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Objectives.Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG), is a hallmark of active cancer cells
that is not directly measured with standard 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). In this study, we
characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism.Methods.
Fourteen individuals with high-grade brain tumors underwent structural MR scans and PETmeasurements of cerebral blood flow
(CBF), oxygen (CMRO

2
) and glucose (CMRGlu) metabolism, and AG, using 15O-labeled CO, O

2
and H

2
O, and FDG, and were

compared to a normative cohort of 20 age-matched individuals.Results.ElevatedAGwas observed inmost high-grade brain tumors
and it was associated with decreased CMRO

2
and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic

and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated
from the effects of nonneoplastic processes such as epileptic seizures. Conclusions.Our findings demonstrate that high-grade brain
tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are
not evident on conventional FDG PET.

1. Introduction

Aerobic glycolysis (AG) refers to glucose utilization in
excess of that needed for oxidative phosphorylation, despite
sufficient oxygen to metabolize glucose to carbon dioxide
and water, and, thus, characterizes different fates of glucose
molecules outside of mitochondrial energy production. AG
is a marker of a group of metabolic functions which includes
biosynthesis of glycogen, proteins, lipids, and nucleic acids;
neuroprotection through its role inmanaging reactive oxygen
species and apoptosis, which in the context of the normal
brain is involved in synaptic remodeling, learning, and

memory; and the generation of energy for membrane pumps
[1]. AG has a long history in cancer biology where it also
known as the Warburg effect and supports the biosynthetic
requirements of proliferating cancer cells [2–6]. Positron
emission tomography (PET) using 18F-fluorodeoxyglucose
(FDG) has been successfully employed in the evaluation
of cancer patients under the assumption that an increase
in AG will be reflected in an increase in the total glucose
consumption (CMRGlu) of the tissue, although false-negative
results do occur [7, 8]. It is not known to what degree these
false-negative FDG PET scans reflect a discrepancy between
CMRGlu and actual AG. Additionally, the measurement of
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AG may help distinguish tumor from physiological uptake
of FDG in normal brain tissue. We sought to investigate
this possibility in glial brain tumors by using PET to explic-
itly measure AG. This is usually accomplished by combin-
ing measurements of CMRGlu and oxygen consumption
(CMRO

2
) and calculating their molar ratio. If all of the

glucose consumed is metabolized to carbon dioxide and
water the ratio should be 6 (i.e., 6 moles of oxygen for each
mole of glucose). A number less than 6 indicates that fraction
of the glucose associated with AG.

In this pilot study, we have measured AG, CMRGlu,
CMRO

2
, and cerebral blood flow (CBF) in individuals with

high-grade glial tumors and in a control group of age-
matched healthy individuals, which was used to identify the
regions of the tumors with the highest glycolytic activity. We
characterized glucose and oxygen metabolism and cerebral
blood flow in regions of the tumors with elevated AG in high-
grade glial tumors and evaluated the relationship betweenAG
elevation and tumor growth and clinical course of the disease.

2. Materials and Methods

2.1. Participants. Fourteen individuals (mean age 50 ± 12
years) with brain tumors and twenty healthy adults (mean
age 42 ± 7 years) underwent metabolic PET scans. Healthy
individuals were excluded if they had contraindications
to MRI, history of mental illness, possible pregnancy, or
medication use that could interfere with brain function.

All assessments and imaging procedures were approved
by Human Research Protection Office and Radioactive Drug
Research Committee at Washington University in St. Louis.
Written consent was provided from each participant.

2.2. Imaging Acquisition and Analysis. For each participant,
a structural MRI scan was performed to provide anatomical
information; standard clinical scans were also obtained [9].
MRI scans were obtained in all subjects to guide anatomical
localization.High-resolution structural imageswere acquired
using a 3D sagittal T1-weighted magnetization-prepared 180∘
radio-frequency pulses and rapid gradient-echo (MPRAGE)
sequence (TE = 3.93ms, TR = 1,900ms, TI = 1,100ms,
flip angle = 20∘, 256 × 256 acquisition matrix, 160 slices,
1 × 1 × 1.3-mm voxels). The clinical protocol included T2,
FLAIR, and diffusion tensor imaging as previously described
[9]. The imaging protocol included 1mm isotopic 3D T1
weighted imaging before and after intravenous administra-
tion of 0.1mmol/kg of gadolinium contrast (Gadobenate
Dimeglumine, Bracco).
15O PET scans were performed on a Siemens model 962

ECAT EXACT HR + PET scanner (Siemens/CTI) [10] to
measure CBV, CBF, and CMRO

2
[11–13] and on the same

or in one case (participant #6) on the next consecutive day
18F-FDG scans were performed on a Siemens Biograph 40
PET/CT or a Siemens Biograph mMR scanner to measure
CMRGlu [14] following the same protocols we have described
previously [15, 16].

All subjects underwent one FDG scan (to measure CMR-
Glu [14]) and two sets of three 15O scans (CO, H

2
O, and O

2
)

to measure CBV, CBF, and CMRO
2
[11–13]. FDG scans

were performed after slow i.v. injection of 5mCi of FDG.
Dynamic acquisition of PET emission data continued for
60min with 25 5 s frames, 9 20 s frames, 10 1min frames, and
nine 5min frames. The last 20min was summed to create
the CMRGlu image. Venous samples for plasma glucose
determination were obtained just before and at the midpoint
of the scan to verify that glucose levels were within normal
range throughout the study. CBV was measured with a
5min emission scan beginning 2min after brief inhalation
of 75mCi of [15O] carbon monoxide in room air as describe
previously [11]. Dynamic scans of 3min with 35 2 s frames,
6 5 s frames, and 8 10 s frames were acquired after injection
of 50mCi [15O] water in saline or inhalation of 60mCi of
[15O] oxygen in room air, respectively, for CBF and CMRO

2

measurements [12, 13]. By creating awhole brain time-activity
curve, the onset of activity in the brain could be judged
exactly, allowing for a consistent selection of the optimal 40 s
frame, over which activity was summed. All PET data were
reconstructed using a ramp filter (6mm FWHM) and then
blurred to 12-mm FWHM. Subject head movement during
scanning was restricted by a thermoplastic mask. All PET
images were acquired in the eyes-closed waking state. No
specific instructions were given regarding cognitive activity
during scanning other than to remain awake.

All images were registered to a common atlas using an
affine transformation fitted with in-house software, and all
subsequent calculations and comparisons were performed in
the atlas space.

2.2.1. Image Analysis. Using an atlas derived brain mask,
each individual’s CMRGlu, CBV, CBF, and [15O] oxygen
were scaled to have whole brain means of 1, and then same
mode images, if they existed, were averaged. Least-squares
regression was used to represent the [15O] oxygen scan as
a combination of CBF and CBV, and the CBV component
was then subtracted from the [15O] oxygen scan, yielding an
approximation of CMRO

2
, which was itself normalized to 1

[15].
The PET scans were registered to each other and then to

the subject’s MRI scan, which was in turn registered to an
atlas representative target image, corresponding to Talairach
space as defined by Lancaster et al. [17].The PET images were
blurred and resampled into atlas space. These registrations
and their corresponding transformations were performed
with in-house software. A CMRO

2
parametric image was

derived from the 15O scans using a previously described
method [15, 16], and a CMRGlu image was derived from the
FDG scan for each participant [14–16].

2.2.2. AG Measurement. Previously, we have measured and
described spatial distribution of AG in the brain of healthy
adults and its relationship to accumulation of beta-amyloid
in Alzheimer’s disease [15, 16]. We evaluated two measures of
AG: (1) oxygen/glucose index defined by voxelwise division
of relative CMRO

2
by the relative CMRGlu and (2) glycolytic

index, defined by linear regression of CMRGlu on CMRO
2

and exhibiting the residuals, where positive values represent
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Table 1: Demographic characteristics and medical history.

Participant Age Gender Pathology,
WHO grade Location

Surgery
prior to
the study

Treatment
prior to the

study

Status at the time
of study

Aerobic
glycolysis

1 57 M GBM, IV R temporooccipital None None Newly diagnosed Elevated
2 71 M GBM, IV R temporal Resection IMRT, TEM Recurrent Elevated
3 69 M GBM, IV L temporoparietal Resection IMRT, TEM Recurrent Elevated

4 49 M GBM, IV L temporal Resection IMRT, TEM,
and Avastin Recurrent Elevated

5 58 M GBM, IV R occipital Resection IMRT, TEM Recurrent Elevated

6 42 M PNET, IV L temporal Resection
IMRT,

Vincristine,
and Cisplatin

Recurrent Elevated

7 43 M AA, III R frontal Resection IMRT, TEM Recurrent Elevated
8 57 F AOA, III L temporooccipital Biopsy IMRT, TEM Progression Elevated
9 56 M AOA, III L parietal Biopsy IMRT, TEM Stable disease Elevated
10 57 M PNET, IV R temporal Resection WBRT, TEM Residual/recurrent Not elevated
11 29 M AO, III L frontal Resection IMRT, TEM Stable disease Not elevated
12 30 F AA, III L frontoparietal Biopsy None Newly diagnosed Not elevated

13 43 M FAD; GBM,
IV R frontal None None FAD Asymmetry

14 40 M AO, III L frontal Resection IMRT, TEM Recurrent Elevated
M, male; F, female; WHO, World Health Organization; GBM, glioblastoma; PNET, primitive neuroectodermal tumor; AA, anaplastic astrocytoma; AOA,
anaplastic oligoastrocytoma; AO, anaplastic oligodendroglioma; FAD, familial Alzheimer’s disease; R, right; L, left; IMRT, intensity-modulated radiation
therapy; WBRT, whole brain radiation therapy; TEM, Temozolomide.

more AG and negative values represent less glycolysis than
predicted by the regression line [15, 16]. These two measures
are highly correlated in our data [15, 16]. Oxygen/glucose
index images may be noisy in areas of low CMRGlu, as it is in
the denominator and the value of the oxygen/glucose index is
inversely related to the degree of AG,whereas glycolytic index
is positively related to AG. In this study, glycolytic index was
obtained to quantify and illustrate AG.

2.3. Defining a Tumor Region with Elevated AG. Since the
estimation of CMRO

2
, CMRGlu, and AG was achieved

by normalizing to whole brain mean [15], which may be
problematic for tumor patients due to regional abnormality
of metabolism, a separate cohort of healthy control subjects
(𝑛 = 20) was used as the reference. For each individual and
image type, a 𝑧-score image was created using the images
of the voxelwise mean and standard deviation of the rest of
the control group. No voxels exceeding a score of 4.0 were
observed in any image in the control group.

The images in the Patient Group were found to have
outlying voxels that significantly affected the results of the
normalization and regression procedure used on the control
group. To reduce this, an iterative process was used to
refine the normalization of each basic PET image. First, a 𝑧-
score image was created by subtracting the control group’s
corresponding mean image and dividing the result by the
control group’s standard deviation image. Then, a mask was
defined that excluded any voxels above the score of 4.0.
The mean values across this mask for both the patient’s
PET image and the corresponding control group averaged
image were obtained, and the patient’s image was rescaled

to match the two. This was repeated until the results were
stable. The final masks were retained for each individual and
used to restrict the voxels over which the regressions were
performed for creation of CMRO

2
and AG images. 𝑧-score

images for AG were processed with a threshold of 4.0 and
the remaining clusters in the tumor area characterized by
increased AG were used to create regions of interest (ROI).
Additionally, symmetric contralateral ROIs were generated
by flipping these across the transverse axis. These tumor and
contralateral ROIs were applied to AG, CMRGlu, CMRO

2
,

and CBF images to estimate regional values.

2.4. Statistical Analysis. Differences in AG, CMRGlu,
CMRO

2
, and CBF in tumor region and symmetric con-

tralateral region were assessed using paired 𝑡-test. Pearson’s
correlation coefficient was used to assess the association
between CMRGlu, CMRO

2
, and CBF in tumor region with

increased AG and in symmetric region in contralateral
hemisphere, both unadjusted and adjusting for age and
the volume of the region. Survival rates were calculated by
the Kaplan-Meier method and the differences between the
curves were evaluated by Log Rank and Tarone-Ware tests. 𝑝
values < 0.05 were used to indicate statistical significance.

3. Results

Demographic characteristics of the participants and the
history of surgical and medical treatment are presented in
Table 1. We found that newly diagnosed and recurrent high-
grade glial brain tumors demonstrate significantly elevated
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Table 2: PETmetabolic and blood flowmeasures in AG-defined ROIs in the tumor and in the symmetric region of contralateral hemisphere.

Participant AG CMRGlu CMRO
2

CBF
Tumor Contralateral Tumor Contralateral Tumor Contralateral Tumor Contralateral

1 358 22 1.01 1.06 0.59 1.10 0.87 0.99
2 356 −37 0.93 1.06 0.49 1.09 0.83 1.07
3 374 38 1.03 1.18 0.60 1.21 0.80 1.14
4 350 −6 0.96 1.02 0.57 1.06 0.91 0.99
5 311 95 0.89 0.81 0.54 0.69 0.80 0.75
6 289 16 0.97 1.10 0.57 1.02 0.90 1.08
7 413 69 1.12 1.03 0.47 0.87 0.79 0.80
8 289 −5 0.81 0.88 0.50 0.92 0.64 0.93
9 183 59 0.69 0.79 0.47 0.71 0.79 0.77

AG. Table 2 shows individual values for different PET mea-
sures estimated in the area with elevated AG in the tumor
region and in the same area of the contralateral hemisphere.
There are no data for participants ##10–13 in Table 2 because
these tumors did not demonstrate significant increase in
AG and no tumor AG-based ROIs were defined. In most
cases, AG PET studies were done during follow-up after
surgery, radiation, and chemotherapy, status of the tumor
(progression or stable course) was defined based on visual
interpretation of serial MR scans, and no recent histological
information was available to correlate it to AG and other PET
measures in corresponding areas.

In general, elevated AG associated with substantial
oxygen hypometabolism was the typical pattern for all
tumors with progressive growth (Table 2). AG both visually
and quantitatively (Table 2) demonstrated the metabolically
active part of the tumor much better than CMRGlu, which
may be unchanged in many cases, or CMRO

2
, which does

not efficiently distinguish the solid part of the tumor from the
adjacent areas with edema. In individuals with elevated AG
in the tumor region (Table 2), AG was substantially higher
(𝑝 < 0.0001), CMRGlu was not different (𝑝 = 0.084), and
CMRO

2
(𝑝 < 0.0001) and CBF (𝑝 = 0.016) were lower in

the tumor compared to the symmetric region in contralat-
eral hemisphere. Physiological coupling between CMRGlu,
CMRO

2
, and CBF was disrupted in the tumor region but

preserved in the intact region in contralateral hemisphere.
Specifically, strong positive correlation was demonstrated
between CMRGlu and CMRO

2
(𝑟 = 0.907, 𝑝 = 0.001),

CMRGlu and CBF (𝑟 = 0.845, 𝑝 = 0.004), and CMRO
2

and CBF (𝑟 = 0.938, 𝑝 < 0.001) for the symmetric region in
contralateral hemisphere; however, no correlation was found
for the tumor region (𝑟 = 0.394, 𝑝 = 0.294 for CMRGlu
and CMRO

2
; 𝑟 = 0.393, 𝑝 = 0.296 for CMRGlu and CBF;

and 𝑟 = 0.509, 𝑝 = 0.161 for CMRO
2
and CBF). The same

associations were demonstrated after regressing age and size
of the ROI.

In one case of newly diagnosed glioblastoma (World
Health Organization, WHO, grade IV; participant #1,
Figure 1), PET imaging was performed shortly prior
to surgery, and stereotactic coordinates from biopsied
specimens from several regions were available. When we

measured AG in the standard spheres (5mm radius) created
around the center of coordinates for biopsies we found
that the specimen taken from the areas of increased AG
(Figure 1(h)) demonstrated a presence of a glial neoplasm
with high proliferative activity (frequent mitotic figures,
high percent of neoplastic tissue, and high Ki-67). Moreover,
the tumor region with higher Ki-67 showed higher AG
(Ki-67 = 25.8, AG = 390; Figures 1(g) and 1(h), left) than
tumor region with lower Ki-67 (Ki-67 = 6.9; AG = 307;
Figures 1(g) and 1(h), middle). Some atypical appearing cells
were observed in specimen taken from brain areas outside
of significant increase in AG (Ki-67 = 0.2; AG = 88; Figures
1(g) and 1(h), right). Hematoxylin and eosin stained sections
show changing cellular density (Figure 1(j)) along with the
corresponding Ki-67 labeling indices (Figure 1(i)). While
the infiltrative edge of malignant glioma (Figure 1(j), right)
is comprised of only scattered neoplastic cells, the actual
tumor mass is represented in images in Figure 1(j) (left and
middle) albeit with variable areas of cellular density (middle
is less dense as compared to left). The area with elevated AG
demonstrated substantial decrease in CMRO

2
(Figure 1(e));

however, CMRGlu (Figure 1(d)) and CBF (Figure 1(f)) were
not changed compared to the contralateral side (Figure 1,
Table 2).

Our findings indicate that AG image correlate well with
the clinical course of the disease (Figures 2 and 3). Figure 2
illustrates the findings in primitive neuroectodermal tumor
(PNET) WHO grade IV, postgross resection, radiotherapy,
and chemotherapy (participant #6), which demonstratedMR
and PET evidence of the disease progression, although only a
part of a large contrast enhancing regionwas highly glycolytic
(Figures 2(a) and 2(e)). Shortly after the PET study, tumor
was partially resected, although the most glycolytic part
could not be safely removed due to its location (Figure 2(d))
and the tumor subsequently progressed 6 weeks after the
surgery (Figure 2(e)). After additional chemotherapy tempo-
ral stabilization of clinical course and reduction of contrast
enhancement (Figure 2(f)) were observed; however, several
months later tumor progressed substantially with fatal clini-
cal deterioration.

Figure 3 shows the PET and MRI images of 43-year-
old individual with familial (early-onset) Alzheimer’s disease
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Figure 1: Coregistered PET andMR images from an individual with glioblastoma (participant #1). ((a)–(f)) MR and PET images of the same
tomographic slice demonstrating the tumor region: (a) FLAIRMR image; (b) Apparent Diffusion Coefficient (ADC) diffusion-weighted MR
image; (c) Cerebral Blood Volume (CBV) perfusion-weighted MR image; (d) CMRGlu PET image; (e) CMRO

2
PET image; (f) CBF PET

image; ((g)-(h)) biopsy sites (showed with red circles) in tumor (left andmiddle) and peritumoral (right) regions: (g) T1-weightedMR images
with contrast (Gadolinium) enhancement; (h) AG PET images. ((i)-(j)) Histopathology for the corresponding biopsy sites: (i) Ki-67 labeling
and (j) Hematoxylin and eosin stained sections.

(participant #13, Table 1). At the time of the PET study this
participant hadmild-to-moderate dementia (clinical demen-
tia rating or CDR score 0.5) [18], there were no prominent
structural changes on his MRI scans (Figure 3(b)), and the
PET scans demonstrated hypometabolism in precuneus and
posterior cingulate brain cortex, which is consistent with AD.
Remarkably, there was an unexpected asymmetry in AG,
whichwas higher in the right frontal cortex (Figure 3(a)).The
asymmetry in AG and also in CMRO

2
was also noticed in

several cortical regions and caudate with regional FreeSurfer
[19, 20] analysis (Table 3). A year later, his follow-upMR fluid
attenuation inversion recovery (FLAIR) scan suggested inter-
val development of abnormal hyper intense signal regions
in right insular and frontal cortex (Figure 3(c)), and during
following 9 months the patient progressively deteriorated
clinically along with the development of multiple MR con-
trast enhancing lesions in the right hemisphere (Figure 3(d)),
which at autopsy were verified as glioblastoma.

In one case of long standing recurrent anaplastic oligo-
dendroglioma WHO grade III (participant #14, Figure 4,
Table 2), AG was substantially increased in a large part of

the left frontal (mainly motor) cortex (Figure 4(e)) par-
tially overlapping with contrast enhancing area (Figure 4(a)).
This AG increase was associated with elevated CMRGlu
(Figure 4(f)) and CBF (Figure 4(h)) and very moderate
decrease in CMRO

2
(Figure 4(g)), so that all PET mea-

sures were numerically the highest compared to that in all
other participants (AG = 464; CMRGlu = 1.40; CMRO

2
=

0.88; CBF = 1.13). Importantly, this individual experienced
recurrent focal seizures in right hand and leg resistant to
antiepileptic treatment. They did not disturb the individual
unduly; however, they were very frequent, and a neurosur-
geon noticed three or four episodes during the space of the
office visit a month before his PET study. Shortly after the
PET study, this participant underwent partial resection of the
tumor leaving themost part ofmotor cortexwith elevatedAG
(Figures 4(i) and 4(j)), and some improvement of his seizure
frequency was reported two months later from 12–14 times
per day to 5-6 times per day.Then, the participant underwent
IMRT and chemotherapy and his seizures ceased and stable
course of the disease has been observed with noMR evidence
of tumor progression for 2 years of follow-up.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Coregistered PET and MR images from an individual with PNET WHO stage IV (participant #6). Red line delineates the area
with the largest increase in AG. ((a)–(c)) MR and PET images at the time of the PET study and 1 day before surgery: (a) T1-weighted image
with contrast (Gadolinium) enhancement; (b) CMRGlu PET image; (c) AG PET image. ((d)–(f)) T1-weighted MR images with contrast
(Gadolinium) enhancement after partial surgical resection: (d) five days and (e) six weeks after surgery; (f) five months after surgery followed
by radiation and chemotherapy.

Table 3: PET metabolic measures in FreeSurfer ROIs corresponding to pathologically verified tumor in the right frontal and insular region
and in contralateral (left) hemisphere in individual with familial AD and GBM (participant #13).

FreeSurfer region AG CMRGlu CMRO
2

CBF
Right Left Right Left Right Left Right Left

Rostral middle frontal 171 118 1.11 1.10 0.95 1.00 0.96 0.96
Transverse temporal 206 113 1.36 1.33 1.21 1.30 1.19 1.26
Pars orbitalis 167 19 1.04 0.99 0.87 0.99 0.88 0.89
Pars triangularis 200 71 1.16 1.15 0.98 1.12 1.00 1.00
Pars opercularis 162 155 1.28 1.26 1.17 1.15 1.21 1.12
Insula 60 37 1.19 1.18 1.19 1.20 1.25 1.20
Caudate 158 76 1.08 1.09 0.94 1.05 0.96 1.00
Precuneus 27 −24 1.05 1.09 1.10 1.12 1.08 1.04

During the follow-up period, participants ##1–6 and
9 (Table 1) demonstrated progression of the disease and
expired within 4–15 months after PET studies. Participant
#7 underwent two surgeries followed by radiation and
chemotherapy and was stable at the time the paper was
submitted. Participant #8 demonstrated stabilization of the
disease after chemotherapy. No progression was noted in
participants ##10–12 (Table 1) during the follow-up of 18
to 30 months. The Kaplan-Meier survival curve analysis

demonstrated that individuals with elevated AG have lower
survival rate compared to individuals without elevated AG
(𝑝 = 0.034 by Log Rank test and 𝑝 = 0.042 by Tarone-Ware
test) (Figure 5).

4. Discussion

Our findings indicate thatmetabolic PET studies with explicit
measurements of AG provide information which cannot
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Figure 3: PET and MRI axial (left row), coronal (middle row), and sagittal (right row) images from an individual with familial Alzheimer’s
disease and GBM (participant #13). (a) AG PET image showing regional asymmetry with higher AG in the right hemisphere. (b) FLAIR
MR image at the time of PET study, showing no evidence of abnormality. (c) FLAIR MR image a year later demonstrating first evidence of
abnormal signal; (d) MR T1-weighted image with (Gadolinium) contrast enhancement 21 months after PET study, showing GBM.

be obtained with conventional neuroimaging techniques.
Specifically, we demonstrated that high-grade brain tumors
exhibit elevated AG associated with decreased CMRO

2
,

but usually no significant changes in CMRGlu were noted.
Despite decreases in CMRO

2
being a prominent feature

of the Warburg effect, this measure alone was not very
helpful for delineation of the most active part of the
tumor, because CMRO

2
image does not allow distinguishing

hypometabolism in the proliferating tumor from that in the

adjacent areas with necrosis or edema. In an individual with
newly diagnosed glioblastoma who underwent histological
sampling of the tumor, we observed elevated AG changing
in parallel with the rate (index) of proliferation. In tumors
demonstrating no evidence of recurrence or progression, AG
was not significantly elevated and there were no changes in
CMRGlu orCMRO

2
. In these cases, the clinical course during

the follow-up was more favorable than in tumors demon-
strating elevated AG. Additional studies will be needed to
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Figure 4: Coregistered PET and MR images from individual with anaplastic oligodendroglioma WHO grade III (participant #14). ((a)–(d))
MR images obtained at the time of PET study. (a) T1-weighted MR image with contrast (Gadolinium) enhancement; (b) T2-weighted MR
image; (c) Apparent Diffusion Coefficient (ADC) diffusion-weighted MR image; (d) Cerebral Blood Volume (CBV) perfusion-weighted MR
image; (e) AG PET image; (f) CMRGlu PET image; (g) CMRO

2
PET image. (h) CBF PET image; (i) T2-weighted MR image 1 day after

surgery (2 days after the PET study); ((j)–(l)) Follow-up T1-weighted images with contrast (Gadolinium) enhancement obtained 2 days (j),
two months (k), and 14 months (l) after the PET study.

assess the diagnostic accuracy of AGmeasures to distinguish
viable tumor from nonneoplastic processes such as radiation
necrosis.

A unique finding in our study is the observation of AG
abnormalities in an individual with the familial AD who
later was diagnosed with glioblastoma. These abnormalities
manifested as an asymmetry of AG in the absence of any
pathological signs on MR. Only a year later FLAIR MR scan
showed some initial changes; however, afterwards clinical

deterioration and progression of changes on MR were rapid.
This observation raises the possibility that metabolic alter-
ations including elevated AGmay occur early in brain tumor
formation and warrants further investigation.

The upregulation of AG (Warburg effect) provides a
selective advantage for the survival and proliferation of
tumor cells andmanymechanisms serve these purposes. One
mechanism bywhich cancer cells establish theWarburg effect
is via transcriptional upregulation of glycolytic enzymes.
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Figure 5: Longitudinal survival (time in months) in individuals
with tumors associated with elevated AG (solid) and those without
significant increase in AG (dashed).

Elevated expressions of glucose transporters and glycolytic
enzymes are found in many cancers and may contribute to
tumor growth [21–23]. The hypoxia-inducible factor 1 (HIF1)
has recently been shown to actively suppress mitochondrial
respiration by directly upregulating the expression of the
gene encoding pyruvate dehydrogenase kinase 1 (PDK1) [24,
25]. Initially HIF-1 was believed to be a transcription factor
involved in hypoxia; however, it has more recently been
shown to be active in normoxic conditions [26, 27]. Of note,
the highest increases in AG in glial tumors observed in our
study (e.g., see Figure 1) were located in the periphery of the
main tumor mass and not in the core of the tumor, where
hypoxia could be more likely expected.

M2 isoform of pyruvate kinase is expressed in both
cancer cells and normal proliferating cells [28] and it pro-
motes both aerobic glycolysis and anabolic metabolism [29].
Glycolytic enzyme hexokinase 2 is aberrantly expressed in
GBMs being an important mediator of aerobic glycolysis and
providing a proliferative and cell survival advantage [30].
The tumor suppressor p53, involved in the DNA damage
response and apoptosis, is another important transcription
factor that regulates glycolysis, oxidative phosphorylation,
and pentose phosphate pathway activity [31]. The loss of p53
expression in tumor cells may facilitate the Warburg effect
by simultaneously increasing AG and decreasing oxidative
phosphorylation. Thus, all these mechanisms upregulate
glycolysis, and lower levels of mitochondrial activity lead
to a decrease in both reactive oxygen species production
and the propensity of mitochondria to depolarize the events
that trigger apoptosis. PET studies of AG combined with
guided biopsy with detailed pathological evaluation and
characterization of biological, chemical, and genetic profiles
of biopsies will be necessary to demonstrate the mechanisms
involved in metabolic management of human brain tumor
development.

We believe that changes in AG and other PET measures
associated with seizure activity in one of our participants

(#14) were originated from amixture of tumor and nontumor
cells but primarily from nontumor cells. Increase in AG
in this oligodendroglioma grade III was mostly beyond
the contrast enhancing area and more substantial than in
more aggressive tumors in other participants, and although
most of this area remained after surgery, there were no MR
signs of progression in the follow-up period, while clinical
improvement after radiation and chemotherapy was obvious,
and seizures first decreased in frequency and then ceased
completely. Metabolic pattern of the lesion was another
unique feature. Increase in AG was associated with substan-
tial elevation of CMRGlu in parallel with CBF, but with no
marked changes in CMRO

2
. Actually, the pattern was very

similar to what we see in response to physiological activation
(e.g., visual stimulation) [14], although seizures have much
more powerful impact. Thus, here we demonstrated that AG
may be elevated not only in growing tumor but also due
to extreme activation of neighboring tissue by intractable
tumor-associated epileptic activity. Evaluation of a pattern
of changes in AG, glucose, and oxygen metabolism allows
distinguishing of potential sources of elevated AG. Of note,
data on AG in seizures are very limited due to the difficulty
of performing PET studies during the ictal phase, and we
believe that here we are presenting the first measurement of
AG evaluated during the continuing focal epileptic activity.

There are several limitations to our study. We have a
small and highly heterogeneous group of tumors arising from
different cells and at different stages. We have insufficient
number of observations to distinguishwhether elevatedAG is
different between grades III and IV tumors, although our data
suggest that it is not the grade itself but proliferative activity
which defines the level of AG. Our PET studies were cross
sectional done either before or after surgery and radio- or
chemotherapy. In most cases, pathological characteristics of
the tumor were not provided at the time of our PET studies;
therefore, we were not able to evaluate the relationship of
AG to Ki-67 or other measures of proliferative activity in
all participants. Our PET measurements of AG and CMRO

2

are technically demanding and require 15O inhalation and
injection which are not easily available at PET centers,
whereas reliable alternative MR techniques are still under
development.

5. Conclusions

Our pilot study on a small cohort provided several unique
observations suggesting a critical role of AG in human
brain tumors. Our findings demonstrated that primary brain
tumors exhibit AG as a marker of tumor growth and aggres-
siveness and indicated that AG can be used to detect areas of
active tumor growth which may otherwise be missed by con-
ventional FDG PET suggesting that explicit measurements
of AG might increase the efficacy of PET imaging in the
management of oncologic patients. Longitudinal PET studies
of brain metabolism and AG are needed on a large cohort
of individuals with various brain tumors and metastases to
verify its role in the tumor growth and evaluate its efficacy
in tumor grading and differential diagnosis, as well as its
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potential for prognosis, treatment planning, and evaluation
of treatment response and tumor recurrence.

Conflict of Interests

Dr. Jonathan McConathy has a consulting role in Siemens
Healthcare and GE Healthcare and receives funding from
Avid Radiopharmaceuticals. Dr. Michael R. Chicoine has
a consulting role in Medtronic and receives funding from
IMRIS Inc. Dr.DavidD. Tran has consulting role inNovocure
and receives funding from Novocure, Merck, Northwest
Biotech, Celldex, and TVax. Dr. Tammie L. S. Benzinger
receives funding from Avid Radiopharmaceuticals.

Acknowledgments

Research reported in this publication was supported by the
Washington University Institute of Clinical and Translational
Sciences Grant UL1 TR000448 from the National Center for
Advancing Translational Sciences, Grants 1RO1NS066905-
01 and 5P30NS048056, and Grant U19AG032438 from the
National Institute ofAging of theNational Institutes ofHealth
(NIH) and funding from the Siteman Cancer Center.

References

[1] A. G. Vlassenko and M. E. Raichle, “Brain aerobic glycolysis
functions and Alzheimer’s disease,” Clinical and Translational
Imaging, vol. 3, no. 1, pp. 27–37, 2015.

[2] S. Y. Lunt and M. G. Vander Heiden, “Aerobic glycolysis: meet-
ing the metabolic requirements of cell proliferation,” Annual
Review of Cell and Developmental Biology, vol. 27, pp. 441–464,
2011.

[3] A. E. Vaughn andM. Deshmukh, “Glucose metabolism inhibits
apoptosis in neurons and cancer cells by redox inactivation of
cytochrome c,”Nature Cell Biology, vol. 10, no. 12, pp. 1477–1483,
2008.

[4] R. W. Mercer and P. B. Dunham, “Membrane-bound ATP
fuels the Na/K pump. Studies on membrane-bound glycolytic
enzymes on inside-out vesicles from human red cell mem-
branes,” Journal of General Physiology, vol. 78, no. 5, pp. 547–
568, 1981.

[5] K. E. N. Okamoto, W. Wang, J. A. N. Rounds, E. A. Chambers,
and D. O. Jacobs, “ATP from glycolysis is required for normal
sodium homeostasis in resting fast-twitch rodent skeletal mus-
cle,” The American Journal of Physiology—Endocrinology and
Metabolism, vol. 281, no. 3, pp. E479–E488, 2001.

[6] M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Under-
standing the warburg effect: the metabolic requirements of cell
proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009.

[7] S. X. Wang, J. Boethius, and K. Ericson, “FDG-PET on irradi-
ated brain tumor: ten years’ summary,”Acta Radiologica, vol. 47,
no. 1, pp. 85–90, 2006.

[8] M. McCarthy, J. B. Yuan, A. Campbell, N. P. Lenzo, and K.
Butler-Henderson, “ 18F-fluorodeoxyglucose positron emission
tomography imaging in brain tumours: the Western Australia
positron emission tomography/cyclotron service experience,”
Journal of Medical Imaging and Radiation Oncology, vol. 52, no.
6, pp. 564–569, 2008.

[9] S. J. Fouke, T. L. Benzinger, M. Milchenko et al., “The compre-
hensive neuro-oncology data repository (CONDR): a research
infrastructure to develop and validate imaging biomarkers,”
Neurosurgery, vol. 74, no. 1, pp. 88–98, 2014.

[10] G. Brix, J. Zaers, L.-E. Adam et al., “Performance evaluation of
a whole-body PET scanner using the NEMA protocol,” Journal
of Nuclear Medicine, vol. 38, no. 10, pp. 1614–1623, 1997.

[11] W. R. W. Martin, W. J. Powers, and M. E. Raichle, “Cerebral
blood volume measured with inhaled C15O and positron emis-
sion tomography,” Journal of Cerebral Blood Flow&Metabolism,
vol. 7, no. 4, pp. 421–426, 1987.

[12] M. A. Mintun, M. E. Raichie, W. R. W. Martin, and P.
Herscovitch, “Brain oxygen utilization measured with O-15
radiotracers and positron emission tomography,” Journal of
Nuclear Medicine, vol. 25, no. 2, pp. 177–187, 1984.

[13] M. E. Raichle,W. R.Martin, P.Herscovitch,M.A.Mintun, and J.
Markham, “Brain blood flowmeasured with intravenous H15

2
O.

II. Implementation and validation,” Journal of NuclearMedicine,
vol. 24, no. 9, pp. 790–798, 1983.

[14] P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence,
“Nonoxidative glucose consumption during focal physiologic
neural activity,” Science, vol. 241, no. 4864, pp. 462–464, 1988.

[15] S. N. Vaishnavi, A. G. Vlassenko, M. M. Rundle, A. Z. Snyder,
M. A. Mintun, and M. E. Raichle, “Regional aerobic glycolysis
in the human brain,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 107, no. 41, pp.
17757–17762, 2010.

[16] A. G. Vlassenko, S. N. Vaishnavi, L. Couture et al., “Spatial
correlation between brain aerobic glycolysis and amyloid-beta
(Abeta) deposition,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 107, no. 41, pp.
17763–17767, 2010.

[17] J. L. Lancaster, T. G. Glass, B. R. Lankipalli, H. Downs, H.
Mayberg, and P. T. Fox, “A modality-independent approach
to spatial normalization of tomographic images of the human
brain,” Human Brain Mapping, vol. 3, no. 3, pp. 209–223, 1995.

[18] J. C. Morris, “The Clinical Dementia Rating (CDR): current
version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–
2414, 1993.

[19] B. Fischl, D. H. Salat, E. Busa et al., “Whole brain segmentation:
automated labeling of neuroanatomical structures in the human
brain,” Neuron, vol. 33, no. 3, pp. 341–355, 2002.

[20] R. S. Desikan, F. Ségonne, B. Fischl et al., “An automated labeling
system for subdividing the human cerebral cortex onMRI scans
into gyral based regions of interest,” NeuroImage, vol. 31, no. 3,
pp. 968–980, 2006.

[21] P. K. Majumder, P. G. Febbo, R. Bikoff et al., “mTOR inhibi-
tion reverses Akt-dependent prostate intraepithelial neoplasia
through regulation of apoptotic and HIF-1-dependent path-
ways,” Nature Medicine, vol. 10, no. 6, pp. 594–601, 2004.

[22] D. B. Shackelford, D. S. Vasquez, J. Corbeil et al., “mTOR
and HIF-1𝛼-mediated tumor metabolism in an LKB1 mouse
model of Peutz-Jeghers syndrome,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 106, no.
27, pp. 11137–11142, 2009.

[23] N. Palaskas, S. M. Larson, N. Schultz et al., “ 18F-fluorodeoxy-
glucose positron emission tomography marks MYC-
overexpressing human basal-like breast cancers,” Cancer
Research, vol. 71, no. 15, pp. 5164–5174, 2011.

[24] J.-W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang,
“HIF-1-mediated expression of pyruvate dehydrogenase kinase:



Disease Markers 11

a metabolic switch required for cellular adaptation to hypoxia,”
Cell Metabolism, vol. 3, no. 3, pp. 177–185, 2006.

[25] I. Papandreou, R. A. Cairns, L. Fontana, A. L. Lim, and
N. C. Denko, “HIF-1 mediates adaptation to hypoxia by
actively downregulating mitochondrial oxygen consumption,”
Cell Metabolism, vol. 3, no. 3, pp. 187–197, 2006.

[26] G. L. Semenza, “HIF-1 mediates the Warburg effect in clear cell
renal carcinoma,” Journal of Bioenergetics and Biomembranes,
vol. 39, no. 3, pp. 231–234, 2007.

[27] G. L. Semenza, “HIF-1: upstream and downstream of cancer
metabolism,”CurrentOpinion inGenetics andDevelopment, vol.
20, no. 1, pp. 51–56, 2010.

[28] S. Mazurek, “Pyruvate kinase type M2: a key regulator of the
metabolic budget system in tumor cells,” International Journal
of Biochemistry andCell Biology, vol. 43, no. 7, pp. 969–980, 2011.

[29] H. R. Christofk, M. G. Vander Heiden, M. H. Harris et al., “The
M2 splice isoform of pyruvate kinase is important for cancer
metabolism and tumour growth,”Nature, vol. 452, no. 7184, pp.
230–233, 2008.

[30] A. Wolf, S. Agnihotri, J. Micallef et al., “Hexokinase 2 is a key
mediator of Aerobic glycolysis and promotes tumor growth in
human glioblastoma multiforme,” The Journal of Experimental
Medicine, vol. 208, no. 2, pp. 313–326, 2011.

[31] C. R. Berkers, O. D. K. Maddocks, E. C. Cheung, I. Mor, and
K. H. Vousden, “Metabolic regulation by p53 family members,”
Cell Metabolism, vol. 18, no. 5, pp. 617–633, 2013.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


	Washington University School of Medicine
	Digital Commons@Becker
	2015

	Aerobic glycolysis as a marker of tumor aggressiveness: Preliminary data in high grade human brain tumors
	Andrei G. Vlassenko
	Jonathan McConathy
	Lars E. Couture
	Yi Su
	Parinaz Massoumzadeh
	See next page for additional authors
	Recommended Citation
	Authors


	874904.dvi

