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The peroxisome proliferator-activated receptors (PPARs) consist of three related transcription factors that serve to regulate a
number of cellular processes that are central to cardiovascular health and disease. Numerous pharmacologic studies have assessed
the effects of specific PPAR agonists in clinical trials and have provided insight into the clinical effects of these genes while genetic
studies have demonstrated clinical associations between PPAR polymorphisms and abnormal cardiovascular phenotypes. With
the abundance of data available from these studies as a background, PPAR pharmacogenetics has become a promising and rapidly
advancing field. This review focuses on summarizing the current state of understanding of PPAR genetics and pharmacogenetics
and the important implications for the individualization of therapy for patients with cardiovascular diseases.

Copyright © 2008 Sharon Cresci. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

PPAR-alpha (PPARα), PPAR-beta/delta (PPARβ/δ), and
PPAR-gamma (PPARγ) are nuclear hormone receptor tran-
scription factor proteins encoded by similarly named genes
(PPARA; PPARD; PPARG) [1, 2]. Each of the PPARs has mul-
tiple promoters and more than one isoform, resulting from
alternate splicing, alternative transcription start sites or both
[3–5]. The PPARs have distinct, but overlapping, tissue ex-
pression patterns and act to coordinately regulate multiple
metabolic pathways [1, 2].

PPARα is highly expressed in the heart, liver, and skele-
tal muscles [2]. In these tissues, PPARα is the central regu-
lator of genes involved in fatty acid metabolism and appears
to mediate the balance between cellular fatty acid and glucose
metabolism, particularly at times of metabolic or physiologic
stress, such as myocardial ischemia, hypertrophy, heart fail-
ure, and insulin resistance [6–15]. In addition, PPARα is in-
volved in the energy substrate and fiber-type switches that
occur in skeletal muscle as a result of conditioning [16] and
is involved in the inflammatory response during vascular
atherosclerosis [17–19].

PPARγ is highly expressed in both white and brown
adipocytes [2, 20, 21]. PPARγ controls adipocyte lipid stor-
age and release and is an important mediator of insulin sensi-

tivity [22, 23]. In addition, PPARγ regulates adipocyte release
of adipokines including tumor necrosis factor alpha (TNFα),
angiotensinogen (AGT), interleukin-6 (IL-6), and plasmino-
gen activator inhibitor type 1 (PAI-1) [24].

PPARβ/δ, also known as nuclear hormone receptor 1
(NUC 1) or fatty acid-activated receptor (FAAR), is ubiqui-
tously expressed but is expressed at higher levels in the brain,
adipose tissue, and skin [2, 25]. PPARβ/δ is thought to be
critically important in adipocyte and skeletal muscle fatty
acid oxidation and is another important mediator of insulin
sensitivity [26–28]. PPARβ/δ appears to also be involved in
obesity [26–28] and in preventing myocardial hypertrophy
via NF-κB inhibition [29–31].

The PPARs are able to bind many different ligands in-
cluding metabolic intermediates (fatty acids), pharmaco-
logic agents (fibrates, thiazolidinediones), and natural herbs
(green tea) [32–36]. In the presence of ligand, PPARs bind
to their cognate regulatory elements as a heterodimer with
retinoid X receptor α [37]. Ligand binding causes a confor-
mational change that results in the recruitment of coactiva-
tors and increased transcriptional activation of target genes
[34, 35, 38, 39].

There is considerable clinical association data linking
polymorphisms of PPARA, PPARD, and PPARG with car-
diovascular disease (coronary and carotid atherosclerosis, left
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Table 1

SNP rs number

PPARA

Leu162Val rs1800206

Val227Ala rs1800234

IVS7 2498 rs4253778

IVS7 1343 rs4253776

PPARG
Pro12Ala rs1801282

25,506 C > T rs2028759

54,347 C > T rs3856806

PPARD
−87 T > C rs9658134

−4,401 C > T rs2038068

−48,444 C > T rs6902123

ventricular hypertrophy) and cardiovascular risk factors (in-
cidence of type 2 diabetes mellitus (DM), obesity, insulin
resistance, and abnormal lipid profiles) in populations of
diverse ethnicity. There is less data on PPAR pharmacoge-
netics, but the field is rapidly growing and of considerable
interest to many investigators. PPAR pharmacogenetics of
fibrates (gemfibrozil, fenofibrate, and bezafibrate), thiazo-
lidinediones or glitazones (troglitazone, pioglitazone, and
rosiglitazone), statins, and acarbose have particular relevance
to cardiovascular disease.

This review will discuss several significant PPAR genetic
and pharmacogenetic associations that have been observed
with respect to cardiovascular disease (Table 1 provides the rs
number for each SNP discussed in this review). Understand-
ing the current state of PPAR genetics and pharmacogenetics
may have important implications for the future individual-
ization of therapy for patients with cardiovascular disease.

2. PPARA

2.1. PPARA Leu162Val genetic associations

2.1.1. Dyslipidemias

PPARA Leu162Val is a polymorphism located in the DNA
binding region of PPARα that confers differential ligand-
mediated activation of PPARα in vitro [40, 41]. Investiga-
tors from several clinical studies have observed that carri-
ers of the PPARA Val162 allele, compared to PPARA Leu162
homozygotes, have significantly higher concentrations of
serum triglycerides, total cholesterol, LDL cholesterol, and
apolipoprotein (apo) B and apoC-III. However, there have
been exceptions, and not all studies have found an associa-
tion with all five serum lipids [41–45]. The larger trial find-
ings, as well as the studies that have negative findings, will be
discussed here.

Recently, the association of the PPARA Leu162Val poly-
morphism with serum lipid levels was investigated in 5799
individuals from the Inter99 cohort, a Danish cohort tar-
geted for identifying parameters affecting participation in
a diet and exercise intervention in the general population
[46]. In this cohort, individuals homozygous for the PPARA
Val162 allele, compared to PPARA Leu162 allele carriers,
demonstrated a 70% greater mean fasting serum triglyc-

eride level (2.2 mmol/L (195 mg/dL) versus 1.3 mmol/L
(115 mg/dL), resp.; P = .007) and a greater mean fasting
serum total cholesterol levels (6.2 mmol/L (240 mg/dL) ver-
sus 5.5 mmol/L (213 mg/dL), resp.; P = .01) [45].

These findings confirmed previous observations in 2373
participants of the Framingham Offspring Study. When the
association of the PPARA Leu162Val polymorphism with
variation in lipid levels was investigated in these subjects,
PPARA Val162 carriers, compared to PPARA Leu162 ho-
mozygotes, had significantly increased serum concentrations
of total cholesterol in men (P = .0012), LDL cholesterol in
men (P = .0004), apoC-III in men (P = .009), and apoB
in men and women (P = .009 and .03, resp.) [44]. These
same investigators went on to demonstrate that the associ-
ation of the PPARA Leu 162Val polymorphism on plasma
triglycerides and apoC-III concentrations was more com-
plex and depended on the person’s regular dietary polyun-
saturated fatty acid intake. PPARA Val162 allele carriers that
had a low polyunsaturated fatty acid intake (<6% of calo-
ries) had greater serum triglyceride and apoC-III concen-
trations,compared to PPARA Leu162 homozygotes, whereas
PPARA Val162 allele carriers that had a high polyunsaturated
fatty acid intake had lower triglyceride and apoC-III concen-
trations, compared to PPARA Leu162 homozygotes [47].

Other studies have also investigated the association of the
PPARA Leu162Val polymorphism with serum lipid response
to diets of different fat composition. Tanaka et al. studied
59 healthy male students fed a single high-fat meal (60%
calories as fat (63% saturated fatty acids, 33% monoun-
saturated fatty acids, and 4% polyunsaturated fatty acids);
15% calories as protein; and 25% calories as carbohydrate)
following a 12-hour fast [48]. PPARA Val162 allele carri-
ers had significantly higher fasting (baseline) total choles-
terol, LDL cholesterol, and apoB levels, compared to Leu162
homozygotes and this variation in serum lipids was main-
tained after the high-fat meal [48]. No significant associ-
ation of the PPARA Leu162Val polymorphism with serum
triglyceride concentrations (either fasting or postprandial)
was observed (apoCIII was not measured) [48]. Paradis et al.
investigated the association of the PPARA Leu162Val poly-
morphism with serum lipid response in ten PPARA Val162
allele carriers and ten age and body mass index-matched
PPARA Leu162 homozygotes subjected to a high polyunsat-
urated fat followed by a low polyunsaturated fat diet [49]. At
baseline, the PPARA Leu162Val polymorphism was not as-
sociated with variation in serum lipids [49]. After the high
polyunsaturated fat diet, PPARA Val162 allele carriers had
a significant decrease in plasma apoA-I levels, total choles-
terol, and LDL cholesterol (small particles), compared to the
PPARA Leu162 homozygotes (who demonstrated an increase
in plasma apoA-I levels, total cholesterol, and LDL choles-
terol (small particles): P = .02, P = .07 and P = .08, resp.)
[49].

In contrast to the aforementioned studies, when the
association of the PPARA Leu162Val polymorphism with
variations in serum lipids was investigated in 3012 healthy
middle-aged men in the second Northwick Park Health
Study (NPHS2, Northwick, UK), no association of the
PPARA Leu162Val polymorphism with serum lipids at
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baseline, or in response to therapy, was found [50]. Although
it was a smaller study, the Lopid Coronary Angiography Trial
(LOCAT), a clinical trial of 395 postcoronary bypass men,
with an HDL cholesterol ≤1.1 mmol/L and LDL cholesterol
≤4.5 mmol/L that investigated the progression of coronary
atherosclerosis in response to lipid lowering therapy with
gemfibrozil, [51, 52] also found no association between the
PPARA Leu162Val polymorphism and serum lipids either at
baseline, or in response to therapy [50].

2.1.2. Coronary atherosclerosis

As discussed above, LOCAT found no association of the
PPARA Leu162Val polymorphism with variations in serum
lipids [50]. However, this study did observe that carriers of
the PPARA Val162 allele showed significantly less progression
of atherosclerosis in both gemfibrozil-treated and untreated
groups [50]. No pharmacogenetic (i.e., treatment by geno-
type) interaction was found [50].

2.2. PPARA Leu162Val pharmacogenetic associations

2.2.1. Response to gemfibrozil

The Helsinki Heart Study (Helsinki, Finland) was a pri-
mary prevention trial that demonstrated that randomiza-
tion to treatment with gemfibrozil resulted in a 34% reduc-
tion in cumulative cardiac events and a 26% reduction in
cardiac mortality [53, 54]. Subgroup analysis demonstrated
that overweight men with body mass index between 27–
40 kg/m2 had the largest reduction in cardiac events in re-
sponse to gemfibrozil in the Helsinki Heart study [55]. Given
that the greatest response to gemfibrozil was observed in
this group, the association between genetic variation in the
PPARA Leu162Val polymorphism and the response to gem-
fibrozil was investigated in 63 abdominally obese men in a
randomized placebo-controlled trial [56]. After 6 months of
treatment, carriers of the PPARA Val162 allele demonstrated
a 50% increase in HDL2 cholesterol compared to PPARA
Leu162 allele homozygotes who only had a 5.5% increase (P
= .03) [56]. The PPARA Leu162Val was responsible for 7% of
the variance of the change in HDL2 cholesterol and there was
a significant genotype-by-treatment interaction between the
PPARA Leu162Val polymorphism and the increase in HDL2

cholesterol [56].
The Veterans Affairs High-Density Lipoprotein Interven-

tion Trial (VA-HIT) study of patients with known ischemic
heart disease, selected for low levels of HDL cholesterol
(mean of 32 mg/dL), demonstrated that randomization to
gemfibrozil therapy resulted in a 22% reduction in relative
risk of coronary events and a 31% reduction in cerebral vas-
cular events [57–59]. In VA-HIT, the subgroup that benefited
the most in reduction of cardiovascular events in response to
gemfibrozil were those patients that had DM or insulin re-
sistance [60, 61]. Given that this group had demonstrated
the greatest response, the association between genetic vari-
ation in the PPARA Leu162Val polymorphism and the re-
sponse to gemfibrozil was investigated [62]. VA-HIT patients
with DM or insulin resistance treated with gemfibrozil who

were PPARA Leu162 homozygotes had a greater absolute re-
duction in cardiovascular events (12.1% reduction compared
to treatment with placebo; P = .06) compared to carriers of
the PPARA Val162 allele who had a nonsignificant reduction
(9.9% compared to treatment with placebo; P = .28) [62].
Furthermore, in VA-HIT patients without DM or insulin re-
sistance, carriers of the Val162 allele had a significant increase
in cardiovascular events in response to gemfibrozil (7% in-
crease compared to treatment with placebo; P = .01) [62].

2.2.2. Response to fenofibrate

The Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study investigated the response to fenofibrate
(160 mg) for ≥21 days in 791 men and women enrolled in
The Family Heart Study (FHS, a multicenter, family pedi-
gree study aimed to identify genetic and environmental risk
factors of cardiovascular disease) [63]. Overall, there was a
37 mg/dL reduction in fasting serum triglyceride levels af-
ter treatment with fenofibrate (the average of two separate
measurements obtained prior to treatment and at the end
of treatment were used). Although only reported in abstract
form to date, variation in PPARA Leu162Val polymorphism
was significantly associated with fasting triglyceride level re-
sponse to fenofibrate treatment [64]. Individuals homozy-
gous for the PPARA Val162 allele had a 73 mg/dL reduc-
tion in their fasting triglyceride response to fenofibrate com-
pared to PPARA Leu162Val heterozygotes (46 mg/dL reduc-
tion) and PPARA 162Leu homozygotes (53 mg/dL reduction;
P < .0001) [64].

2.3. PPARA Val227Ala genetic associations

2.3.1. Dyslipidemias

PPARA Val227Ala is a polymorphism located between the
DNA binding and ligand binding domain of PPARα. This re-
gion is thought to be important in heterodimerization but in
vitro experiments confirming a functional difference in alle-
les have not yet been performed [65]. The association of the
PPARA Val227Ala polymorphism with serum lipid levels was
investigated in a study of 401 healthy Japanese individuals
presenting to medical clinic for routine health care [65]. After
adjustment for age and body mass index, female carriers of
the Val227 allele had significantly lower serum total choles-
terol (P = .046) and triglyceride levels (P = .038) compared to
Ala227 homozygotes [65]. Male carriers of the Val227 allele
also had lower serum total cholesterol and triglyceride levels
compared to Ala227 homozygotes, but the differences were
not significant (P = .30 and .54, resp.) [65].

Recently, the finding of this small study was confirmed in
2899 Chinese individuals from the 1998 Singapore National
Health Survey (NHS98) [66]. Women PPARA Ala227 allele
carriers had significantly lower serum total cholesterol (P =
.047) and triglyceride levels (P = .048), compared to PPARA
Val227 homozygotes, and men had lower levels that were,
again, not significant (P = .65 and .12, resp.) [66]. In addi-
tion to these findings, this study also found a significant in-
teraction between the PPARA Val227Ala polymorphism and
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serum HDL cholesterol levels in response to dietary polyun-
saturated fatty acid intake in women suggesting a gene-
environment interaction (P-value for interaction = .049)
[66]. Specifically, the authors found that, in women who were
PPARA Ala227 allele carriers, increasing dietary polyunsatu-
rated fatty acid intake resulted in lower serum HDL choles-
terol levels. This result was in contrast to male PPARA Ala227
allele carriers, who had an increase in serum HDL cholesterol
levels, and women who were PPARA Val227 homozygotes,
who demonstrated less lowering [66].

2.4. PPARA IVS7 2498 G > C genetic associations

2.4.1. Coronary atherosclerosis

PPARA IVS7 2498 is a polymorphism located in intron
7 of PPARA. The functional significance of this polymor-
phism has remained elusive but significant clinical associa-
tions have been found with this polymorphism. In LOCAT,
PPARA IVS7 2498 (designated “PPARA intron 7 G/C poly-
morphism” in the publication) C allele carriers had a signif-
icantly greater progression of coronary atherosclerosis com-
pared with GG homozygotes [50]. No pharmacogenetic in-
teraction was noted [50]. When the association of PPARA
IVS7 2498 polymorphism with coronary atherosclerosis was
investigated in 3,012 healthy middle-aged men in NPHS2,
PPARA IVS7 2498 CC homozygotes showed a trend toward
greater incidence of ischemic events (myocardial infarction
(MI) or coronary revascularization) (HR 1.83; 95% CI 0.96–
3.51; P = .07) compared to PPARA IVS7 2498 CG heterozy-
gotes and PPARA IVS7 2498 GG homozygotes [50].

2.4.2. Left ventricular hypertrophy

The PPARA IVS7 2498 (designated “PPARA intron 7 G/C
polymorphism” in the publication) has also been associated
with physiologic left ventricular hypertrophy in 144 young
male British army recruits undergoing a rigorous ten-week
exercise program (mixed upper and lower body strength and
endurance training) [67]. This polymorphism has also been
associated with pathologic left ventricular hypertrophy in
1148 hypertensive men and women enrolled in an echocar-
diography substudy of the third monitoring trends and de-
terminants in cardiovascular disease (MONICA) Augsburg
study [67]. In both studies, the PPARA IVS7 2498 C allele was
significantly associated with increased LV mass index [67].

2.5. PPARA IVS7 2498 G > C pharmacogenetic
associations

2.5.1. Response to fenofibrate

The Diabetes Atherosclerosis Intervention Study (DAIS) was
designed to investigate if fenofibrate treatment of relatively
mild dyslipidemia in 418 patients with type 2 DM would
be associated with less progression of coronary atheroscle-
rosis after treatment for at least 3 years with fenofibrate [68].
DAIS found that fenofibrate reduced the progression of an-
giographic coronary artery disease [69], the progression of

microalbuminuria (an early marker of diabetic nephropathy,
and an independent risk factor for cardiovascular disease)
[70]; and although not powered to examine clinical events,
there were fewer in the fenofibrate group compared to the
placebo group [69]. Given these findings, the association be-
tween genetic variation in the PPARA IVS7 2498 polymor-
phism (designated “PPARA intron 7 G/C polymorphism” in
the publication) and response to fenofibrate in DAIS was in-
vestigated [71]. DAIS subjects were divided into high respon-
ders (greater than 30% reduction, chosen because 30% was
the mean reduction in DAIS) and low responders (less than
30% reduction) in their plasma triglyceride levels and the
prevalence of PPARA IVS7 2498 genotype in the two groups
was assessed [71]. Of the 85 high responders (55% of popula-
tion), there was a significantly different prevalence of PPARA
IVS7 2498 GG homozygotes (84.7%) when compared to the
low responders (68.6%; P < .05) [71]. In stepwise logistic re-
gression analysis, the best independent predictors of response
to fenofibrate treatment were baseline triglyceride level and
PPARA IVS7 2498 genotype (PPARA IVS7 2498 GG versus C
allele carriers response to fenofibrate: OR 3.1; 95% CI 1.28–
7.52; P = .012) [71].

2.5.2. Response to acarbose

Investigators from the STOP-NIDDM trial were interested
in whether PPARA polymorphisms would be associated with
the conversion to type 2 DM in response to acarbose in pa-
tients with impaired glucose tolerance [72, 73]. They inves-
tigated this association with 11 SNPs located from exon 1
to exon 8 of PPARA and found that in the acarbose-treated
group, PPARA IVS7 2498 (designated “rs4253778” in the
publication) CC homozygotes had a 2.7-fold risk of develop-
ing type 2 DM (95% CI 1.14–6.79; P = .03) [74]. PPARA IVS7
1343 (designated “rs4253776” in the publication), a SNP lo-
cated1,155 nucleotides upstream of PPARA IVS7 2498 and
in moderate LD with PPARA IVS7 2498 (r2 of 0.565 in this
population), also had an association with the development
of type 2 DM [74]. PPARA IVS7 1343 G allele carriers had
a 1.7-fold increased risk of developing type 2 DM (95% CI
1.04–2.88; P = .04) and a significant treatment by genotype
interaction was observed [74].

3. PPARG

3.1. PPARG Pro12Ala genetic associations

3.1.1. Metabolic traits and the development of type 2 DM

The PPARG Pro12Ala polymorphism is in exon B of PPARG
which is specific to PPARγ2, the PPARγ isoform restricted
to adipose tissue [75]. In vitro experiments have demon-
strated that, compared to the PPARG Pro12 variant, the
PPARG Ala12 variant has lower binding affinity for a PPAR
responsive element and decreased PPARγ-activation of a re-
porter construct in response to ligand [75]. The PPARG
Pro12Ala polymorphism has been the most investigated
PPAR polymorphism.
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The association of the PPARG Pro12Ala polymorphism
with metabolic traits and the risk/development of DM has
been investigated in individuals of all ages and of differ-
ent ethnicities including Chinese and Japanese individu-
als in the Hypertension and Insulin Resistance (SAPPHIRe)
study, [76], Iranian individuals [77], obese Italian chil-
dren, [78] middle-aged and elderly Finns, [75] and Span-
ish women [79]. Although most of these studies (includ-
ing the ones mentioned here) report that PPARG Ala12 al-
lele carriers have increased insulin sensitivity compared to
PPARG Pro12 homozygotes, a recent meta-analysis of 57
studies reported that this association only held for certain
subgroups [80]. When PPARG Ala12 allele carriers were
compared to PPARG Pro12 homozygotes, only the obese
subgroup demonstrated increased insulin sensitivity [80].
However, when PPARG Ala12 homozygotes were compared
to PPARG Pro12 homozygotes (full genotype information
that allowed this analysis was only available in 12 of the 57
studies), the association of the PPARG Ala12 allele with in-
creased insulin sensitivity was more evident in all groups
[80].

More recently, the association of the PPARG Pro12Ala
polymorphism with metabolic traits and the risk of de-
veloping hyperglycemia over 6 years was investigated in
3,914 French Caucasians in the Data From an Epidemi-
ological Study on the Insulin Resistance Syndrome (DE-
SIR) cohort (of note, this study was not included in the
meta-analysis as it was published after the meta-analysis
was submitted) [81]. At baseline, PPARG Ala12 allele car-
riers had significantly lower fasting insulin and insulin re-
sistance as determined by homeostasis model assessment
of insulin resistance (P = .001, compared to PPARG Pro12
homozygotes) [81]. After 6 years of follow up, PPARG
Ala12 allele carriers had significantly less increase in fast-
ing insulin (P = .007, compared to PPARG Pro12 homozy-
gotes) and insulin resistance (P = .018, compared to PPARG
Pro12 homozygotes) [81]. In addition, after 6 years of fol-
low up, PPARG Ala12 allele carriers who were normo-
glycemic at baseline (n = 3,498) had significantly less hyper-
glycemia, compared to compared to PPARG Pro12 homozy-
gotes [81].

This data, as well as very recent data from 3,548 individu-
als in the diabetes prevention program (DPP) [82] confirmed
two earlier meta-analyses (of the literature available at time
of each meta-analysis publication) [83, 84]. This large study
reported that PPARG Pro12 homozygotes had a 1.2-fold in-
creased risk of developing type 2 DM (95% CI 0.99–1.57; P
= .07) compared to PPARG Ala12 allele carriers [85]. This
relative risk matched the 1.2-fold risk found in both meta-
analyses (P = .002 in the meta-analysis performed by Alt-
shuler et al.) [83, 84].

3.1.2. Coronary and carotid atherosclerosis

Several studies have investigated the association of the
PPARG Pro12Ala polymorphism with coronary artery dis-
ease and/or myocardial ischemic events, however, some have
yielded contradictory results [86–88]. 14,916 men enrolled in
the Physicians’ Health Study [89] were followed for a mean

of 13.2 years and the association between PPARG Pro12Ala
polymorphism and MI was assessed [88]. PPARG Pro12Ala
genotype was compared in 523 individuals who developed
an MI, and 2,092 who did not show evidence of an MI [88].
Of those individuals who developed an MI, the frequency of
PPARG Ala12 allele carriers was significantly less than in the
controls, with a decreased risk of subsequent MI (hazard ra-
tio HR = 0.77; 95% CI 0.60–0.98; P = .034) [88]. This re-
lationship held even after controlling for traditional cardiac
risk factors.

In contrast, a study of 2,016 patients with type 2 DM
from the genetic portion of the continually updated dataset
known as the Diabetes Audit and Research in Tayside Scot-
land database (Go-DARTS) [87], a borderline, nonsignifi-
cant association of the PPARG Ala12 allele carriers with non-
fatal MI or revascularization (HR 0.54; 95%CI 0.27–1.08; P
= 0.08, compared to PPARG Pro12 homozygotes) was ob-
served for the entire group. Subgroup analysis demonstrated
a significant association if patients younger than 70 years old
at time of enrollment were assessed separately (HR 0.43; CI
0.18–0.99; P = .05) or if patients younger than 70 year old
at time of enrollment with no prior history of stroke, MI, or
revascularization were evaluated for time to first event (HR
0.21; CI 0.06–0.69; P = .01) [87].

When the association of PPARG Pro12Ala polymorphism
with the risk of coronary artery disease was assessed prospec-
tively in women enrolled in the Nurses’ Health Study (8
years mean follow up) and in men (6 years mean follow
up) enrolled in the Health Professionals Follow-Up Study
(HPSF) [86], carriers of the PPARG Ala12 allele again had
an increased risk of MI [86]. 249 women and 266 men with
MI were compared to nested case-controls and matched for
age, smoking status, and phlebotomy date [86]. Men car-
riers of the PPARG Ala12 allele had an increased risk of
MI or cardiac death (RR = 1.44; CI 1.00–2.07; P = .05)
[86]. There was no statistical difference in nonfatal MI or
cardiac death in women carriers of the PPARG Ala12 al-
lele (RR = 1.17; CI 0.82–1.68; P = .39) [86]. When data
were pooled for men and women, carriers of the PPARG
Ala12 allele had an increase risk of MI or cardiac death
(RR = 1.30; CI 1.00–1.67; P = .05) and, when stratified
by body weight, men and women with a body mass index
≥25 kg/m2had a 1.68-fold increase in risk (CI 1.13–2.50; P =
.01) [86].

A study of 267 Korean individuals (158 males and
109 females) referred for coronary angiography for chest
pain, found no significant association between the PPARG
Pro12Ala polymorphism and prevalence or severity of coro-
nary artery disease [90]. While the results from these stud-
ies may seem contradictory, there are obvious differences
in study design, patient cohorts, primary end-points, and
power. In addition, it is possible that geographic and ethnic
differences in allele frequencies may contribute to variability
in the study findings.

An association has also been observed between the
PPARG Pro12Ala polymorphism and carotid intima media
thickness [91, 92]. In two studies involving over 300 patients,
carriers of the PPARG Ala12 allele had less carotid intima me-
dia thickness measured by B-mode ultrasound [91, 92].
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3.2. PPARG Pro12Ala pharmacogenetic associations

3.2.1. Response to rosiglitazone

The PPARG Pro12Ala polymorphism resides in the ligand
binding domain of PPARγ and could therefore result in
different affinity to bind TZDs. Variation in the PPARG
Pro12Ala polymorphism and response to rosiglitazone was
investigated in 198 men and women with type 2 DM (HbA1C

values between 7.5–11.5% and fasting glucoses between 140–
250 mg/dL) treated with rosiglitazone for 12 weeks [93]. The
decrease in fasting glucose in response to the drug was signifi-
cantly greater in carriers of the PPARG Ala12 allele compared
to PPARG Pro12 homozygous patients [93]. Improvement in
HbA1C was also significantly better in carriers of the PPARG
Ala12 allele compared to PPARG Pro12 homozygous patients
[93]. In addition, 86.67% of PPARG Ala12 allele carriers re-
sponded to rosiglitazone (defined by a greater than 15% de-
crease in HbA1C levels and/or a greater than 20% decrease in
fasting glucose level) compared to 43.72% of PPARG Pro12
homozygous patients (P = .002) [93].

3.2.2. Response to acarbose

Investigators from the STOP-NIDDM trial were interested in
whether PPAR polymorphisms would be associated with the
conversion to type 2 DM in response to acarbose in patients
with impaired glucose tolerance [72, 73]. They found that
women treated with acarbose homozygous for the PPARG
Pro12 allele had increased risk of developing type 2 DM com-
pared to PPARG Ala12 allele carriers treated with acarbose
(OR 2.89; 95% CI 1.20–6.96; P = .018) but found no signifi-
cant difference in the men [72]. The authors did not provide
an explanation for the gender differences.

3.3. PPARG 54,347 C > T genetic associations

3.3.1. Coronary atherosclerosis

The PPARG 54,347 C > T polymorphism (also referred to as
PPARG 161 C > T and PPARG 14,311 C > T) is a silent C
> T substitution (i.e., does not cause an amino acid change
in the protein) in nucleotide 161 of exon 6 [94]. No func-
tional information on this polymorphism is available to date.
The PPARG 54,347 C > T polymorphism has been associ-
ated with the extent of coronary artery disease by angiogra-
phy [95], carotid intima media thickness [92], and incidence
of MI among individuals younger than age 50 [96].

3.4. PPARG 54,347 C > T pharmacogenetic
associations

3.4.1. Response to fluvastatin

The Lipoprotein and Coronary Atherosclerosis Study (LCAS)
was a randomized, placebo-controlled study of 429 sub-
jects, 35–70 years old, with at least one 30–75% diameter
stenosis on coronary angiography and LDL cholesterol of
115–190 mg/dL designed to assess the regression in coro-
nary atherosclerosis (as measured by within-patient per-

lesion change in minimal lumen diameter by quantitative
coronary angiography) in response to fluvastatin [97, 98].
After 2.5 years of treatment with fluvastatin, mean LDL
cholesterol was reduced by 23.9%, and change in minimal lu-
men diameter by quantitative coronary angiography was sig-
nificantly less in the fluvastatin-treated group (0.028 mm de-
crease in diameter in the fluvastatin-treated group compared
to 0.100 mm decrease in diameter in the placebo group; P <
.01) [99]. Clinical event rates had a trend towards benefit in
the fluvastatin-treated group but were not statistically signif-
icant [99].

Genetic variation of PPARG 54,347 C > T (designated
“PPARG 161 C > T” in the publication), PPARG Pro12Ala,
and PPARG 25,506 C > T as well as the association with
baseline lipid parameters and response to fluvastatin was as-
sessed in 372 individuals from LCAS [100]. PPARG haplo-
type was associated with the degree of coronary atherosclero-
sis (mean number of coronary lesions; P = .026) and changes
in minimum lumen diameter (P = .022) in response to flu-
vastatin [100]. PPARA and PPARD polymorphisms were also
assessed: no associations were found with PPARA genotype
or haplotype; PPARD associations are discussed below [100].

3.5. PPARG haplotype pharmacogenetic associations

3.5.1. Response to troglitazone

The Troglitazone in the Prevention of Diabetes (TRIPOD)
study was a placebo-controlled trial designed to test if TZD
therapy could prevent the development of type 2 DM in His-
panic women with previous gestational DM [101, 102]. In
this trial, the incidence of type 2 DM was decreased by 55%
in the troglitazone-treated group (coincident with improve-
ment in insulin sensitivity) compared to placebo [102]. Inter-
estingly, 8 months after discontinuation of treatment, there
remained a statistically significant difference in the develop-
ment of type 2 DM between those treated with troglitazone
and placebo (2.3% versus 15%; P = .03) [102].

In TRIPOD, 30% of women were classified as nonre-
sponders as they were in the lowest tertile of 3 month im-
provement in insulin sensitivity and did not gain any pro-
tection from development of type 2 DM [102]. Although
there was no association of the common, functional PPARG
Pro12Ala polymorphism with response to troglitazone [103],
there was an individual association of eight other PPARG
polymorphisms with troglitazone response [104]. In addi-
tion, three hapolotypes blocks were defined that were in-
dependently, or jointly, involved in mediating the response
to troglitazone [104]. Specifically, individuals with the most
common haplotype within a haplotype block starting in in-
tron 1, containing the A2 promoter and ending within in-
tron 2 (designated “Block 1” in the publication) had an odds
ratio of 2.22 for nonresponse to troglitazone (P = .032),
and the most common haplotype within a haplotype, lo-
cated completely within intron 2 (designated “Block 2” in
the publication), had an odds ratio of 4.18 for nonresponse
(P = .012) [104]. In addition, the most common haplotype
within a haplotype located in the 3′ untranslated region of
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PPARG (designated “Block 5” in the publication) had a bor-
derline significant odds ratio of 0.51 for response (P = .049)
[104].

4. PPARD

4.1. PPARD−87 T > C genetic associations

4.1.1. Dyslipidemias

The PPARD −87 T > C (designated “PPARD 294 T > C”
polymorphism in the publication) was one of four polymor-
phisms identified by direct sequencing of the 5′ untranslated
region of PPARD in 20 unrelated healthy subjects [105]. This
polymorphism is located 87 base pairs upstream of the trans-
lation start site and 294 base pairs downstream from the tran-
scription start site. In vitro experiments have demonstrated
functional differences of the two variants and have impli-
cated the transcriptional corepressor SP1 in contributing to
the differences [106].

When the association of the PPARD−87 T > C polymor-
phism with variation in plasma lipid levels was investigated
in 543 healthy men (and validated in an independent cohort
of 282 healthy men), PPARD −87 CC homozygotes had in-
creased plasma LDL cholesterol compared to PPARD−87 TT
homozygotes [106].

4.1.2. Coronary atherosclerosis and cardiac events

Skogsberg et al. investigated whether the PPARD −87 T >
C polymorphism (designated “PPARD 294 T > C” poly-
morphism in the publication) was associated with increased
plasma-LDL cholesterol levels and/or increased risk of hav-
ing cardiac events. In the West Of Scotland Coronary Pre-
vention Study (WOSCOPS), a randomized, double-blind,
placebo-controlled trial with the primary goal of investigat-
ing the effect of pravastatin in preventing cardiac events in
patients with mild-to-moderate hypercholesterolemia (LDL
cholesterol between 4.5 and 6.0 mmol/L) [107]. Although
carriers of the PPARD −87 C allele had a significantly lower
HDL cholesterol compared with the PPARD −87 TT ho-
mozygotes, there was no association of this polymorphism
with cardiac events and no genotype-by-treatment interac-
tion [107].

4.2. PPARD haplotype pharmacogenetic associations

4.2.1. Response to fluvastatin

Genetic variation of PPARD −87 T > C (designated “PPARD
294 T > C” in the publication) and PPARD −4401 C > T
as well as the association with baseline lipid parameters and
response to fluvastatin was assessed in 372 individuals from
LCAS [100]. PPARD haplotype was associated with the de-
gree of coronary atherosclerosis (mean number of coronary
lesions) and changes in triglyceride (P = .01) and apoC-III (P
= .047) levels in response to fluvastatin [100].

4.2.2. Response to acarbose

Genetic variation in six SNPs in PPARD in patients with im-
paired glucose tolerance and association with the conversion
to type 2 DM in response to acarbose was investigated in the
STOP-NIDDM trial [72, 73]. Women treated with acarbose
carrying the C allele of PPARD −48,444 C > T (designated
“rs6902123” in the publication) had increased risk of de-
veloping type 2 DM compared to TT homozygous women
treated with acarbose (OR 2.70; 95% CI 1.44–5.30; adjusted
P = .002) [73].

5. CONCLUSIONS

With their pleiotropic effects on lipid metabolism, glucose
homeostasis, myocardial energetics, and responses to is-
chemia, as well as the considerable evidence linking genetic
polymorphisms identified within the PPAR complex to com-
mon cardiovascular diseases, the PPAR family of transcrip-
tion factors is central to the regulation of a number of key
cellular pathways that impact on normal and pathologic car-
diovascular physiology and thus represent very promising
targets for further advances in pharmacologic intervention.
Early pharmacogenetic investigations into the associations of
a select few of these polymorphisms with patient responses
to drug therapy have yielded important clues to commonly
observed variability in both response and outcomes. Given
the central role of the PPARs in critical metabolic pathways,
this experience points the way to a future where knowledge
of relevant PPAR genotype might be utilized to guide more
appropriately tailored and individualized therapy.
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