor of the cued option. This could manifest as a steeper
rate of ramping (slope) in LIP responses to visual motion. This
possibility is plausible given the abundant evidence that behav-
ioral context (e.g., attention) can modify sensory representations
(Treue, 2001; Reynolds and Chelazzi, 2004; Cisek, 2007).

Although estimates of prior probability are often built up over
long periods of time and change gradually, contextual cues some-
times alert us to rapid shifts in statistical structure. Recent phys-
iological studies that explored how prior probabilities influence
decision processes have generally used tasks with fixed or slowly-
changing priors (Fischer and Pena, 2011; Hanks et al., 2011). In
contrast, we examined how priors that change on a trial-by-trial
basis influence neural correlates of choices. In our cued direction
discrimination task, monkeys were given a partially predictive
cue about the direction of motion of an upcoming stimulus and
learned to incorporate cue information into direction judgments.
Recordings in LIP showed that when monkeys expected motion
toward the neuron’s response field, activity was increased before
and during the motion display. Changes in the slope and end-

Received Nov. 28, 2011; revised May 21, 2012; accepted June 4, 2012.

Author contributions: V.R., G.C.D., and L.H.S. designed research; V.R. performed research; V.R., G.C.D., and L.H.S.

analyzed data; V.R., G.C.D., and L.H.S. wrote the paper.

This work was supported by National Eye Institute Grants EY013644, EY012135 and EY002687. V.R. was sup-

ported by National Institute for Mental Health F30 Grant MH077368-01A1. Special thanks to Donna Lalor, Amy

Wickholm, and Jonathon Tucker for technical assistance. We thank Dora Angelaki, Maurizio Corbetta, and David Van

Essen for helpful discussions.

Correspondence should be addressed to Dr. Lawrence H. Snyder, Campus Box 8108, 660 South Euclid Avenue, St.

Louis, MO 63110. E-mail: larry@eye-hand.wustl.edu.

DOI:10.1523/JNEUROSCI.5948-11.2012

Copyright © 2012 the authors 0270-6474/12/3210063-12$15.00/0

The Journal of Neuroscience, July 18, 2012 • 32(29):10063–10074 • 10063



point of activity buildup could not account for the cueing effects
on behavior. Furthermore, recordings in the middle temporal
area (MT), which provides motion input to LIP, showed that
sensory responses were unaffected by the cue.

Materials and Methods
Subjects and surgery. Experiments were performed on two male rhesus
macaques (Macaca mulatta). General procedures have been described
previously (Uka and DeAngelis, 2003). Each animal was fitted with either
a CILUX or stainless-steel head holder (Crist Instruments), and a scleral
search coil was implanted under the conjuctiva for monocular eye posi-
tion monitoring. All experimental procedures were approved by the In-
stitutional Animal Care and Use Committee at Washington University
and conformed to National Institutes of Health guidelines.

After behavioral training, a beveled CILUX recording chamber (Crist
Instruments) was surgically attached to the monkey’s skull. Chambers
for LIP experiments were centered �12 mm lateral to the midline and 21
mm anterior to the occipital ridge. For one monkey, a follow-up struc-
tural MRI was used to guide placement of electrodes within the chamber
to target LIP. The chamber for the MT experiment was centered 17 mm
lateral to the midline and 14 mm anterior to the occipital ridge. All
chambers were oriented at an angle of �25° above stereotaxic horizontal
in a parasagittal plane.

We selected neurons using the same criteria that have been used in
previous studies of evidence accumulation, as LIP neurons are heteroge-
neous, and the selection criteria could affect our results (Premereur et al.
2011). LIP and MT were identified functionally as areas of cortex, located
beneath contiguous grid holes, having the expected neural responses: for
LIP, expected properties include spatially tuned responses during execu-
tion of delayed saccades and frequent presence of memory activity; for
MT, expected properties include robust direction-selective responses
and appropriate receptive field size/eccentricity ratios. Although we tar-
geted our recordings to LIP-ventral, we recorded in all contiguous grid
holes for which neurons exhibited memory-saccade responses, and we
cannot rule out that some of our recordings were in LIP-dorsal.

Stimulus control and presentation. Task events and data acquisition
were controlled by TEMPO software (Reflective Computing). Online
behavioral and neural analyses were performed using Matlab software
(Mathworks). Visual stimuli were generated using an OpenGL accelera-
tor board (Oxygen GVX1; 3Dlabs) using custom software written in
Visual C��. In the LIP experiments, the monkey viewed the stimuli on
a 22 inch flat-screen 100 Hz CRT monitor. At a viewing distance of 22 cm,
the monitor subtended 84 � 68° of visual angle. In the MT experiments,
the images were displayed using a stereoscopic projector (Mirage 2000;
Christie Digital) onto a 56 � 46° projection screen positioned 57 cm in
front of the monkey. To generate stereoscopic depth in the MT experi-
ment, stimuli for each eye were presented on alternate frames and viewed
through liquid-crystal ferroelectric shutter goggles, which were synchro-
nized to the refresh of the projector. This setup had no measurable stereo
cross talk.

Tasks and training procedures. All experiments required the monkey to
perform some version of a cued direction discrimination task. The task
was designed both to require the monkey to make a perceptual judgment
about a noisy visual stimulus and to encourage the monkey to bias these
choices in accordance with a prior cue. In our task, the monkey had to
judge the direction of a moving random-dot pattern and was biased by a
partially predictive arrow-shaped cue.

The timing of the task in the main experiment is as follows (see Fig. 1).
The task began when the monkey fixated upon a 0.2° diameter, yellow
fixation point. Fixation windows were 2.2° in diameter for Monkey 1,
and 3° for Monkey 2. Immediately after the monkey acquired the fixation
point, two 0.5° diameter targets appeared on opposite sides of the fixa-
tion point. One target was placed in an LIP neuron’s RF and was denoted
Tin; the target opposite the RF was called Tout. After the monkey held
fixation for 1050 ms, a green, 3° arrow-shaped cue appeared at the fovea
for 200 ms. On most trials the arrow pointed toward one of the two
choice targets; however, on some trials, a double-headed arrow pointed
to both targets simultaneously and is referred to as a neutral cue. The

arrow cue was displayed for 200 ms, followed by a variable delay of
150 – 800 ms (flat hazard function; mean, 290 ms).

Next a random-dot motion stimulus was displayed in a 5° diameter
patch centered on the fixation point. The motion stimulus consisted of a
field of dots moving at 8° per second toward one of the two targets,
chosen randomly on each trial. Noise was added to the stimulus by vary-
ing the motion coherence. Coherence refers to the percentage of dots
moving smoothly toward one of the two targets; the remaining dots were
replotted at random positions to generate a “snowlike” masking noise.
The motion coherence (c) on a given trial was chosen from the set 0, c, 2c,
4c, and 8c, where c � 3% for Monkey 1 and c � 2% for Monkey 2. These
different ranges of coherence assured that each monkey’s choices would
be appropriately biased by the arrow cue. Note that a 0% coherent mo-
tion stimulus consists entirely of randomly plotted dots and so is ambig-
uous with respect to the direction of motion. The motion stimulus was
presented for 1000 ms on 75% of trials, chosen randomly, or for 250 ms
on the remaining 25% of trials. The interleaved short duration stimuli
encouraged the monkey to make use of motion information from the
beginning of the presentation; however, these trials were too few to ana-
lyze. Instead, we include the results of a separate version of the task, run
on one monkey, in which only 250 ms motion stimuli were presented.

After the motion stimulus disappeared, the monkey maintained fixa-
tion during a 250 ms delay period. The disappearance of the fixation
point instructed the monkey to initiate a saccade to one of the two pe-
ripheral targets and to maintain eye position within 3.5° of that target for
150 ms. The trial was scored as correct if the chosen target matched the
direction of the moving dots, regardless of the direction of the arrow cue.
On correct trials, the monkey was rewarded with a drop of juice, whereas
on incorrect trials, the monkey endured a 1000 ms time-out before pro-
ceeding to the next trial. Trials in which the monkey broke fixation or
failed to make a saccade into either target window were aborted, and the
monkey was required to wait 3500 ms before proceeding to the next trial.

Critically, the correspondence between the direction of the arrow cue
and the direction of random-dot motion was chosen to make the arrow
cue partially predictive of motion direction. Specifically, trials in which
the arrow-cue direction matched the motion direction (“valid cue” tri-
als) were twice as frequent as trials in which the arrow-cue direction was
opposite the motion direction (“invalid cue” trials). Neutral-cue trials, in
which the arrow cue had two heads and thus contained no directional
information, were equally as frequent as valid cue trials. Thus, an ideal
observer attending only to the cue would be rewarded at 67% on all
non-neutral-cue trials. An ideal observer attending only to the motion
stimulus would be rewarded at 50% on 0%-coherence trials and up to
100% on other trials. To promote attention to the cue, Monkey 1 was
presented with occasional cue-only trials. These trials were equivalent to
valid cue trials with the motion stimulus omitted, so that the monkey was
rewarded for reporting the direction of the arrow cue. Given two direc-
tions of motion, five coherence levels, and five cue validities (two valid,
two neutral, one invalid), the task contained 50 distinct stimulus condi-
tions (not including Monkey 1’s cue-only trials, which were not included
in the analysis).

Training the monkeys to perform this task consisted of two main
stages: (1) training to discriminate between two opposite directions of
motion and (2) learning to incorporate the cue information. The first
stage was thoroughly described previously (Britten et al., 1992). Briefly,
one-target trials were intermixed with two-target trials early in training
to encourage the animal to form an association between full-coherence
motion and a saccade to the corresponding target. When this association
was stabilized, staircase procedures were used to gradually decrease the
motion coherence as the monkey became more sensitive. During this
procedure, the monkeys were exposed to all possible axes of discrimina-
tion and eccentricities of targets ranging from 5 to 20° from the fovea.

One monkey was also trained in a modified version of the task that
included only short-duration (250 ms) trials (see Fig. 2 D, 5B). All other
timing parameters were consistent with the main task. The animal’s be-
havior was sufficiently consistent that all sessions used a constant set of
five motion strengths: 0, 4, 8, 16, and 32% coherence.

The direction discrimination task was slightly modified for the MT
recordings, performed in one animal (see Fig. 7A). Most importantly, the
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parameters of the motion stimulus were chosen to maximally drive MT
neuron responses (see below, Experimental protocol). The position and
size of the motion patch were selected to fill the MT neuron’s receptive
field, and the axis of discrimination was aligned to the neuron’s pre-
ferred–null axis. Furthermore, the speed and horizontal disparity of the
dots were chosen to match the neuron’s preferences. Only 300 ms elapsed
between the acquisition of the fixation point and the display of the arrow
cue. After the motion presentation, which lasted 1000 ms on all trials, the
choice targets immediately appeared, and the fixation point disappeared,
signaling the monkey to report its choice.

Incorporation of the arrow cue into the direction discrimination task
began by including only valid cue trials for which the cue overlapped in
time with the motion stimulus or for which there was no interstimulus
interval (ISI) between the offset of the cue and the onset of the motion.
After the monkey demonstrated consistent use of the cue on trials having
either low coherence or zero coherence (�80% correct), we gradually
separated the cue and the motion stimulus in time, until eventually
reaching the final ISI distribution. Next, we introduced neutral-cue trials
and interleaved them with the valid cue trials. Finally, we gradually in-
corporated invalid cues starting at ratios of five valid/one invalid and
slowly increasing in frequency until we reached the final ratio of two
valid/one invalid.

In addition to the cued direction discrimination task, monkeys were
trained to perform other tasks needed to identify LIP neurons and char-
acterize their response fields. In the delayed saccade task, the monkey first
fixed his gaze on the fixation point, and 300 ms later a red 0.5° peripheral
target was presented. After 200 ms, the target luminance was dimmed
(30% original luminance for Monkey 1, 20% for Monkey 2) for 800 ms.
Finally, the fixation point and target were extinguished, and the monkey
had to make a saccade to the location of the target and was rewarded for
landing within 3.5° of the target. Memory saccade trials were almost
identical, except that the target was completely extinguished after the
initial 200 ms presentation. The monkey had to remember the target
location for 800 ms and then make a saccade to that location when the
fixation point disappeared. Finally, the monkey was trained to perform a
receptive field mapping task. In this task, the monkey fixated while a
peripheral target was flashed in a series of one to five positions. The
targets were presented at full luminance for 300 ms each. The monkey
was rewarded for making a saccade to the target that was on the screen
when the fixation point was turned off.

Experimental protocol. We recorded responses from single neurons in
two monkeys. Fine tungsten microelectrodes (1–2 M�; Alpha Omega)
were inserted into the brain via a transdural guide tube held in a plastic
grid (Crist Instruments) and were advanced through the cortex with a
micromanipulator (Narishige) mounted on the recording chamber. Ac-
tion potentials were isolated using an amplifier (A-M Systems or FHC),
bandpass filter (Krohn-Hite), and window discriminator (Bak Electron-
ics). Action potential and event timings were recorded at 1 ms temporal
resolution.

While searching for neurons during the LIP recordings, the monkey
performed delayed saccades to targets at an eccentricity of 15° in each of
eight directions. After a single unit was isolated, the location of its re-
sponse field (polar angle and eccentricity) was estimated using the de-
layed saccade and receptive field mapping tasks, run iteratively as needed.
Next, the monkey performed memory saccades to a target located in the
response field and a target positioned diametrically opposite the fixation
point. LIP neurons that failed to show tuned memory responses ( p �
0.05, Mann–Whitney U test) were not studied further.

For the LIP versions of the cued direction discrimination task, the
center of the response field and the position diametrically opposite the
fixation point defined the two target locations, referred to as Tin and Tout,
respectively (see Fig. 1, top left). Coherent dot motion, and thus the axis
of discrimination, was along the line defined by these two positions. For
a neuron to be included in the analysis, single-unit isolation was main-
tained for a minimum of five repetitions of each of the 50 trial types, with
a median of seven repetitions.

During MT recordings, receptive field position and size as well as
preferred stimulus parameters (direction, speed, and horizontal dispar-
ity) were first estimated by hand and then quantitatively characterized

during fixation trials. The two possible motion directions in the cued
direction discrimination task were selected to match the direction that
maximized the neuron’s response (the “preferred” direction) and the
direction 180° opposite (the “null” direction). The remaining parameters
of the motion stimulus (position, size, speed, and horizontal disparity)
were matched to each neuron’s preferences to maximize the relevance of
the neuron to the task (Britten et al., 1992; DeAngelis and Newsome,
2004).

Behavioral data analysis. All offline analyses were conducted using
Matlab software (Mathworks). We constructed psychometric curves to
assess whether the monkeys’ reports were influenced by the direction of
the arrow cue. First, the trials were split into groups based on the direc-
tion of the arrow cue [toward Tin, toward Tout, or toward both (neutral
cue)]. For each cue group, we plotted the proportion of Tin choices as a
function of signed coherence, where positive coherences denote motion
toward Tin, negative values denote motion toward Tout, and zero-
coherence trials are ambiguous. These data were fit with logistic func-
tions of the following form:

y � 1�1 � e	
�	 x
���, (1)

where y is the proportion of Tin choices, x is the signed coherence, and �
and � are free parameters reflecting the slope and bias of the curves,
respectively. The cue-related bias for a given cue direction was computed
as the difference in � between trials cued toward that direction (either Tin

or Tout) and � in neutral-cue trials. The average cue-related bias for a
behavioral session was therefore the average of the bias for each of the two
cue directions.

To determine whether the monkey’s reports were influenced by the
validity of the arrow cue, we performed a logistic regression analysis on
the monkey’s percent correct in the various conditions, with motion
duration, motion coherence, cue validity, and all interaction terms as
predictors. For a session to be included in the final data set, we required
a significant ( p � 0.05) effect of cue validity, or a significant effect of at
least one of the three interaction terms that include cue validity. Further-
more, the sign of the significant terms was required to be consistent with
the predicted effect of the cue. For example, a significant interaction
between cue validity and motion coherence must be such that increasing
coherence decreases the effect of the cue, since the motion determines the
response. Data from 10 of 91 recording sessions in the main LIP task were
excluded based on these behavioral criteria. This was done to ensure that
we sought neural correlates of prior expectation under conditions in
which behavior was clearly affected by the arrow cue.

Neural data analysis: LIP. Analyses were based on unsmoothed spike
counts. For figures, action potential trains were smoothed with a Gauss-
ian kernel (20 ms SD, equivalent to a low-pass filter with a 
3 dB point at
6.8 Hz) to generate spike density functions (SDFs) before plotting. Pop-
ulation SDFs were generated by first averaging neural responses for the
appropriate trial types in the relevant time interval within each cell and
then averaging SDFs across neurons. By first averaging within condi-
tions, we avoided artifacts from unequal numbers of Tin and Tout

responses.
To estimate the rate of LIP buildup activity, the raw (unsmoothed)

spike counts were grouped in 10 ms bins, and the slope was computed by
linear regression of the binned spike counts over a specified time window
(Churchland et al., 2008). This slope was computed separately at each
coherence for each neuron.

To test for consistent ordering of these firing rate slopes according to
coherence, we first computed the Spearman rank correlation between
response slope and coherence for each neuron. We then asked whether
the average correlation for our sample of neurons was significantly dif-
ferent from zero using a Student’s t test. Only correct neutral-cue trials
with motion in one direction were used in this analysis (see Fig. 3).

To compute the latency of responses to motion, we focused on correct,
neutral-cue trials. To determine the onset time of directional specificity,
LIP responses to motion toward Tout were subtracted from responses to
motion toward Tin. This difference was computed separately for each
level of coherence, and a bootstrapping procedure was used to compute
confidence intervals around the time course of the mean activity differ-

Rao et al. • Neural Correlates of Priors in LIP and MT J. Neurosci., July 18, 2012 • 32(29):10063–10074 • 10065



ence. For each level of coherence, we selected the first time bin for which
the Bonferroni-corrected 95% confidence interval did not include zero.
The directional latency was chosen as the earliest time (290 ms) that a
significant directional signal was detected at any coherence (which un-
surprisingly occurred at the largest coherence). Other procedures, such
as applying a piecewise linear fit to the time course of the response vari-
ance, produced similar results (Kiani et al., 2008). Note that this estimate
represents an upper bound on the true latency for directional signals to
arrive in LIP.

The time course of the cue effect (see Fig. 5) was generated using
overlapping 50 ms windows, stepped through the data in 25 ms incre-
ments. We averaged the raw spike counts within each time window for
each task condition, which we define as a unique combination of cue
direction, motion direction, coherence, and choice. Next, for each task
condition, we subtracted off activity from the corresponding neutral-cue
version of that condition. This produced a cue effect time course for each
task condition. (By construction, the cue effect time courses for the con-
ditions with neutral cues were zero). Averaging across motion direction,
coherence and choice yielded an average cue-related activity modulation
for each neuron for a given cue direction. Ninety-five percent confidence
intervals were defined by the cross-cell mean cue effect �1.96 SDs. This
parametric formulation for the confidence interval was justified by
highly linear quantile– quantile plots (data not shown) of cue effect sizes
for Tin and Tout cues.

We also estimated the time at which the cue effect begins to differ
between trials in which the monkey chose Tin versus Tout. Separate time
courses of the cue effect were computed as above using only Tin-choice
trials or Tout-choice trials. Subtracting these time courses yielded a
choice-conditioned difference in the cue effect. We defined a difference
threshold as the mean difference plus three SDs, based on activity from a
275 ms period before motion onset. The latency was defined as the first
time point at which the choice-conditioned difference exceeded this
threshold.

To explore whether the neural cue effect was related to the behavioral
effect, we computed correlations between metrics of these two effects.
The neural cue effect was quantified, for each cue direction, by first
computing firing rates averaged over the 100 ms period before motion
onset and then subtracting this average rate on Tout-cue trials from the
average rate on Tin-cue trials. The behavioral effect was computed by
subtracting the cue-related bias (as described in the previous section) for
Tin-cue trials from the cue-related bias for Tout-cue trials, yielding posi-
tive values when Tin cues lead to more Tin choices than do Tout cues. The
overall association between these two metrics was quantified by Spear-
man correlation, as the behavioral metric was not normally distributed.

Neural data analysis: MT. To examine effects of the cue on MT re-
sponses to motion, we constructed neural response curves for each cue
direction, where the normalized firing rate during the 1000 ms motion
stimulus is plotted as a function of the signed coherence (see Fig. 7B). The
neuron’s firing rate for each combination of signed coherence and cue
direction was normalized to that neuron’s response on zero-coherence,
neutral-cue trials. To test for a significant effect of cue direction on MT
responses to motion, we analyzed the raw (i.e., non-normalized) mean
firing rates with a two-factor repeated-measures ANOVA, with cue di-
rection and signed coherence as factors.

Figure 7B suggests that the presence of a conflict between the direc-
tions of the cue and the motion may influence MT responses. To test this,
we applied a two-factor repeated-measures ANOVA to the raw firing
rates during the motion stimulus with factors of signed coherence and
conflict. Conflict conditions were defined as situations in which the cue
indicated one direction of motion while the random-dot stimulus con-
tained robust motion (2c, 4c, and 8c%) in the opposite direction. No-
conflict conditions were defined as the corresponding neutral-cue trials.

As the above analyses yielded no significant effect of cue direction on
MT responses (see Results), we deemed it important to assess the sensi-
tivity of our analysis. We performed simulations to estimate the statistical
power of the ANOVA described above. In brief, we generated data sets
powered identically to ours, but with known cue-related effects on firing
rates. We analyzed these data sets with the same two-factor repeated-

measures ANOVA and compared the sensitivity of our analyses to the
size of the imposed firing rate effect.

More specifically, the baseline responses for each simulated neuron, at
each coherence, were taken as the neutral-cue firing rates of a real neu-
ron. To be conservative, we assumed that null-direction cues had no
effect on the mean response and that preferred-direction cues provided a
simple additive offset to the mean firing rate on neutral-cue trials. We
then generated trial-by-trial firing rates by sampling from Gaussian dis-
tributions with the appropriate means and variances. Assuming Poisson-
like firing statistics, rather than Gaussian, produced similar results. We
matched the number of trials for each simulated neuron to the corre-
sponding number in our measured data set. Given the sampled firing
rates, we computed means and repeated the ANOVA as in our real data
set. We repeated this procedure 1000 times and tallied the number of
significant main effects of cue direction. Finally, we searched for values of
the firing rate offset due to a preferred-direction cue that would be de-
tected as significant with 90% and 50% reliability by our analysis.

We examined whether receptive field eccentricity was related to the
magnitude of the neural cue effect. For each neuron, we estimated the cue
effect by subtracting the firing rate during the motion stimulus on
neutral-cue trials from the corresponding firing rate on preferred-
direction-cue trials. This was done separately for each motion direction
and coherence and averaged across these conditions to yield a metric
reflecting the cue effect for each neuron. The data set was split according
to the median eccentricity of the receptive fields, and the average cue
effect was computed for neurons with receptive fields nearer and farther
from the fovea.

Choice probabilities (CPs) were computed according to the method of
Britten et al. (1996). For each distinct combination of motion direction
and coherence, firing rates during the motion display were normalized by
computing z-scores. Within each distinct stimulus condition, normal-
ized responses were then divided into two groups based on whether the
monkey chose the preferred or null direction of the neuron on each trial.
Normalized response distributions for preferred-choice trials were then
combined across all distinct stimulus conditions for which the monkey
made at least one choice in each direction, and this was repeated for
response distributions from null-choice trials. Finally, we calculated a
grand choice probability for the neutral-cue trials by applying receiver
operating characteristic analysis to the distributions of normalized re-
sponses sorted by choice. This entire procedure was then repeated for
valid-cue trials to generate a grand choice probability under value cue
conditions. Permutation tests were used to evaluate the significance of
CPs (Britten et al., 1996; Uka and DeAngelis, 2004).

Integration-to-bound model. We simulated the monkey’s behavior us-
ing an integration-to-bound framework (Mazurek et al., 2003; Gold and
Shadlen, 2007) to estimate the expected time course of the cue effect. In
our model, each possible choice had a separate integrator associated with
it. When the accumulated evidence in one integrator exceeded a bound,
the corresponding choice was recorded for that trial. The bound was the
same for both integrators. As the motion stimulus in our task was of a
fixed duration, motion evidence was presented to the integrators for a
fixed number of time steps. If neither integrator reached its bound by the
end of the motion presentation, the decision for that trial was generated
randomly, weighted by the relative amount of accumulated evidence at
that time. For example, if the first integrator had accumulated half of the
required evidence and the second integrator had accumulated three-
fourths of the required evidence, then there was a 40% chance [0.5/(0.5 �
0.75) * 100] of choosing the first target and a 60% chance of choosing the
second target. An alternative implementation, which, if neither bound is
reached, selects the integrator with the most evidence, changes the fit
parameters but does not change the final pattern of the cue effect time
course.

We modeled the moment-to-moment evidence about motion as sam-
ples from a normal distribution, with a mean that was linearly related to
the signed motion coherence (� � kC � �0) and a variance (� 2) that was
constant across trials. For each integrator, if a sample of evidence brought
the integrator closer to its bound, the value was added in full. If that
sample supported the opposite choice, the value was scaled by a constant
(�) and subtracted from the running total. This approach reflects the
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observation that LIP activity does not change symmetrically for motion
toward Tin versus that toward Tout (Churchland et al., 2008), as also
observed in our data (see Fig. 3). Finally, prior expectations regarding
choice were modeled by adding an initial positive offset to the integrator
associated with the cued direction.

Because directional motion signals did not arrive instantly at LIP, we
enforced a fixed latency on when motion signals began to be accumulated
in our simulation. The latency, 290 ms, was based upon our measured
neural data (see above, Neural data analysis: LIP).

In total, five free parameters specify the model: (1) the proportionality
constant, k, between coherence and the mean value of the evidence; (2)
the mean evidence offset, �0, which accommodates small choice biases
(independent of the cue) that are present without coherent motion; (3)
the variance, � 2, of the evidence; (4) the scaling parameter, �, for evi-
dence supporting the opposite choice (which ranged from 0 to 1); and (5)
the initial offset associated with the cue. We simulated 400 trials for each
distinct combination of direction and coherence to generate psychomet-
ric curves.

Behavioral data from neutral-cue and Tin-cue trials with 1000 ms mo-
tion durations were combined across the two monkeys and used to fit the
model. Model fits were quantified by applying an inverse logistic trans-
form to the measured and simulated psychometric curves to linearize the
data and then computing the correlation coefficient between the two data
sets. This procedure was performed separately for neutral-cue and Tin-
cue trials, and the resulting correlation coefficients were averaged to
estimate the overall model fit. Using the best-fitting parameters, we reran
the simulation for 1000 trials per stimulus condition and examined the
evolution of the accumulated evidence over time. Averaging across mo-
tion direction and coherence yielded time courses for neutral-cue and
Tin-cue trials, and the time course of the cue effect was simply the differ-
ence between these time courses.

A control model was implemented that did not include a bound on the
integration. In this “unbounded” model, the integrator with the highest
value at the end of the motion was selected as the decision. This yielded a
model with only four free parameters, as the variance of the evidence is
irrelevant in this scale-free model. Again, the model parameters were fit
to the behavior, and the time course of the cue effect was computed as
before.

Results
Monkeys were trained to perform a cued
direction discrimination task (Fig. 1) (see
Materials and Methods). In this task, the
monkey earned rewards for reporting the
direction of motion in a random dot dis-
play. An arrow cue preceded the motion
stimulus and was partially predictive of
the motion direction. In particular, arrow
cues pointing toward the Tin target pre-
dicted that the motion was twice as likely
to be directed toward Tin than Tout, and
vice versa for trials with a Tout-cue. Neu-
tral (bidirectional) cues indicated that the
upcoming motion was equally likely to be
in either direction. We demonstrate that
these cues biased monkeys’ behavioral re-
sponses, and then we explore how the cues
altered neural responses.

Effect of prior cue on motion
discrimination behavior
Figure 2A shows the fraction of Tin

choices as a function of coherence, sorted
by the direction of the arrow cue, for a
single recording session with 1000-ms-
duration trials. In general, as more ran-

dom dots moved coherently toward Tin (i.e., greater positive
coherence), the monkey more frequently chose Tin. Importantly,
when motion was preceded by a Tin cue (green), the monkey
more frequently chose Tin than on neutral-cue trials (red). Like-
wise, the monkey made fewer Tin choices when cued toward Tout

(blue). To quantify these effects, we fit a logistic function (Eq. 1)
to the data and estimated the behavioral bias associated with each
cue direction (see Materials and Methods). Although the monkey
had a slight overall bias toward choosing Tout in this session, there
was also a clear effect of cue direction on choices. Presentation of
a Tin cue yielded a positive bias (leftward shift) equivalent to 7.3%
coherence, and presentation of a Tout cue yielded a bias equiva-
lent to 
2.3% coherence. These cue effects were significant by
logistic regression analysis (p � 0.0001).

Averaging each monkey’s behavior across sessions indi-
cates that the monkeys chose a target more frequently when
the cue predicted motion in that direction than on corre-
sponding neutral-cue trials (Fig. 2 B, C). The effect of the cue
across sessions was significant by logistic regression analysis
(Monkey 1, p � 0.0001; Monkey 2, p � 0.005). The cue effect
was particularly strong when the motion stimulus contained
little to no coherent motion. On these trials, the stimulus
provided poor quality information about motion direction,
and the monkey could maximize its expected reward by
weighting the cue more heavily.

A separate set of experiments further established that arrow
cues influenced choices. Monkey 1 performed a shortened ver-
sion of the cued direction discrimination task in which the mo-
tion display persisted for only 250 ms on each trial. With less
motion information available, the monkey relied more heavily on
the prior information provided by the cue, as seen by the larger
separation of the curves in Figure 2D relative to those in Figure
2B. The bias induced by the cue was significantly greater in the
sessions with only short-duration trials (p � 10
18, Mann–
Whitney U test).

Figure 1. Task design for the standard version of the cued direction discrimination task. Top panels illustrate the display seen by

the animal during cue presentation (left), motion stimulus presentation (center), and target selection (right). The timing of the

task events is depicted at the bottom. All numbers are durations given in milliseconds. Red arrows mark times of the three screen

snapshots.
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LIP responses to motion stimuli
Previous studies involving choice tasks
have shown that LIP neurons increase
their firing rates leading up to a saccade to
a target in the cell’s response field. Further-
more, these studies suggest that LIP activity
builds up faster when stronger sensory evi-
dence guides the choice (Shadlen and New-
some, 2001; Roitman and Shadlen, 2002;
Churchland et al., 2008; Kiani et al., 2008).

We evaluated this hypothesis in our data
set, focusing on correct, long-duration,
neutral-cue trials. SDFs in Figure 3 show the
population average time course of LIP re-
sponses to motion, sorted by coherence and
choice. LIP firing rates on Tin-choice trials
(solid) transiently decreased, rose quickly
for about 250 ms, remained steady or rose
gently through the end of the stimulus pe-
riod, and increased sharply in anticipation
of a saccade into the cell’s response field
(Shadlen and Newsome, 2001). Interest-
ingly, the slopes of the LIP responses during
the initial rise did not vary with coherence.
To quantify this, we computed slopes from
150 to 300 ms after motion onset (Fig. 3,
gray shaded region). There was no consis-
tent ordering of the slopes according to the
coherence, during motion either toward Tin

(p � 0.08, t test; see Materials and Methods)
or toward Tout (p � 0.71). However, greater
motion coherence was associated with
higher average firing rates (p � 10
4; linear regression) in the pla-
teau or gently rising response period (500–1000 ms after motion
onset; Fig. 3, solid curves). Population SDFs for Tout-choice trials
(Fig. 3, dashed lines) show an analogous pattern in the opposite
direction: firing rates declined starting about 200 ms after onset of
motion, and the firing rate waned faster on trials with stronger Tout

motion.
These differences in the SDFs related to stimulus strength are

subtle relative to some previous studies (Shadlen and Newsome,
2001; Roitman and Shadlen, 2002; Churchland et al., 2008; Kiani
et al., 2008), in part because our range of motion coherences was
constrained so that the monkeys’ choices would be effectively
biased by the prior (see Discussion).

LIP responses to arrow-cue onset
Next, we examined how LIP neurons responded to the onset of
the arrow cue. Note that this cue was placed at the fovea, outside
the neurons’ response fields. If prior knowledge afforded by the
cue affects the decision-making process by shifting the decision
variable toward a bound, and if LIP activity represents this deci-
sion variable, then we expect the cue to modify LIP firing rates
before onset of the motion stimulus. Alternatively, if the cue
alters sensory representations of the relevant stimuli (i.e., motion
signals in area MT), we expect no cue effects before the motion
begins. The left panel in Figure 4A shows population SDFs
aligned to cue onset for Tin-cue trials (green), neutral-cue trials
(red), and Tout-cue trials (blue). Relative to neutral-cue re-
sponses, LIP neurons fired more strongly when the arrow cue
specified Tin. In addition, there was a slight suppression in activ-
ity when the cue indicated Tout. The transient dip in activity after
cue onset is reminiscent of the dip noted at motion onset during

previous studies (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Churchland et al., 2008; Kiani et al., 2008; Kiani
and Shadlen, 2009; Rorie et al., 2010).

The effect of the cue on LIP responses before motion onset was
very unlikely driven by a visual response to the cue itself. There

A B C

D E

Figure 2. Prior expectations bias monkeys’ perceptual reports. Psychometric functions are plotted as fraction Tin choices as a

function of signed coherence, where large positive coherences indicate clear motion toward Tin, and large negative coherence

indicates clear motion toward Tout. Data are plotted separately based on the direction of the cue. Data in A–C are from 1000 ms

motion duration trials of the standard (LIP) version of the cued direction discrimination task. A, Single-session psychometric

functions for Monkey 1. B, Average psychometric functions from 44 recording sessions for Monkey 1. C, Average psychometric

functions from 37 recording sessions for Monkey 2. D, Average psychometric functions from 72 recording sessions from the short

motion duration (250 ms) version of the task. Note the broader range of motion coherences in this version. E, Average psychometric

functions from 30 recording sessions from the MT version of the task. Because the coherence range varied across sessions in this

task, data are combined by ordinal coherence and plotted in terms of the lowest coherence for that session, denoted c (see

Materials and Methods). Error bars indicate SEs. Curves are best-fitting logistic functions (Eq. 1). Dashed lines indicate chance

performance.

Figure 3. LIP responses to motion reflect choice and stimulus strength. Population SDFs grouped

by choice and motion strength, aligned to motion onset (left) and saccade initiation (right). Solid and

dashed curves represent trials in which the monkey chose Tin and Tout, respectively. Color indicates

ordinal coherence, such that 0% denotes ambiguous motion and 8c% denotes the strongest motion

coherence for each monkey (see Materials and Methods). Only correct, neutral-cue, 1000 ms motion

trials are included here (all neutral-cue, 1000 ms motion trials were included for the 0% coherence

curves). Vertical dashed lines mark the times of motion onset, motion offset, and saccade initiation.

n�81 cells from both monkeys performing the mixed-duration task. The gray vertical band denotes

the time interval over which response slopes were computed.
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was no systematic difference in the effect of cue direction on LIP
responses during the 200 ms cue display as a function of response
field location: the effect of cue direction for neurons with re-
sponse fields close to the fovea (�10° from the fovea) was only
0.81 spikes per second greater than that for neurons with re-
sponse fields farther from the fovea. Moreover, this difference
was not significant (p � 0.32, Mann–Whitney U test).

The right panel of Figure 4A shows population activity aligned
to the onset of motion and indicates that response modulation
due to the cue was present at the time of motion onset. To quan-
tify the observation that the cue effect was present before motion
onset, we averaged firing rates in the 100 ms period preceding
motion onset. This time window was chosen to avoid any overlap
with the cue display. With respect to neutral-cue trials, LIP firing
rates during this interval were significantly amplified on Tin-cue
trials relative to neutral cues (p � 10
5, paired t test), with no
significant effect on Tout-cue trials (p � 0.22). The majority of
individual neurons (65 of 81) showed greater activity in this 100
ms window for Tin cues than for Tout cues (Fig. 4B). Among
neurons with a significant difference in activity between the two
conditions (p � 0.05, t test; Fig. 4B, filled circles), 27 of 28 neu-
rons showed stronger activity on Tin-cue trials.

Effect of cue on LIP responses during motion integration
The previous analyses demonstrate that both motion stimuli and
arrow cues modulate LIP firing rates, and that these modulations
were in the expected directions. However, if LIP activity truly
reflects the integration of incoming sensory evidence with the
prior, then cue-related modulations should be detected while the
motion evidence is being evaluated.

To visualize the evolution of the cue-related response modu-
lation during presentation of the motion stimulus, we computed
a time course of the cue effect. The time course was quantified as
the response (firing rate) on cued trials minus the response on
neutral-cue trials, averaged across motion directions, coherences,
and the monkey’s choices. To estimate how long the neural effect
of the cue persisted, we generated 95% confidence intervals and
asked when the effect was no longer distinguishable from zero.
An effect of Tin cues is clearly present early on, but the effect fades
over the course of the motion presentation (Fig. 5A, green).
Comparing directly, the average effect of Tin cues decreased sig-
nificantly between the initial and final 100 ms of the motion
stimulus (Tin cue, p � 0.003; Tout cue, p � 0.61, two-tailed paired
t tests).

Similar cue-related effects were observed for each monkey
individually: Tin cues amplified LIP responses (relative to
neutral-cue responses) over the first 100 ms of the motion stim-

A

B

Figure 4. LIP responses diverge upon delivery of the arrow cue. A, Populations SDFs are

shown, grouped by cue direction and aligned to either cue onset (left) or motion onset (right).

Given the variable cue-motion ISI, the earliest motion stimuli appeared 150 ms after cue offset.

All trials contributed to the SDFs regardless of the motion parameters. B, Firing rates over the

final 100 ms before motion onset are plotted for Tin-cued trials versus Tout-cued trials, with each

datum representing one neuron. Filled circles represent a significant difference between the

firing rates ( p � 0.05, t test). The dashed line represents the unity-slope diagonal. n � 81 cells

from both monkeys performing the mixed-duration task.

A

B

Figure 5. Time course of LIP responses reveals an effect of cue direction that wanes with

time. Time courses reflect the difference in activity between trials of each cue type and the

neutral-cue trials, averaged across neurons. Time courses were constructed using 50 ms win-

dows slid across the data in 25 ms steps. The shaded areas reflect 95% confidence intervals

across neurons. A, Time course of the cue effect constructed from the 1000 ms duration motion

trials from the mixed-duration sessions (n � 81 cells from two monkeys). B, Time course

constructed from separate sessions containing only 250 ms motion stimuli (n � 72 cells from

one monkey). Note the different time scales on the abscissa.
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ulus (Monkey 1, p � 0.001; Monkey 2, p � 0.03, paired t tests),
and effects were greater in the first 100 ms than in the last 100 ms
(Monkey 1, p � 0.02; Monkey 2, p � 0.05, paired t tests).

In contrast, Tout cues were associated with a slight suppression
of firing rate relative to neutral-cue trials (Fig. 5A, blue). When
averaged across the entire motion period, the effect approached
significance (p � 0.051, paired t test).

If the cue effect were implemented by changing the threshold
of accumulated evidence, the integration-to-bound model would
predict different plateau firing rates late in the motion presenta-
tion. This would manifest as a persistent difference in response
between cue types. However, cue direction has no significant
effect on LIP firing rates during the final 250 ms of the motion
stimulus (p � 0.15, one-factor repeated-measures ANOVA), ar-
guing against a change in the neuronal decision threshold. Visu-
ally, this is supported by Figure 5A, in which the firing rates for
Tin and Tout cues converge toward the firing rate for the neutral
cue late in the trial, once the decision has been made.

We confirmed these cue effects in a separate data set collected
from Monkey 1. In these sessions, the monkey was only exposed
to trials with 250 ms motion durations. Data from these trials
were analyzed in an identical manner to the long-duration data
set, yielding another time course of the cue effect (Fig. 5B). The
same general pattern held: Tin cues increased responses before
motion onset (relative to neutral cues), whereas Tout cues de-
creased responses. These effects peaked near the onset of motion
and decayed during the stimulus period. Compared to the long-
duration stimuli, the effect of the cue on LIP responses during the
100 ms period before motion onset was significantly greater for
both Tin cues (p � 0.05, Mann–Whitney U test) and Tout cues
(p � 0.04). The more pronounced effects of the cue on short-
duration LIP responses match nicely with the more pronounced
behavioral effects in the short duration task (Fig. 2D). Hence,
when less motion information is available, the cue exerts a greater
effect on both LIP responses and behavior.

This result prompted us to examine whether there is a corre-
lation between the strength of neural and behavioral cue effects
across sessions. The mixed-duration data set revealed a near-
significant association between behavioral bias and the neural
effect of the cue (Spearman r � 0.21, p � 0.06) (see Materials and
Methods). Overall, this analysis suggests a functional link be-
tween the neuronal and behavioral data.

Diffusion model of cue effects
Our neural data argue that prior knowledge that varies from trial
to trial can indeed modulate LIP activity, and that these effects
persist well into presentation of the motion stimulus. One might
argue that the gradual disappearance of cue effects during the
motion stimulus suggests that LIP might not reflect how priors
are combined with sensory evidence to form decisions. However,
the absence of cue-related activity late in the trial does not neces-
sarily imply that the early representation of priors in LIP is dis-
carded. Rather, as demonstrated in the following simulations,
waning of the cue effect with time is expected if the decision
process is compatible with an integration-to-bound framework.

We simulated the monkey’s choices using an integration-to-
bound model to investigate the effect of the cue over time (see
Materials and Methods). Although our LIP data did not reveal
strong sorting of responses by coherence (Fig. 3), as predicted by
an integration-to-bound model, this framework has proven use-
ful in modeling behavior and LIP responses in similar tasks (Ki-
ani et al., 2008). It is possible that our use of a restricted range of
coherences limited our ability to observe the coherence depen-

dence of responses. In our simulations, the effect of the cue was
modeled as an initial offset in the decision variable associated
with the cued direction, analogous to the effect observed in LIP.
We did not implement the cue effect as a sensory gain modulation
because our data from area MT do not support this possibility, as
shown in the following section. For simplicity, this simulation
only modeled neutral and Tin-cued trials, as the effect of Tout cues
on LIP activity was modest (Fig. 5A, blue). Note that the simu-
lated integration process was not leaky, implying that any effect of
the cue in the model should influence the decisions. We fit the
simulation parameters to match the monkeys’ averaged behav-
ioral data for neutral-cue and Tin-cue trials, and Figure 6A shows
that the model fits (smooth curves) accurately characterize the
fraction of Tin choices made by the monkeys (symbols) for both
neutral-cue (red) and Tin-cue (green) trials.

Having found simulation parameters that reproduce the be-
havior, we looked inside the simulation at the accumulated evi-
dence in favor of Tin—an observation akin to measuring
peristimulus time histograms (PSTHs) from an LIP neuron. A
time course of the cue effect was derived from these simulated
PSTHs using the same methods used to analyze the neural data
(Fig. 5A) (see Materials and Methods). The resultant time course

A

B

C

Figure 6. Integration-to-bound simulation predicts waning cue effect. A, Red and green

symbols depict measured psychometric discrimination performance as a function of signed

coherence for neutral-cue and Tin-cue trials, respectively. Data include only 1000 ms duration

motion trials from the mixed-duration task, averaged across both monkeys. Smooth curves

show the model performance after it is fit to the data. The dashed line indicates chance perfor-

mance. B, Empirical time courses of the cue effect, expressed as the difference in SDF between

each directional-cue condition and the corresponding neutral-cue condition. The time courses

were computed across all trials with Tin cues (green), as well as for only those Tin-cued trials in

which the monkey chose Tin (cyan) or Tout (magenta). C, Time courses for the model predictions

plotted in an analogous fashion, constructed using average decision-variable as a proxy for

average firing rate. The green dashed curve is constructed from an alternative integration

model that does not include a bound (see Materials and Methods).
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(Fig. 6C, solid green) shows that the cue effect is strong early in
the trial but fades toward zero as motion information arrives,
paralleling the decline of the cue effect seen in the neural data
(Fig. 6B, green, reproduced from Fig. 5A). Although the exact
temporal profile of the simulated cue effect does not match the
decline measured in neurons, we made no attempt to tune the
model to fit the time course, except for including a delay param-
eter that reflects motion signal latencies in LIP.

The basic intuition for this result is as follows. According to
the integration-to-bound model, after activity reaches a bound, it
remains there until the monkey indicates its choice (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002; Kiani et al., 2008;
Rorie et al., 2010). Although Tin-cue trials generally reach the
bound earlier, firing rates on both neutral-cue and Tin-cue trials
eventually reach the same bound, indicating that the separation
between the firing rate trajectories—the cue effect—vanishes late
in the trial (Huk and Shadlen, 2005). In Bayesian terms, the prior
information is not separately represented in late-trial LIP activity,
but is instead merged with the sensory evidence to form the pos-
terior probability.

This argument leads to two predictions. First, if the fading of
the neural effect of the cue is dependent on a bound, then a
decision-making model that does not implement a bound should
not show this decline. To test this prediction, we fit our be-
havioral data with an unbounded model in which a choice is
rendered on each trial based on which direction has more
accumulated evidence at the end of the motion stimulus (see
Materials and Methods). As expected, the resultant time course of
the cue effect indeed shows no decay in the absence of a bound
(Fig. 6C, green dashed line). To evaluate how well the unbounded
and bounded integration models fit the behavioral data, we lin-
earized the data with an inverse logistic transform and computed
the correlation coefficients between the data and predictions of
each model. The behavioral data were well captured by both the
bounded model (r � 0.950) and the unbounded model (r �
0.954). Thus, the different time courses of the cue effect between
the two models cannot be attributed to model fits of differing
quality.

A second prediction from the model relates to an asymmetry
between the two choices that is apparent in our data as well as in
the existing literature: the bound in the neural activity manifests
clearly only for choices toward Tin (Roitman and Shadlen, 2002;
Churchland et al., 2008; Kiani et al., 2008). Therefore, the model
predicts the decline of the neural cue effect to be more pro-
nounced during trials in which the monkey chooses Tin com-
pared to trials for which the animal chooses Tout. Figure 6C shows
the predicted time course of the cue effect, computed separately
for trials in which the simulation chose Tin (cyan) or Tout (ma-
genta). The cue effect fades faster when Tin was chosen. Returning
to the neural data from LIP, we constructed separate neuronal
time courses for each chosen target and discovered the same pat-
tern: the cue effect fades faster when the monkeys choose Tin (Fig.
6B, cyan) than when they choose Tout (magenta). Thus, if one
assumes that the bounded integration framework is correct, these
data strongly support the notion that prior expectations and in-
coming sensory evidence are merged in the firing rates of LIP
neurons, and that this merger is associated with a bias in the
monkey’s choices.

Effect of cues on sensory gain
Although the LIP recordings suggest that cueing the probable
direction of motion shifts the decision variable toward the appro-
priate bound, it remains possible that prior knowledge might also

amplify sensory responses related to more likely stimuli. This
would manifest as a change in the slope of the rising phase of LIP
activity, increasing the slope when motion toward Tin is more
likely and decreasing the slope when motion toward Tout is more
likely.

We tested this idea in the main data set, looking at the effect of
cue direction on the slope of the steeply rising phase of neural
responses (150 –350 ms after motion onset) (Fig. 3, gray band)
for trials in which the monkey correctly chooses Tin. A repeated-
measures ANOVA with coherence and cue direction as factors
showed that motion coherence did not significantly modify the
slope of the response (p � 0.56), but cue direction did indeed
significantly alter the slope (p � 0.001). However, the rank or-
dering of the mean slopes was opposite of what would be required
to explain the behavioral bias: Tin cues decreased the slope of the
response relative to neutral cues and Tout cues in our data set. This
unexpected effect may have been related to the fact that a smaller
firing rate change is required to reach the bound on Tin cues.
Repeating the analysis using slightly different time windows
never yielded firing rate slopes that were greater on Tin-cued trials
than on other trials. During the later phase of gently rising
responses (500 –1000 ms after motion onset), there was no
significant effect of motion coherence ( p � 0.97) or cue direc-
tion ( p � 0.13, repeated-measures ANOVA) on the slope of
the neural response.

The presence of the shifted baseline response hampers our
ability to detect slope changes in LIP responses. Therefore, to test
more directly whether priors modify sensory representations, we
recorded from neurons in area MT, which represent the direction
of motion in fixation or discrimination tasks (Maunsell and Van
Essen, 1983; Britten et al., 1992). During MT recordings, the
monkey performed a version of the cued direction discrimina-
tion task in which the motion stimulus was tailored to maximally
drive MT responses (Fig. 7A). Importantly, the axis of discrimi-
nation was aligned to the neuron’s preferred direction. Although
there were some differences between the LIP and MT tasks in
terms of timing and spatial layout, the essential elements were the
same with respect to the partial validity of the arrow cue (see
Materials and Methods).

The monkey’s behavior in the MT version of the task (Fig. 2E)
was similar to the behavior seen in the LIP version (Fig. 2B). The
monkey clearly based his choices on the motion stimulus, since
stronger motion in either direction elicited more choices in that
direction. Furthermore, the arrow cues biased the monkey’s
choices in the direction of the cue (p � 10
5, logistic regression
analysis of pooled data; n � 30).

Given a clear behavioral effect in this version of the task, we
tested whether the direction of the cue modulated MT responses,
as might be expected under the sensory gain hypothesis. For each
cue direction, MT firing rates during the motion stimulus were
normalized and plotted as a function of signed coherence. Figure
7B shows population response functions for the three cue condi-
tions. MT activity increased sharply with the strength of coherent
motion in the preferred direction, consistent with previous find-
ings (Britten et al., 1993). Strikingly, the neural response func-
tions for the different cue directions are almost completely
overlapping. A repeated-measures ANOVA indicates no signifi-
cant effect of cue direction on MT responses (p � 0.29, main
effect of cue direction; p � 0.0001, main effect of signed coher-
ence). The absence of cue effects was apparent at the single neu-
ron level as well, with a significant main effect of cue direction
found in only 1 of 30 MT neurons (3.3%)—a rate indistinguish-
able from chance (5%).
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Although the MT responses did not
match the predictions of the sensory-gain
hypothesis, Figure 7B leaves open the pos-
sibility that cues may alter MT activity
when the direction of the cue is in conflict
with the direction of the motion stimulus:
responses appear to be increased on
preferred-cue trials with null-direction
motion, and may also be slightly reduced
on null-cue trials with preferred-direction
motion. However, statistical testing failed
to reveal a significant main effect of con-
flict (p � 0.83, two-factor repeated-
measures ANOVA with factors of signed
coherence and conflict; see Materials and
Methods). Even looking only at condi-
tions that appear to be most influenced by
the cue failed to reveal a significant effect:
using only trials with strong motion in the
null direction (i.e., 
4c% and 
8c%), a
two-factor repeated-measures ANOVA
with factors of cue direction and coher-
ence showed no significant effect of cue
direction (p � 0.25). In sum, our analyses
show no convincing evidence that cues
modify MT responses during the motion
presentation.

One difference between the two ver-
sions of the task was that the visual stim-
ulus was located peripherally in the MT
version of the task (Fig. 7A) but was
placed at the fovea in the LIP version (Fig.
1A). If foveal stimuli were more condu-
cive to measurable neural cue effects, we
would expect a more pronounced effect
for MT neurons with receptive fields that
lay closer to the fovea. We tested this hy-
pothesis in our data, dividing our MT
neurons according to the median recep-
tive field eccentricity (10.1° from the fo-
vea). The average cue effect during the
motion period (see Materials and Meth-
ods) did not differ significantly with the eccentricity of the recep-
tive field. Specifically, this analysis yielded a 0.03 spikes per
second greater cue effect for neurons located further from the
fovea, a nonsignificant effect (p � 0.51, Mann–Whitney U test).

During the delay period before motion onset, cue type did not
modulate MT activity. To demonstrate this, we first divided the
delay-period response of each cell on cued trials by that cell’s re-
sponse to neutral-cue trials. Figure 7C shows that these normalized
responses do not differ significantly with the direction of the cue
(p � 0.09 main effect of cue direction by one-factor repeated-
measures ANOVA), with the greatest responses seen on neutral-cue
trials. Therefore, the MT recordings support the conclusion derived
from the LIP experiments, namely, that prior information does not
influence behavior by amplifying sensory responses to motion.

Although this data set provides no evidence for an effect of
arrow cues on MT responses, it is possible that our sample was
underpowered to detect an effect. To address this concern, we
took a simulation approach (see Materials and Methods). We
measured the means and variances of the neutral-cue firing rates
and added a perturbation to the means to mimic small effects of
cue direction. We then generated artificial MT responses from

these modified distributions and performed the repeated-
measures ANOVAs on these simulated data. Given our collection
of 30 neurons, our analysis would have a 90% chance of detecting
effect sizes as small as a difference of 0.65 spikes between
preferred-cue trials and neutral-cue trials. If preferred cues added
merely 0.38 spikes to MT responses, then our data set would have
had a 50% chance to detect the difference. These analyses argue
that our experiment had sufficient power to detect even very
weak effects of the cue on MT firing rates.

Finally, although the arrow cue did not appear to directly
modulate MT responses, it might have modulated the contribu-
tion of MT responses to perceptual decisions. Previous studies
have demonstrated weak trial-by-trial correlations between firing
rate fluctuations and choices, a phenomenon quantified using
choice probabilities (Britten et al., 1996; Uka and DeAngelis,
2004; Purushothaman and Bradley, 2005; Cohen and Newsome,
2009). If choice probabilities reflect a causal contribution of MT
activity to the animal’s decision, then factors that influence
choices downstream of MT, such as prior probabilities in our
experiment, ought to degrade choice probabilities. In our data
set, the average choice probability was not significantly different

A

B C

Figure 7. MT responses are not affected by the cue. A, Task design for the MT version of the cued direction discrimination task. The

format is similar to that of Figure 1. Note that motion stimuli were placed eccentrically within the recorded MT neuron’s receptive field.

“Pref” denotes the MT neuron’s preferred direction of motion, and “Null” denotes the opposite direction. B, Neural response functions

constructed as population average firing rates as a function of signed coherence, sorted by cue direction. Each neuron’s firing rates are

normalized to the firing rates on neutral-cue, zero-coherence trials before averaging. Signed coherences are ordinal and are expressed in

units of c, the lowest nonzero coherence. C, Population delay-period firing rates as a function of cue direction. Firing rates are normalized to

the neutral-cue firing rate. All error bars indicate SE. n � 30 cells from one monkey performing the MT version of the task.
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from chance for valid cues (CP, 0.51; p � 0.11, t test). In contrast,
the grand choice probability was significantly greater than chance
for neutral-cue trials (CP, 0.53; p � 0.03), consistent with previ-
ous literature (Britten et al., 1996). This difference in choice
probability between valid and neutral cues, although modest, is
consistent with the cue acting at a stage of processing down-
stream from area MT (such as LIP).

Discussion
We examined neural computations that allow prior knowledge to
influence perceptual decisions. Two monkeys performed a cued
direction discrimination task, in which judgments of motion di-
rection were biased by a partially predictive arrow cue that
changed from trial to trial. LIP recordings showed that altering
the prior probability for a particular direction of motion pro-
duces shifts in firing rates that persist into the motion presenta-
tion. In the context of integration-to-bound models, this finding
suggests that priors influence choices by bringing the decision
variable closer to the likely bound.

This implementation is parsimonious because it allows priors
and sensory evidence to be treated equivalently as probabilities.
Just as it has been argued that the overall decision variable evolves
over time by adding the log probabilities of the sensory evidence
(Gold and Shadlen, 2007), this study supports the notion that a
representation of the prior contributes to the decision variable by
an additive process. Such an implementation could be plausibly
implemented by realistic neuronal populations (Ma et al., 2006;
Beck et al., 2008), and empirical data have suggested that LIP
activity reflects log probabilities (Yang and Shadlen, 2007).

If LIP reflects a true decision variable, then any manipulation
that biases decisions should affect LIP responses. Rorie et al.
(2010) used asymmetric rewards to bias decisions in a similar
motion discrimination task. Like our result, they observed that
LIP responses were shifted before motion. Furthermore, these
shifts faded during the motion display, although the timing of
their effects did not exactly match ours. Overall, the similarity in
the results, despite very different manipulations of prior proba-
bility, further supports the idea that decision circuitry in LIP may
generally combine bias signals with sensory evidence. The neural
instantiation of the bias signal itself is an important question
meriting further study.

We also examined the possibility that prior knowledge influ-
ences choices by scaling sensory representations of visual motion.
In the integration-to-bound framework, this would manifest as a
change in the slope of LIP firing rates, but our LIP recordings did
not support this prediction. We also took a less model-dependent
approach to evaluating the sensory gain hypothesis by recording
directly from MT neurons in one monkey. Consistent with the
LIP results, MT responses were unchanged by the arrow cue. To
the extent that MT provides the critical sensory evidence for this
task, our findings suggest that the dynamic prior in our task was
mainly manifest at the level of decision circuitry (e.g., LIP).

In apparent contrast with our findings, recent studies have
suggested that priors influence low-level sensory neural represen-
tations (Fischer and Pena, 2011; Girshick et al., 2011). Fischer and
Pena (2011) reported that the distribution of preferred interaural
time differences (ITDs) in owl tectum neurons reflects the prior
probability of finding prey at the spatial location corresponding
to that ITD. One possible explanation is that the implementation
of priors depends on the time-scale of the prior knowledge base.
It may be sensible to implement priors in the distribution of
tuning properties of sensory neurons when the prior reflects sta-
tistics of the environment that are stable on long time scales, as in

the owl tectum experiments. In contrast, having the prior imple-
mented downstream of the sensory representation may allow de-
cisions to accommodate rapidly changing priors, as in our cued
discrimination task. Thus, we suggest that static or slowly varying
priors might be implemented at the level of sensory representa-
tions, whereas rapidly varying priors (or rapid shifts between a
small set of static priors) should act at the level of decision
circuitry.

Trial-by-trial correlations between MT responses and choices
(choice probabilities) have been described previously (Britten et
al., 1996; Dodd et al., 2001; Uka and DeAngelis, 2004; Pu-
rushothaman and Bradley, 2005) and were seen in our neutral-
cue condition. Choice probabilities may imply that MT responses
contribute causally to perceptual decisions, a view referred to as
the “bottom-up” interpretation of choice probability. An alter-
native, “top-down” interpretation posits that after the decision
has been made, MT receives inputs that reflect the choice on that
trial (Krug, 2004). Our finding, that the average choice probabil-
ity is no longer significantly greater than chance when the mon-
key is cued to expect motion is consistent with the bottom-up
view, as any influence of the cue on decisions downstream of the
MT would be expected to weaken choice probabilities. However,
our results certainly do not preclude a top-down contribution to
choice probabilities, for which there is evidence (Nienborg and
Cumming, 2009). A purely top-down scheme could explain our
results if the presence of a cue gates the feedback signal that is sent to
the MT, although we consider this explanation less parsimonious.

The lack of effect of the arrow cue on MT responses in our task
is notable given that a previous study showed selective responses
to static shapes in MT when animals had associated those shapes
with particular directions of motion (Schlack and Albright,
2007). Although MT activity was unchanged by priors, the MT
may still veridically reflect the percept of the stimulus, without
reflecting the animal’s choice. For example, the monkey might
perceive the direction of a weakly coherent stimulus as incremen-
tally favoring the uncued direction, but may nevertheless choose
the direction that is more likely based on the prior.

Relation to previous studies of priors and LIP
A small number of previous studies have examined how priors in-
fluence neural representations of a decision in LIP, and there are
both similarities and important differences with our findings. Platt
and Glimcher (1999) manipulated the prior probability of the target
location in a saccade task and found that LIP firing rates increased
with the probability that the saccade target was located in the re-
sponse field. Like in our task, this initial increase was maximal before
target onset and decayed leading up to the actual saccade. However,
unlike in our task, knowledge of the prior in that study did not
contribute to successful performance. Rather, the influence of the
prior reflected the temporary statistics of the environment.

In contrast, Gold et al. (2008) failed to find an effect of priors
on LIP activity (or MT responses). In monkeys learning to dis-
criminate motion direction, the monkey’s recent history acted as
a prior distribution that biased choices. Gold et al. (2008) did not
find a significant neural correlate of this dependence in LIP re-
sponses, but they acknowledge that this lack of effect could reflect
a lack of statistical power.

Most recently, a markedly different result was reported by
Hanks et al. (2011) in the context of a reaction-time version of the
direction discrimination task. By manipulating the prior proba-
bilities of the two opposite motion directions over blocks of 200 –
1000 trials, they too found a small shift in baseline LIP responses
that depended on prior probability. However, they found that
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this bias signal grows, not fades, over the course of the trial. This
striking difference in the time course of the prior, compared with
our finding, may derive from key differences in task design. In the
reaction-time task of Hanks et al. (2011), a longer elapsed time
implies a weaker motion stimulus. In this case, it makes sense to
put greater weight on the prior as time proceeds. In our fixed-
duration task, there is no such relationship between elapsed time
and motion strength, and the termination of the decision process
diminishes the measured effect of priors.

Together, these studies suggest that neural manifestations of
priors may be sensitive to task demands and the time scale over
which priors are stable, and further research is needed to dissect
these possible influences. Our study is unique in demonstrating a
single-unit correlate of stimulus priors that vary rapidly from
trial to trial and appear to be manifest only at the level of decision
circuitry and not lower-level sensory representations.

LIP responses and integration-to-bound models
Much of our analysis and simulation has used the integration-to-
bound framework. This model has elegantly explained choice
behavior in numerous studies, including situations in which an
integration-to-bound framework does not maximize rewards
(Kiani et al., 2008; Rorie et al., 2010). However, it remains unclear
to what extent LIP activity represents the integration process. LIP
responses in prior studies have not always reflected perfect inte-
gration of sensory evidence. For example, studies have shown
only modest sorting of slopes by coherence (Kiani et al., 2008), or
nonmonotonic firing rates (Roitman et al. 2002). Furthermore,
these same studies have argued that LIP activity also represents
other signals in these tasks, including urgency signals (Church-
land et al., 2008; Hanks et al., 2011) and decision confidence
(Kiani et al., 2009). Details of task design may therefore deter-
mine the extent to which LIP activity clearly reflects an integra-
tion process. Our study may have been limited by the modest
range of motion coherences used in the task, which was necessary
to ensure a balanced use of the cue and motion signals. Even if our
study suggests future refinements in our understanding of LIP as
an integrator, the fading of the cue-related signal supports the
notion that LIP activity reflects a bounded process.
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