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Disrupting malaria parasite AMA1–RON2
interaction with a small molecule prevents
erythrocyte invasion
Prakash Srinivasan1, Adam Yasgar2, Diane K. Luci2, Wandy L. Beatty3, Xin Hu2, John Andersen1,

David L. Narum4, J. Kathleen Moch5, Hongmao Sun2, J. David Haynes5, David J. Maloney2,

Ajit Jadhav2, Anton Simeonov2 & Louis H. Miller1

Plasmodium falciparum resistance to artemisinin derivatives, the first-line antimalarial drug,

drives the search for new classes of chemotherapeutic agents. Current discovery is primarily

directed against the intracellular forms of the parasite. However, late schizont-infected red

blood cells (RBCs) may still rupture and cause disease by sequestration; consequently tar-

geting invasion may reduce disease severity. Merozoite invasion of RBCs requires interaction

between two parasite proteins AMA1 and RON2. Here we identify the first inhibitor of this

interaction that also blocks merozoite invasion in genetically distinct parasites by screening a

library of over 21,000 compounds. We demonstrate that this inhibition is mediated by the

small molecule binding to AMA1 and blocking the formation of AMA1–RON complex. Elec-

tron microscopy confirms that the inhibitor prevents junction formation, a critical step in

invasion that results from AMA1–RON2 binding. This study uncovers a strategy that will allow

for highly effective combination therapies alongside existing antimalarial drugs.
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P lasmodium falciparum (Pf) infects over 300 million people
worldwide causing more than 1 million deaths annually,
mostly in young children and pregnant women1. Currently

there is no vaccine available, and there is widespread resistance to
common antimalarial drugs2. Recent data suggest the emergence
of resistance against artemisinin derivatives, the current first-line
defence against malaria3–4. This warrants novel, alternative
approaches for developing new therapeutics.

Clinical manifestation of the disease is due to the intraery-
throcytic forms of the parasite (see (ref. 5) for a review of malaria
biology and disease pathogenesis), which on maturation to the
schizont stage release merozoites, the invasive form of Pf. Invasion
is a rapid process that begins with an initial weak attachment of
the merozoites to the RBC, followed by reorientation that brings
the apical end of the merozoite into close apposition with the RBC
surface6–7. The commitment of merozoites to invade RBCs is
marked by the formation of a firm junction between the apically
oriented merozoite and the RBC7. Every RBC that is invaded
produces 16–32 new merozoites. Invaded RBCs can sequester
despite treatment8. Therefore, targeting invasion will be a critical
component for the development of successful antimalarial
therapies. However, existing antimalarial drugs primarily target
the intracellular stage of the developing parasites. The potential
targets for drug development against merozoite invasion and
release have recently been reviewed5.

Protein–protein interactions (PPIs) have crucial roles in
numerous biological processes including disease pathology and
host–pathogen interactions. Relatively small regions of the interface
of PPIs, so-called ‘hot-spots’, can provide exquisite specificity, and
are essential for high-affinity binding9–10. Hence these orthosteric
sites (ligand-binding sites) are attractive targets for small-molecule
PPI inhibitors as they allow for interfering with them in a highly
specific manner. For instance, Nutlin3, a small-molecule PPI
inhibitor of MDM2–p53 interaction11 that reactivates p53 function
is now in clinical trials to treat cancer12–13. Furthermore, small-
molecule inhibitors of PPIs involved in successful viral entry
into host cells such as HIV gp120-CCR5 chemokine receptor14,
dengue virus envelope protein E trimerization that mediates
membrane fusion15 and ebola virus glycoprotein-host Niemann-
Pick C1 protein16 have been identified. Hence small-molecule
PPI inhibitors offer attractive opportunities to target host–parasite
interactions and prevent disease.

One such essential PPI is between two parasite proteins, apical
membrane antigen 1 (AMA1), which is translocated on to the
merozoite surface, and rhoptry neck protein 2 (RON2), which is
transferred to the RBC membrane during invasion17–19. We have
recently shown that the interaction between AMA1 and RON2 is
essential for junction formation with the RBC19, an irreversible
step that commits the parasite to invasion. A short RON2 peptide
(RON2L) that binds to a hydrophobic pocket on AMA1 is
sufficient to compete with the native RON2 protein and inhibit
invasion19–20. Two intimately associated PAN domains in AMA1
form a highly conserved hydrophobic pocket21. The binding of
the RON2 peptide to the hydrophobic pocket in AMA122 is
required to trigger the formation of the moving junction19. The
junction provides a firm anchor for the parasite to pull itself
into the RBC using its actin–myosin motor. Unlike the other
steps in invasion that use functionally redundant proteins, there is
only one AMA1 and RON2 in Plasmodium, and there are no
alternative pathways. Moreover, the region corresponding to
RON2 peptide and the key residues in the AMA1 hydrophobic
pocket, including Phe183 that is required for RON2 binding22, is
conserved among all Pf isolates. This indicates a functional
constraint governing an essential step in invasion and represents
a novel target that can potentially be exploited for antimalarial
therapy.

Here we present results identifying small-molecule inhibitors
of AMA1–RON2 interaction that block merozoite invasion of
RBCs. We show that the inhibitor binds to AMA1 and prevents
its interaction with RON2. In doing so, it disrupts the function of
AMA1–RON2 interaction, namely, junction formation, a crucial
step in merozoite invasion of RBCs. Such inhibitors of merozoite
invasion used in combination with existing antimalarials hold
great promise as a novel therapeutic approach in the fight against
malaria.

Results
Screen for the assessment of AMA1–RON2 interaction. A short
RON2 peptide (RON2L) corresponding to the binding region
on AMA1 is sufficient to compete with the native RON2 protein
and inhibit merozoite invasion of RBCs19–20. We developed a
quantitative high-throughput screen (HTS) using the Alpha-
Screen technology (Fig. 1a) to investigate the interaction between
AMA1 and RON2L. In this assay, streptavidin-coated donor
beads bind to the biotinylated RON2L peptide, whereas the nickel
chelate acceptor beads bind to the His-tagged AMA1
recombinant protein. Interaction between RON2L and AMA1
brings the donor and acceptor beads into close proximity. Upon
excitation at 680 nm, the donor beads containing the photo-
sensitizer phthalocyanine convert ambient oxygen to singlet
oxygen (4 ms half-life). The close proximity of RON2 and AMA1
allows for the diffusion and efficient transfer of energy from the
singlet oxygen to thioxene derivatives within the acceptor bead,
which emits light in the 520–620 nm region. This proximity-
dependent transfer of energy and the homogenous detection of
protein–protein interactions allow for a highly sensitive high-
throughput screen. Disruption of AMA1–RON2L interaction by
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Figure 1 | Quantitative high-throughput assay to identify inhibitors of the

AMA1–RON2 interaction. (a) In the AlphaScreen assay, streptavidin-

coated donor beads captures biotin-tagged RON2L peptide and the nickel-

coated acceptor beads binds to His-tagged AMA1(3D7 allele). In the

absence of inhibitor, excitation of the donor beads at 680 nm results in the

production of singlet oxygen, followed by short-distance diffusion

(o200 nm) and energy transfer to the acceptor beads, in turn resulting in

emission at 520–620 nm. Disruption of the interaction leads to reduced or

no signal. (b) R1 peptide that specifically binds 3D7 allele of AMA1 (square)

and the unlabelled RON2L peptide (black circle) were used as positive

controls for inhibitors in the AlphaScreen assay. Error bars show±s.e.m.

from two independent experiments.
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small-molecule inhibitors will result in reduced or no emission
signal depending on the strength of the inhibition.

The HTS assay was miniaturized and optimized in a 1,536-well
plate format. The assay displayed minimal well-to-well variation
and a Z 0 factor23 of 0.7 or greater (Supplementary Fig. S1),
indicating a robust screen. As there is no known small-molecule
inhibitor of the AMA1–RON2 interaction, we validated our
screen using the R1 peptide that binds to only AMA1 from the
P. falciparum 3D7 clone24. The unlabelled R1 peptide exhibited a
concentration-dependent inhibition with an IC50 value of
B0.7 mM (Fig. 1b). A second validation was performed using
untagged RON2L that competes with biotin-tagged RON2L for
binding AMA1 with an IC50 value of B0.1 mM (Fig. 1b).

Screen for small-molecule inhibitors of AMA1–RON2 interaction.
A pilot screen of 21,733 compounds (Supplementary Fig. S2) was
performed at a five-concentration dilution series (92 nM to 114mM)
titration using the AMA1–RON2 AlphaScreen assay. Compounds
that showed inhibitory activity in the primary screen were re-
screened from fresh stocks in the AlphaScreen assay. False positives
may represent compounds that quench singlet oxygen or lumines-
cence signal, or ones that interfere with biotin or nickel chelator
beads binding to the affinity tags on RON2 peptide and AMA1. To
remove such compounds, we used a counterscreen to measure the
binding of AlphaScreen beads to a biotinylated-(His)6 linker, an
analyte serving to bind both donor and acceptor beads outside the
context of the AMA1–RON2 interaction. With this approach we
confirmed 20 compounds as true hits and 14 of these, chosen based
on availability, were used in the downstream assays (Supplementary
Tables S1 and S2).

AMA1–RON2 inhibitors block merozoite invasion. As the
AlphaScreen assay used AMA1 corresponding to the 3D7 allele, we
tested the compounds using a modified-HTS parasite growth
inhibition assay25 using a heterologous parasite clone (FVO).
Seven compounds showed growth inhibition (28–34mM) in this
assay (Supplementary Table S1). As this assay takes over 36 h,
some compounds may also affect intraerythrocytic development
and cannot be distinguished from the ones that block invasion.
To address whether the AMA1–RON2 inhibitors block parasite
invasion, we used purified merozoites from a Pf line adapted to
retain invasiveness19. As merozoite invasion is a very rapid
process and takes less than a minute to complete entry into RBCs,
this assay allows for unequivocal identification of compounds
that block invasion. Purified merozoites were allowed to invade
fresh RBCs in the presence of varying concentrations (25 and
50mM) of the compounds. The efficiency of the compounds
to inhibit invasion was measured by counting the number
of newly invaded rings. Three compounds, NCGC00015280,
NCGC00014044 and NCGC00181034 that block the binding of
AMA1 to RON2 (Table 1) also inhibited merozoite invasion
(Fig. 2a and Supplementary Table S1).

Invasion inhibitors block parasite AMA1–RON complex. As
the small molecules block merozoite invasion, we tested if they
also blocked parasite-derived AMA1–RON2 interaction. Towards
this we performed immunoprecipitation of the AMA1–RON
complex26 from schizont-infected RBCs. The RON complex is
comprised of rhoptry neck proteins RON2, RON4 and RON518,26.
As expected, in the absence of inhibitors, immunoprecipitation
of RON4 pulls down AMA1 from parasite extracts (Fig. 2b).
However, complex formation is disrupted in the presence of

Table 1 | Chemical structures and AlphaScreen IC50 values of three compounds that inhibit AMA1–RON2 interaction and block
merozoite invasion from schizont-infected RBCs.

Structure (ID) Name Target AlphaScreen IC50 (lM)

NN

N

O

NH2

NCGC00015280

7-Cyclopentyl-5-(4phenoxy)
phenyl-7H-pyrrolo[2,3-d]

pyrimidin-4-ylamine
Src-family Lck tyrosine kinase 21

N

N

CI
H
N

HCI

N

NCGC00181034

Liarozole hydrochloride Cytochrome P450 29

N

N

NCGC00014044

Dimetacrine Acetylcholinesterase 28
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AMA1–RON2 inhibitors (Fig. 2b). This indicates that the
inhibitors block the formation of AMA1–RON2 complex and
prevent merozoite invasion of RBCs.

AMA1–RON2 inhibitors are strain-transcending. AMA1 is
highly polymorphic and antibodies against the protein from one
parasite clone do not inhibit heterologous clones27–28. However,
the key residues in the AMA1 hydrophobic pocket that bind to
RON2, and the region corresponding to RON2L that binds to
AMA1 is conserved in all Pf clones. We designed a flow
cytometry-based invasion assay to test the ability of the AMA1–
RON2 inhibitors to block merozoite invasion of genetically
distinct Pf clones. Mature schizont-infected RBCs were allowed to
rupture and release merozoites that invade fresh RBCs for 4 h in

the presence of different concentrations of the inhibitors. All
three compounds were able to block invasion of the four
genetically distinct Pf clones (IC50: 10–14 mM), including the
drug-resistant DD2 clone (Fig. 2c) with minimal to no effect on
schizont rupture (Fig. 2d).

Proof-of-concept optimization of an AMA1–RON2 inhibitor.
First, to rule out the effect of any impurities present in the original
compound, we re-synthesized and purified NCGC00015280 to test
in our biological assays (see Supplementary Methods). The re-
synthesized compound showed activity similar to that of the original
sample confirming NCGC00015280 as an AMA1–RON2 inhibitor
that blocks merozoite invasion (Supplementary Fig. S3). Next, we
attempted to improve the activity of NCGC00015280 through the
synthesis of related analogues, and tested them for invasion inhi-
bition using mature schizonts. Two analogues, NCGC00262650 and
NCGC00262654 (see Supplementary Methods) showed improved
inhibition over the parent compound (Figs 3a,b). Invasion assay
using purified merozoites showed that these two compounds
blocked entry of merozoites into RBCs at threefold (9.8mM) and
fivefold (6mM) lower IC50 than the parent compound (30mM),
respectively (Fig. 3c). At the same concentrations, intracellular
growth and merozoite rupture from schizonts were not affected
(Supplementary Fig. S4).

Merozoite invasion is not affected by Src kinase inhibitors. The
AMA1–RON2 inhibitor NCGC00015280 was originally identified
as a specific Src-family tyrosine kinase inhibitor29. However, there
are no tyrosine kinases identified in the Plasmodium genome30

despite the presence of tyrosine-phosphorylated proteins31,
making it unlikely that the inhibition was due to its effect on a
parasite tyrosine kinase. Furthermore, we used another Src kinase
inhibitor I32 to examine the possibility of a Src kinase-like enzyme
that may function during merozoite invasion. Although the parent
compound and the two analogues show potent inhibition, the
unrelated Src kinase inhibitor I (IC50: 44–88 nM) does not block
merozoite invasion even at 60mM (Fig. 3d). This suggests that the
small-molecule inhibitor blocks merozoite invasion by preventing
the formation of the AMA1–RON2 complex.

Invasion inhibitors in combination with artemisinin. There is
increasing evidence for the development of resistance against the
first-line antimalarial artemisinin3–4 and existing partner drugs2.
Therefore, we tested the usefulness of merozoite invasion
inhibitors NCGC00015280 and NCGC00262650 in combination
with dihydroartemisinin (DHA), the active metabolite. Synchro-
nized schizonts (3D7 and FVO clones) were allowed to rupture,
invade in the presence of either individual compounds or in
combination, and allowed to develop within RBCs for 72 h.
Indeed, the efficiency of growth inhibition is enhanced when
both the intracellular parasites and merozoite invasion were
simultaneously targeted (Fig. 3e). Such combinations offer a
promising approach to prevent, as well as, treat artemisinin-
resistant parasites.

PPI inhibitor blocks merozoite invasion by binding to AMA1.
Small molecules identified through our HTS assay may exert
their inhibition by binding to either AMA1 or RON2, even
though the probable orthosteric hot-spot may lie in the hydro-
phobic grove of AMA1. To address the mode of inhibition,
we performed a depletion assay to assess the binding of the
small molecule NCGC00262650 to either his-tagged recombinant
AMA1 protein or biotin-tagged RON2L peptide. The ability
of AMA1 or RON2L to bind to the inhibitor was assessed by
performing invasion assays using inhibitor-depleted supernatants.
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Figure 2 | Small molecules block AMA1–RON complex formation and

inhibit merozoite invasion. (a) Purified merozoites were used to test the

effect of the three compounds on invasion of RBCs at 25mM (white bars)

and 50mM (black bars) for 4 h. Error bars show±s.e.m. from five

experiments for NCGC00015280, NCGC00181034 and two for

NCGC00014044. (b) Immunoprecipitation assay testing the ability of the

inhibitors to block parasite AMA1–RON complex formation. Each inhibitor

was used at 100 mM concentration and was immunoprecipitated using anti-

RON4 antibody. RON2L peptide was used as a positive control. DMSO

(1%), the solvent for the inhibitors, was used as a negative control.

Experiments were performed twice and a representative western blot data

is shown. (c) NCGC00015280 inhibits merozoite invasion of genetically

distinct parasite clones. Purified schizonts from four different parasite

clones were allowed to rupture and invade new RBCs for 4–6 h in the

presence of varying concentrations of the inhibitor. The number of newly

invaded rings was measured by flow cytometry of SYBR green-labelled

parasites. IC50: 12 mM (FVO), 14 mM (3D7), 13mM (DD2) and 10mM (HB3).

Error bars show±s.e.m. from two experiments for each parasite clone.

(d) Merozoite release from schizont-infected RBCs is not affected. The

effect of the inhibitors on merozoite release was tested at 30mM, the IC50

for invasion. Error bars represent±s.e.m. from three experiments for

NCGC00015280, NCGC00181034 and two for NCGC00014044. The

number of parasites in the absence of inhibitor was considered 100%.
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Recombinant AMA1 was very effective in depleting the inhibitory
activity; however RON2L was not (Fig. 4a). Significantly, re-
combinant proteins representing two diverse alleles of AMA1
from the 3D7 and FVO parasites bound to the compound and
depleted inhibitory activity(Fig. 4a). This clearly demonstrates
that the mode of action of the small molecule is mediated through
the binding of AMA1 and blocking its interaction with RON2.
Furthermore, SPR experiments also confirmed the binding of the
small-molecule inhibitors to AMA1 (Supplementary Fig. S7),
though the affinity could not be determined due to poor solubility
(precipitation) of the inhibitors in the SPR buffer. We also per-
formed a qualitative immunofluorescence assay using fluorescein
isothiocyanate (FITC)-labelled RON2 peptide to evaluate the
binding of RON2 to parasite AMA1 (Fig. 4b). This assay was
previously used to demonstrate the binding of RON2 peptide to
AMA1 present in the micronemes33. Although FITC-labelled
PfRON2L binds to schizonts, binding is prevented in the presence
of the inhibitor (Fig. 4b).

AMA1–RON2 inhibitor blocks junction formation. We have
previously shown that the binding of RON2 to AMA1 triggers

junction formation, which commits the merozoite for invasion19.
As the inhibitors bind to AMA1 and prevent binding of
RON2, we performed electron microscopy to determine the
precise step at which merozoite invasion was blocked. The
actin–myosin motor that propels the merozoite during invasion
is constantly active19. Hence cytochalasin D (cyto D) that
blocks actin polymerization was used to prevent the attached
merozoites from falling-off RBCs. In the presence of cyto D alone,
merozoites were able to re-orient and form a junction (Fig. 5
and Supplementary Fig. S5). However, in the presence of the
inhibitors (NCGC00015280 and NCGC00262650), despite the
merozoites being able to attach to RBC and re-orient (Fig. 5b),
junction formation was severely affected (Fig. 5c).

On rupture of merozoites from the schizonts, AMA1 is
secreted from the micronemes on to the merozoite surface34. We
tested by immunofluorescence assay under non-permeabilizing
conditions, if the binding of the inhibitor (NCGC00015280 and
NCGC00181034) to AMA1 before schizont rupture affected its
release on to the merozoite surface. Similar AMA1 staining was
observed on merozoites that were released in the presence or
absence of inhibitors (Fig. 5d). Similar data was observed with
NCGC00262650 (not shown). These data indicate that processes
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that regulate microneme release are not affected, and that the
inhibitors specifically block AMA1–RON2 interaction and
junction formation, thereby inhibiting merozoite invasion of
RBCs.

Discussion
Successful proliferation and transmission of pathogens involve
critical PPIs during host-cell entry. Targeting such interactions
provide an effective way of preventing diseases. Merozoites,
the invasive form of the malaria parasite, utilize several unique
PPIs to mediate their entry into RBCs. Vaccines targeting
these parasite surface receptors have largely been unsuccessful,
and are thought to be mainly due to antigenic diversity in the
different parasite clones. However, many PPIs involve ‘hot-spots’,
relatively small parts of the protein that mediate binding9–10.
These regions tend to be more conserved but may be hidden
from the host immune system. Targeting these ‘hot-spots’ by
small-molecule inhibitors provides an alternative strategy for
defence against pathogens.

This study represents the first attempt to develop novel
antimalarial compounds based on small-molecule inhibitors
of an essential parasite protein–protein interaction required for
RBC invasion. We have developed a high-throughput assay to
identify small molecules that will block the binding of RON2 to
AMA1 and inhibit merozoite invasion of RBCs. The binding of
the RON2 peptide to AMA1 triggers junction formation and
invasion19. The basis of pocket formation is often at the junction
of two domains in a protein35, which in AMA1 is formed by
two PAN apple domains21. The RON2 peptide fits snugly into
the hydrophobic pocket of AMA122 and, if blocked by small
molecules, could lead to powerful new antimalarial drugs.

We screened 21,733 small molecules and identified 20 that
blocked binding, with IC50 values between 13 and 29 mM.

Importantly, we have used a variety of assays to demonstrate
efficacy against multiple Pf clones. The first is a high-throughput
assay for molecules that block Pf invasion. Seven were active in a
similar range of IC50 and seven were inactive (Supplementary
Table S1). Six were not tested further due to the lack of
compound availability. To exclude potential toxicity in the initial
test against schizont-infected RBCs, we performed two additional
studies. First, the number of released merozoites in a 4-h period
was evaluated, as toxicity would suppress parasite growth and
merozoite release. Second, the active compounds in the schizont-
infected RBC invasion assay were tested with viable merozoites
and only three showed good activity. The two biological assays
using schizonts or merozoites addressed different questions. In
the first, the exposure of schizont-infected RBCs to the drug
reflected the way that the drug would be used in humans. If it is
inactive in this assay, then the small-molecule inhibitor is not of
interest because its accessibility to AMA1 in the parasitized RBC
or after merozoite release from the RBC is ineffective. Assays
using purified merozoites demonstrate unequivocally the effect of
the small molecules to block invasion and not due to toxicity
against schizont-infected RBCs. Using this approach we have
presented data identifying the first small-molecule inhibitor that
blocks malarial parasite entry into RBCs by inhibiting an essential
protein–protein interaction. We have demonstrated that the small
molecule binds to AMA1 and prevents it from interacting with
RON2, resulting in the blockade of a crucial step in invasion,
namely, junction formation.

In silico docking experiments predict two major ‘hot spot’
regions within the AMA1 hydrophobic pocket that are favourable
for inhibitor binding (Supplementary Fig. S7). Although the
hydrophobic pocket is the probable binding site of the inhibitors,
our data does not rule out the possibility that some of the small
molecules may bind outside the pocket and affect the conforma-
tion of the hydrophobic pocket. Only a crystal structure can
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precisely identify the binding site. However, this model provides a
starting point for developing the next generation of AMA1–
RON2 inhibitors Existing antimalarial drugs primarily target the
intracellular stage of the developing parasites. If there are mature
parasites that will release merozoites to invade RBCs and
sequester despite the presence of drugs in the blood stream8,
such an added treatment may also reduce disease severity.

Resistance to many current antimalarials is primarily due to
mutations in either the target protein36 or a membrane transporter37.
Resistance to AMA1–RON2 inhibitors is less likely because a single
mutation on one of the protein–protein interface may require a
complementary mutation in the other to maintain a functional
AMA1–RON2 protein complex. This mechanism for inhibition of
AMA1–RON2 function holds great promise as a novel therapeutic
target. The current AMA1–RON2 inhibitor, although having a
low-micromolar IC50, provides a proof-of-concept for the identi-
fication of more potent inhibitors. More importantly the results
presented here highlight the potential for such invasion inhibitors
alongside existing antimalarial drugs in the fight against this deadly
disease.

Methods
Protein expression, peptide synthesis and reagents. Recombinant, his-tagged
AMA1 was made by expressing a codon-optimized AMA1 construct in
Pichia pastoris as previously described38. Biotin-tagged RON2 peptide
(DITQQAKDIGAGPVASCFTTRMSPPQQICLNSVVNTALSTSTQSAMK) with
the two cysteines cyclized was synthesized and purified (495% pure) by LifeTein,
LLC USA (New Jersey, USA). AlphaScreen beads including streptavidin-coated
donor beads and nickel-coated acceptor beads (catalogue#6760619R) and

AlphaScreen biotinylated-(His)6 control (catalogue#6760303M) were obtained
from Perkin-Elmer (Waltham, MA). Source of small-molecule libraries used in this
study is shown in Supplementary Fig. S2.

Parasite culture and isolation of invasive merozoites. Pf culture-adapted clones
(FVO, 3D7, DD2 and HB3) were grown in vitro according to established culture
methodologies as described by Trager and Jensen39 and Haynes et al.40 Briefly,
parasites were grown in RPMI 1640 supplemented with 25 mM HEPES and
50mg ml� 1 hypoxanthine (KD Medical), 0.5% Albumax (Invitrogen), 0.23% sodium
bicarbonate (Gibco) using Oþ RBCs and monitored daily by Geimsa-stained
blood smears. Invasive merozoites were isolated from a line of Pf FVO selected
for prolonged survival of purified, free merozoites used in a previous study19.

AMA1–RON2L AlphaScreen assay. The AlphaScreen assay was performed
according to the manufacturers (Perkin-Elmer) protocol. High-throughput assay
development and optimization were carried out in 1,536-well white solid-bottom
plates and all incubation steps were carried out at room temperature (RT). A
counterscreen assay was performed to identify false-positive compounds that dis-
rupted the energy transfer from donor beads to acceptor beads (quenchers) or ones
that nonspecifically disrupted the binding between beads and the linker by sub-
stituting a biotinylated-(His)6 linker for the biotin-RON2L peptide, and his-tagged
recombinant AMA1 protein was used. See Supplementary Methods for a detailed
description.

Coimmunoprecipitation and western blotting. Schizont-infected RBCs from
synchronized Pf FVO parasites were used for immunoprecipitation. Briefly, 3� 106

schizont-infected RBCs were lysed in the presence of 100mM of each of the
inhibitors in ice-cold parasite-solubilization buffer (50 mM Tris-HCl pH7.5,
150 mM NaCl, 2 mM EDTA, 1% Triton X-100 and protease inhibitor cocktail
(Roche). Equal amount of PBS or dimethylsulphoxide (DMSO) was used as a
negative control. RON2L peptide (50 mg) that inhibits AMA1–RON complex for-
mation was used as positive control. After incubating on ice for 2 h, samples were
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centrifuged at 15,000 r.p.m. for 15 min and the supernatant was incubated with
mouse anti-RON4 mAb (5mg). After pulling down the complex using anti-mouse
IgG, bound proteins were eluted in SDS loading buffer and run on 5–25%
SDS–PAGE gels and transferred to a polyvinylidene difluoride membrane. Blots
were probed first with rabbit anti-AMA1 antibody (1:1,000) and detected using
horseradish peroxidase (HRP)-conjugated anti-rabbit antibody (1:20,000, Sigma).
The same blots were re-probed using mouse anti-RON4 antibody (1:1,000) and
detected using conformation-specific HRP-conjugated anti-mouse antibody
(eBioscience). Two independent experiments were performed.

High-throughput SYBR green assay to measure RBC invasion. The assay was
performed as described previously25 with some modifications. Briefly,
synchronized schizont-infected RBCs were used for the assay instead of mixed
infection, and the assay period was reduced from 72 h to 36 h. See Supplementary
Methods for a detailed description.

Flow cytometry measurement of merozoite invasion. Follow-up assays utilized
flow cytometry measurements to evaluate the inhibitory activity of selected com-
pounds. Invasion assays were carried out starting with either purified, schizont-
infected RBCs or free, invasive merzoites. For assays using schizont-infected RBCs:
fully mature parasites from the FVO, 3D7, DD2 and HB3 clones were purified on a
70–40 percol/sorbitol gradient and mixed with freshly prepared, pre-warmed
RBCs. Merozoites were allowed to rupture and invade fresh RBCs (2–4% para-
sitemia, 1% haematocrit final) for 4–6 h at 37 �C in the presence of varying con-
centrations of the inhibitors as indicated. For assays using merozoites: merozoites
from a Pf clone FVO, selected for prolonged survival were isolated as described
previously19. Synchronized schizont-infected RBCs were purified on a 70–40
percol/sorbitol gradient and allowed to rupture at 37 �C for 3 h. Merozoites were
purified from schizonts by passing twice through a 1.2-micron filter (PALL life
sciences). Approximately 5� 107 merozoites were mixed with 2.5� 107 pre-
warmed RBCs (500 ml final volume) in the presence of varying concentrations of
the inhibitors gassed and incubated at 37 �C for 3–4 h. Free merozoites were
removed from RBCs by centrifugation at 50 g for 7 min and the resulting RBC
pellet contains newly invaded rings. For flow cytometry measurement, B5� 107

cells (infected and uninfected RBCs) were incubated with 1X SYBR green
(Invitrogen) that labels DNA and mitotracker red (Invitrogen) that stains viable
mitochondria for 30 min at RT (final volume 40 ml). Stained cells were diluted by
adding 150ml 1� PBS. The numbers of ring-infected RBCs were counted using a
Accuri C6 flow cytometer (BD biosciences). GraphPad Prism 5.0 software package
(San Diego, CA) was used to calculate IC50 using nonlinear regression.

Compound depletion assay. His-tagged AMA1 protein (3D7 or FVO allele) or
biotin-tagged RON2L peptide (500 pmol each) in 200ml were captured using
dynabeads (Life technologies catalogue # 10103D for His-tagged AMA1 capture or
catalogue # 65601 for biotin-tagged RON2L peptide) for 1 h at RT. Unbound
protein or peptide was removed and the beads were washed three times with
1� PBS. Next, the beads were incubated with 500 pmol of the inhibitor
(NCGC00262650) in 200ml and incubated for 1 h at RT. The ability of AMA1- or
RON2L-peptide to bind to the inhibitor was tested by capturing the beads on a
magnet and collecting the supernatant. Inhibition of merozoite invasion by
unbound inhibitor in the supernatants was performed, as described above, using
purified, schizont-infected RBCs (FVO clone). Invasion efficiency was measured by
counting the number of newly invaded rings by flow cytometry.
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