
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

1-2014

DNA polymerases ζ and Rev1 mediate error-prone
bypass of non-B DNA structures
Matthew R. Northam
University of Nebraska at Omaha

Elizabeth A. Moore
University of Nebraska at Omaha

Tony M. Mertz
University of Nebraska at Omaha

Sara K. Binz
Washington University School of Medicine in St. Louis

Carrie M. Stith
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Northam, Matthew R.; Moore, Elizabeth A.; Mertz, Tony M.; Binz, Sara K.; Stith, Carrie M.; Stepchenkova, Elena I.; Wendt, Kathern
L.; Burgers, Peter M. J.; and Scherbakova, Polina V., ,"DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA
structures." Nucleic Acids Research.42,1. 290-306. (2014).
http://digitalcommons.wustl.edu/open_access_pubs/2115

http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors
Matthew R. Northam, Elizabeth A. Moore, Tony M. Mertz, Sara K. Binz, Carrie M. Stith, Elena I.
Stepchenkova, Kathern L. Wendt, Peter M. J. Burgers, and Polina V. Scherbakova

This open access publication is available at Digital Commons@Becker: http://digitalcommons.wustl.edu/open_access_pubs/2115

http://digitalcommons.wustl.edu/open_access_pubs/2115?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2115&utm_medium=PDF&utm_campaign=PDFCoverPages


DNA polymerases f and Rev1 mediate error-prone
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ABSTRACT

DNA polymerase f (Pol f) and Rev1 are key players in
translesion DNA synthesis. The error-prone Pol f
can also participate in replication of undamaged
DNA when the normal replisome is impaired. Here
we define the nature of the replication disturbances
that trigger the recruitment of error-prone polymer-
ases in the absence of DNA damage and describe
the specific roles of Rev1 and Pol f in handling these
disturbances. We show that Pol f/Rev1-dependent
mutations occur at sites of replication stalling at
short repeated sequences capable of forming
hairpin structures. The Rev1 deoxycytidyl transfer-
ase can take over the stalled replicative polymerase
and incorporate an additional ‘C’ at the hairpin
base. Full hairpin bypass often involves template-
switching DNA synthesis, subsequent realignment
generating multiply mismatched primer termini
and extension of these termini by Pol f. The
postreplicative pathway dependent on polyubi-
quitylation of proliferating cell nuclear antigen
provides a backup mechanism for accurate bypass
of these sequences that is primarily used when the
Pol f/Rev1-dependent pathway is inactive. The
results emphasize the pivotal role of noncanonical
DNA structures in mutagenesis and reveal the long-
sought-after mechanism of complex mutations that
represent a unique signature of Pol f.

INTRODUCTION

DNA polymerases a, d and e perform the bulk of DNA
synthesis during eukaryotic DNA replication (1,2). DNA
damage resulting from exogenous and endogenous factors
creates obstacles for the replicative enzymes. The bypass

of replication impediments is facilitated by specialized
translesion synthesis (TLS) polymerases (3). These
include DNA polymerase z (Pol z), Pol Z, Pol i, Pol k
and Rev1 in humans. The yeast Saccharomyces cerevisiae
has homologs of Pol z, Pol Z and Rev1. TLS is a mutagenic
process because of the miscoding potential of the damaged
nucleotides and the inherently lower selectivity of the active
sites of the specialized polymerases (4). In yeast and human
cells, DNA synthesis by Pol z is responsible for nearly
all mutagenesis induced by exogenous genotoxicants (5).
Pol z is also required for the vast majority of mutations
provoked by endogenous DNA damage [see references
in (6)]. The specific role of Pol z in TLS is thought to be
the extension of aberrant primer termini resulting from
nucleotide incorporation opposite lesions by other DNA
polymerases. Pol z is uniquely capable of extending poorly
matched primer termini, including those containing
nucleotides across from noncoding and helix-distorting
lesions (3). During copying of undamaged DNA in vitro,
Pol z also frequently misincorporates nucleotides showing
overall low fidelity (7).

The deoxycytidyl transferase Rev1 is an essential
partner of Pol z in TLS. Like Pol z, Rev1 is required for
DNA damage-induced mutagenesis. Although the cata-
lytic activity of Rev1 is used in vivo during the bypass of
several lesions (8–12), the essential role of Rev1 in TLS is
structural. Yeast Rev1 and its mammalian homologs are
involved in multiple physical interactions with other TLS
polymerases (5). In addition, Rev1 has ubiquitin-binding
motifs through which it can interact with ubiquitylated
proliferating cell nuclear antigen (PCNA) at stalled repli-
cation forks (13,14). This led to the idea that Rev1 could
provide a docking site to help exchange different DNA
polymerases at the replication fork. Binding of Rev1 to
Pol z also stimulates the mismatch extension and TLS
activity of Pol z (15).

In addition to the role of Pol z and Rev1 in TLS,
multiple reports document Pol z-dependent mutagenesis
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in situations when cells are not expected to accumulate
excessive DNA damage. The Pol z/Rev1-dependent
processes are responsible for 50–70% of spontaneous
mutations in wild-type S. cerevisiae strains (16). Pol z
also contributes to an increased mutation rate associated
with high levels of transcription (17) or double-strand
break repair (18). We and others have shown that Pol z
participation in replication and mutagenesis is promoted
by a variety of replication machinery defects (6,19–21).
For example, defects in S. cerevisiae replicative polymer-
ases Pol d and Pol e that are thought to affect replication
fork progression or the replisome integrity lead to a
mutator phenotype. A total of 80–90% of spontaneous
mutations in these strains are mediated by Pol z
(6,20,21), a phenomenon that we termed defective-
replisome-induced-mutagenesis (DRIM). Similar Pol
z-dependent mutagenesis is observed after treatment of
wild-type cells with the replication inhibitor hydroxyurea
(22). Our recent studies provided evidence that DRIM
results from the participation of Pol z in the copying of
undamaged DNA rather than from mutagenic lesion
bypass (22). The recruitment of Pol z for the replication
of undamaged DNA was unexpected because the access of
error-prone polymerases to the replication fork must be
tightly regulated to restrict mutagenesis.

The exact nature of replication problems that signal for
the recruitment of Pol z to undamaged templates remained
enigmatic. This study provides evidence for a model
wherein replication stalling at transient noncanonical
DNA structures is a major factor activating the Pol z/
Rev1-dependent mutagenic replication pathway. DNA
sequences capable of adopting unusual secondary struc-
tures, such as hairpins, cruciforms, slipped structures,
G-quadruplex, triplex and Z-DNA, are widespread in the
eukaryotic genomes. Inverted repeat sequences, as well
as certain tri- and tetranucleotide repeats, are prone to
hairpin structure formation, particularly when the
repeated sequence is exposed as a single-stranded DNA
during DNA replication, repair or transcription (23–25).
These sequences inhibit replication progression in bacteria,
yeast and mammalian cells (26–30), as well as block DNA
polymerases in the in vitro replication assays (31–35).
These sequences also promote genomic instability (DNA
breaks, mutations and gross rearrangements) (36–49).
Genomic rearrangements triggered by hairpin and
cruciform structures are thought to contribute to the
pathogenesis of many human diseases (50,51).
Importantly, the replication-blocking structures known
to increase the genome instability are typically formed by
repetitive sequences at least 50–100 and sometimes >1000-
nt long. In contrast, hundreds of short (4–5 nt) repeats
are present in the coding sequences of every gene and are
not generally thought to present an obstacle for the DNA
replication machinery. The role of the local DNA structure
in mutagenesis in these regions, generally referred to as
non-repetitive, is poorly understood. Genetic studies in
bacteriophage T4 and Escherichia coli suggested that
abnormal replication of short quasipalindromic sequences
can lead to a high frequency of complex mutations leading
to the perfection of the palindrome (46,47,52–56). Evidence
for the abnormal replication progression through these

sequences, however, is lacking. It is also not known
whether such short inverted repeat sequences can form
non-B DNA structures and cause genome instability in
eukaryotic cells. Eukaryotic Pol z has long been known
to generate complex mutations (multiple changes within
short DNA stretches) at a high rate (7,22,57), but the mech-
anism of this unique type of mutation remained unclear.
In this study, we demonstrate that an unexpectedly high

proportion of mutagenesis during replication is due to
polymerase stalling at short DNA repeats capable of
forming transient noncanonical DNA structures. We
further implicate Pol z and Rev1 in the error-prone
bypass of these structures via a template-switching type
of DNA synthesis at the replication fork. We also
describe elementary biochemical steps leading to
complex mutation generation by Pol z/Rev1.

MATERIALS AND METHODS

Saccharomyces cerevisiae strains and plasmids

All S. cerevisiae strains used in this study are isogenic to
the E134 strain [MAT� ade5-1 lys::InsEA14 trp1-289 his7-2
leu2-3,112 ura3-52; (58)]. The rev1D and mmsD derivatives
of E134 were obtained by transformation with polymerase
chain reaction-generated DNA fragments carrying a
selectable kanMX cassette flanked by short sequence
homology to REV1 or MMS2. The disruptions were
confirmed by polymerase chain reaction and by ultravio-
let-immutability (rev1D) or the mutator phenotype
(mmsD) of the transformants. To replace the chromosomal
REV1 gene with the rev1-1 and rev1-cd alleles, a URA3-
based integrative plasmid pRS306-REV1 was constructed
by ligating a DNA fragment containing the first 1818 nt
of the REV1 open reading frame and 75 nt of the upstream
sequence into SpeI and HindIII sites of pRS306 (59). The
rev1-1 [Gly193!Arg; (60)] and rev1-cd (Asp467!Ala,
Glu468!Ala) mutations were created in the pRS306-
REV1 plasmid by site-directed mutagenesis using a
QuickChange site-directed mutagenesis kit from
Stratagene. Strain E134 was transformed by EcoRI-
digested pRS306-rev1-1 and pRS306-rev1-cd, and Ura+

transformants were plated on a medium containing 5-
fluoroorotic acid to select for excision of the plasmid.
The REV1 allele replacement was confirmed by DNA
sequencing. The pol3-Y708A mutants were constructed
as described previously (20). During the construction of
double rev1-cd pol3-Y708A and triple mmsD rev1-cd pol3-
Y708A strains, the pol3-Y708A allele was always
introduced last to limit the accumulation of additional
random mutations in these genetically unstable strains.
The M13/lacZ::CAN1 (1-1560-F) and M13/lacZ::CAN1

(1-1560-R)plasmidswere constructedby ligatinga fragment
of DNA containing the first 1560 bases of the yeast CAN1
gene in the forward and reverse orientations, respectively,
into the EcoRI site in the lacZ gene of the M13mp2.

Measurement of the spontaneous mutation rate and
mutational spectra analysis

The rate of spontaneous mutation to canavanine resist-
ance (Canr) was measured by fluctuation analysis, and
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the mutational spectra were determined as previously
described (22). The significance of differences between
Canr mutation rates was estimated by using the
Wilcoxon-Mann-Whitney nonparametric criterion (61).

Enzymes

The T4 Pol was purchased from New England Biolabs
(NEB). The yeast Pol d, Pol z, Rev1 and its catalytically
inactive variant (Rev1-CD), PCNA, replicaton factor C
(RFC) and replication protein A (RPA) were purified
as described in (14,62–66) respectively.

In vitro DNA synthesis assays

Singly primed circular DNA substrates for DNA poly-
merase assays were prepared by annealing the M13/
CAN1 (1-1560-F) or M13/lacZ::CAN1 (1-1560-R)
ssDNA to Cy-5-labeled oligonucleotides complementary
to different CAN1 regions. The M13/lacZ::CAN1
(1-1560-F) and M13/lacZ::CAN1 (1-1560-R) ssDNA was
purified from E. coli cultures infected with the correspond-
ing bacteriophages as described in (67). The standard puri-
fication procedure was followed by treatment with T4 Pol
(NEB) and nuclease-free RNase A (USB) for 1 h at 37�C
to remove any remaining regions of double-stranded
DNA and RNA contaminants. High pressure liquid chro-
matography-purified Cy5-labeled oligonucleotide primers
were purchased from IDT. The oligonucleotides were
further purified by extraction from 18% polyacrylamide
gel (68) and concentrated using Amicon ultra centrifuga-
tion columns (Millipore). Oligonucleotide primers used
to study DNA polymerase pausing during copying of
the CAN1 template are described in Supplementary
Figure S2. Oligonucleotides used to generate substrates
with multiple mismatched bases and fully matched
control substrates are described in Figure 7. The annealing
was achieved by incubating 20 mg (�8 pmol) of M13/
CAN1 (1-1560-F) or M13/lacZ::CAN1 (1-1560-R) with
2.4 pmol of Cy5-labeled oligonucleotide in the presence
of 150mM NaAc at 78�C for 2min and then cooling
slowly to room temperature (�2 h). The reactions were
desalted by spinning through Amicon ultra centrifugation
columns (Millipore). The annealing was verified by elec-
trophoresis in 0.8% Tris-acetate-EDTA (TAE) agarose
gels, and the substrates were stored at �80�C.
DNA synthesis reactions with T4 Pol were performed

at 37�C in NEB buffer 2 and contained 20 nM DNA sub-
strate, 100 mM of each dNTP and either 2 or 0.2 nM T4
Pol as indicated. The reactions with yeast Pol d, Pol z,
Rev1 and Rev1-CD were performed at 30�C and con-
tained 40mM Tris–HCl (pH 7.8), 100mM NaCl, 8mM
MgAc, 1mM DTT, 200 mg/ml bovine serum albumine,
2.5% glycerol, 20 nM DNA substrate, 100 mM of each
dNTP, 4.9 mM RPA, 0.006 mM RFC, 0.016 mM PCNA,
0.4mM ATP and the indicated polymerase(s) at the
following concentrations: Pol d—0.4 nM, Rev1 and
Rev1-CD—40nM, Pol z—5nM. Incubation was for
10min unless stated otherwise. Reactions were stopped
by placing the tubes on ice and adding 1.5 ml of 0.5 M
EDTA. The reactions were then incubated with
Proteinase K at 37�C for 10min and purified by phenol/

chloroform extraction. DNA was precipitated with
ethanol and resuspended in formamide loading buffer.
The reaction products were separated by electrophoresis
in 12% denaturing polyacrylamide gel and detected
and quantified using the Typhoon imaging system and
ImageQuant software (GE Healthcare). The sequencing
ladder markers for the polymerase pausing analysis were
produced by using the same DNA templates and primers
and Sequenase DNA Sequencing Kit (Affymetrix) accord-
ing to the manufacturer’s instructions.

DNA secondary structure prediction

The CAN1 gene sequence was analyzed for the presence of
potential secondary structures using the mfold Web Server
provided by the RNA Institute at the College of Arts
and Sciences, University at Albany, State University of
New York (http://mfold.rna.albany.edu/?q=mfold/dna-
folding-form) (69).

RESULTS

Both the structural and the catalytic functions of Rev1
contribute to DRIM

Many mutations affecting the yeast replicative DNA poly-
merases cause a Pol z-dependent spontaneous mutator
phenotype that we refer to as DRIM. We previously
demonstrated that the mechanism of DRIM involves
impaired replication fork progression in the polymerase
mutants (70) that leads to a constitutive monoubiqui-
tination of PCNA (6) and the recruitment of Pol z for
replication of undamaged DNA (22). To model DRIM
in the present study, we use the pol3-Y708A mutation
resulting in a single amino acid change in the active
site of Pol d. This mutation causes a moderately
impaired growth, sensitivity to the replication inhibitor
hydroxyurea, a robust monoubiquitination of PCNA
and an increase in spontaneous mutagenesis that is
almost entirely Pol z-dependent (6,20). The spectrum of
spontaneous mutations in the pol3-Y708A strain shows
the predominance of base substitutions with a particularly
high proportion of GC!CG transversions, a low fre-
quency of frameshifts and a high frequency of complex
mutations (22). The complex mutations are defined as
multiple changes within short (up to 6 nt) DNA stretches.
We refer to them as type I complex mutations to distin-
guish them from more dramatic sequence substitutions
that are seen at a low rate in Pol z-deficient strains [(22)
and discussion below]. This spectrum closely resembles the
error specificity of Pol z during copying of undamaged
DNA in vitro (7), suggesting that the mutator effect of
pol3-Y708A results from the error-prone DNA synthesis
by Pol z.

The present study initially aimed to characterize the
role of Rev1 in DRIM. Because of the essential role of
the Rev1 protein in many Pol z-dependent transactions,
we hypothesized that Rev1 performs a structural function
in DRIM as well. Indeed, a deletion of the REV1 gene
reduced the rate of spontaneous mutation to canavanine
resistance (Canr) in the pol3-Y708A strain to nearly a wild-
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type level (Figure 1A and Supplementary Table S1),
similar to the effect of REV3 deletion (6). Comparison
of the spectra of can1 mutations in the pol3-Y708A
rev1D and pol3-Y708A rev3D strains showed that the
two spectra were indistinguishable, and the physical
presence of Rev1 was essential for all DRIM events
(Supplementary Figures S1 and S5A; Supplementary
Table S2). The rate of GC!CG transversions was
reduced >330-fold in the pol3-Y708A rev3D strain and
165-fold in the pol3-Y708A rev1D strain in comparison
with the single pol3-Y708A mutant. The rate of type I
complex mutation was reduced >140-fold in both pol3-
Y708A rev3D and pol3-Y708A rev1D strains. Other types
of base substitutions and frameshift mutations were also
similarly reduced in the rev3D and rev1D derivatives of
pol3-Y708A (Supplementary Figure S1 and
Supplementary Table S2). We have additionally tested
the effect of the rev1-1 mutation, which results in a
Gly193!Arg substitution in the BRCT domain of Rev1
and is thought to affect the structural but not the catalytic
function of Rev1 (71). The rev1-1 mutation strongly
reduced DRIM (Figure 1A and Supplementary Table
S1), thus providing further support for the importance
of the organizing function of Rev1.

Many of the DRIM-associated mutations are base
substitutions that could potentially result from a C incorp-
oration [(22); Supplementary Table S2 and Supplementary
Figure S1]. Therefore, we asked if the catalytic activity of
Rev1 was involved in the generation of some of these
mutations. Inactivation of the catalytic activity of Rev1
by a double amino acid change in the active site (D467A,
E468A) resulted in a small but significant decrease in
DRIM (Figure 1A and Supplementary Table S1).
Analysis of the spectrum of Canr mutations in the pol3-
Y708A rev1-cd strain revealed that, as expected, the rate of
changes to a GC pair (GC!CG, AT!GC, AT!CG),
but not to an AT pair (GC!AT, GC!TA, AT!TA),
was reduced in strains with the catalytically dead Rev1
(Figure 1B, Supplementary Table S2 and Supplementary
Figure S5B). This suggests that an inappropriate C incorp-
oration by Rev1 is responsible for a significant fraction of
DRIM-associated base substitutions. The remaining
changes to a GC pair likely involve a C or G insertion
by Pol z or Pol d itself. Unexpectedly, however, the rate
of type I complex mutation was also reduced 7-fold
upon inactivation of the deoxycytidyl transferase activity
of Rev1 (Figure 1B and Supplementary Table S2).
The complex mutations typically require incorporation
of various nucleotides, not just a C (22), so the Rev1
deoxycytidyl transferase alone could not possibly
generate these mutations. Therefore, it is likely that the
DNA polymerase activity responsible for introducing the
multiple changes is the one of Pol z. The strong reduction
in the rate of complex mutations in the pol3-Y708A rev1-
cd strain, however, suggests that the C insertion by Rev1 is
somehow required for their generation by Pol z in vivo.
This observation was in apparent disagreement with the
fact that purified Pol z is perfectly capable of making the
complex mutations without the help of Rev1 in vitro (7).
In the following sections, we propose and vigorously test a
model that resolved this controversy and provided insight

into the mechanism of replication-associated Pol z- and
Rev1-dependent mutagenesis.

A working hypothesis on the mechanism of complex
mutation generation by Pol f and Rev1

To explain the requirement for the catalytic activity of
Rev1 in the formation of complex mutations, we
proposed the following model (Figure 1C). DNA poly-
merases are well known to pause synthesis in a nonran-
dom fashion during copying of natural DNA templates.
We hypothesized that the complex mutations occur at sites
where processive synthesis by the replicative polymerase
(step a in Figure 1C) pauses at sequences that are for some
reasons difficult to copy (step b in Figure 1C). We further
propose that Rev1 inserts a ‘C’ at these sites in an attempt
to alleviate the stalling (step c in Figure 1C). This is
followed by a switch to Pol z (step d in Figure 1C). The
continuation of DNA synthesis by Pol z is accompanied
by the generation of a complex mutation (step e in
Figure 1C). In this model, the ‘C’ insertion by Rev1 is
the initiating event necessary for the creation of a
complex mutation by Pol z. We proposed that, if the cata-
lytic activity of Rev1 is not available, the stalled replica-
tion intermediates (step c) could be processed in an
error-free manner by the Rad5/Mms2/Ubc13-dependent
pathway. The Mms2-Ubc13 complex and Rad5 are the
ubiquitin-conjugating enzyme and the ubiquitin ligase, re-
spectively, that mediate the K63-linked polyubiquitylation
of PCNA in response to DNA damage-induced replica-
tion blocks. The polyubiquitylation activates a nonmuta-
genic bypass of DNA lesions that is believed to use
an undamaged sister chromatid as a template (72). We
proposed that stalled intermediates accumulating in the
replication-deficient strain pol3-Y708A are similarly pro-
cessed via the Rad5/Mms2/Ubc13 pathway if the action of
Rev1 deoxycytidyl transferase does not channel them to
the mutagenic Pol z-dependent pathway (Figure 1C, left).
This provides an explanation for the strong reduction
in the rate of complex mutations in the rev1-cd derivative
of pol3-Y708A.
This hypothesis makes several testable predictions.

First, the sites of complex mutations must coincide with
sites of the replicative DNA polymerase pausing. Second,
Rev1 should be able to extend the primer terminus at the
sites where replicative polymerases stall. Third, if neither
Rev1 deoxycytidyl transferase nor the Rad5/Mms2/Ubc13
pathway is active, the replication stalling should persist
and might provide enough time for Pol z to generate the
complex mutation on its own. As mentioned earlier, Pol z
does not require Rev1 to generate complex mutations
in vitro when it is given ample time to extend the primer,
and the competing error-free bypass is not available (7).
Therefore, we predicted that the rate of complex mutation
could remain high regardless of the availability of the
catalytic activity of Rev1, if the Rad5/Mms2/Ubc13
pathway is inactivated. Experiments described in the sub-
sequent sections test these predictions and, in addition,
identify the nature of the ‘difficult’ sequences that cause
replication stalling and necessitate the mutagenic bypass
by Pol z/Rev1.
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Figure 1. Both the structural and the catalytic functions of Rev1 are required for the mutagenic response to replication perturbations. (A) Rate of
Canr mutation in the pol3-Y708A strain and its rev1 derivatives. All data are from Supplementary Table S1 and are medians and 95% confidence
limits for at least 18 independent cultures. The upper confidence limit is not shown for the strongest mutator strain. The bracket represents the
difference in mutation rate for the pol3-Y708A and pol3-Y708A rev1-cd strains. (B) Rates for individual types of base substitutions and complex
mutations in the pol3-Y708A and pol3-Y708A rev1-cd strains. Data are from Supplementary Table S2. (C) A working model of complex mutation
generation by Pol z/Rev1. Base changes of a complex mutation are represented by red asterisks.
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Sites of the Pol f/Rev1-dependent complex mutations
coincide with sites of replicative polymerase stalling

To determine if complex mutations occur at sites of rep-
licative polymerase stalling, we studied the progression
of DNA synthesis by T4 DNA polymerase (T4 Pol) and
the yeast Pol d through the yeast CAN1 gene, in which
we previously scored the complex mutations in vivo.
Single-stranded circular templates for the in vitro reactions
were obtained by cloning the CAN1 gene in an M13mp2-
based vector in two orientations, such that the pausing
pattern during copying of both strands could be
analyzed. The complex mutations in the pol3-Y708A
strain were observed at a variety of sites within the
CAN1 gene (22). We constructed a series of singly
primed substrates by annealing the single-stranded
M13mp2-CAN1 templates to Cy5-labeled primers comple-
mentary to different regions of the CAN1 (Supplementary
Figure S2). The location of primers was chosen such that

the probability of DNA synthesis termination could
be evaluated at each nucleotide position within the first
540 nt of CAN1, a region that spans 11 complex mutation
sites (Supplementary Figure S2). Remarkably, for 10 of
the 11 sites, a significant impediment of DNA synthesis
was seen with both T4 Pol and Pol d just before the
complex mutation site (three examples are shown in
Figure 2). The similar pausing pattern observed with T4
Pol and Pol d suggests that it is the DNA template features
and not the polymerase identity that determines the
location of pause sites.

The catalytic activity of Rev1 alleviates replicative
polymerase stalling at sites of complex mutations

The working model shown in Figure 1C predicts that
Rev1 can insert a nucleotide at sites where replicative
polymerases pause synthesis. To test this, we repeated
the Pol d primer extension assays described in the
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previous section in the presence of Rev1 or its catalytically
inactive variant. The effect of Rev1 variants on the pro-
gression of DNA synthesis through two complex mutation
sites in CAN1 is shown in Figure 3. In both cases, Pol d
pauses at a site where the next correct nucleotide to be
added is a C. Therefore, Rev1 could potentially take over
the primer terminus and incorporate an additional nucleo-
tide if the template sequence at the complex mutation site
does not inhibit it as much as it inhibits Pol d. Indeed, at
both complex mutation sites, the presence of the catalyt-
ically active Rev1 helped extend the primer by 1 or 2 nt
beyond the Pol d stall sites (Figure 3). In contrast, inclu-
sion of a catalytically inactive Rev1 in the reaction did not
alter the Pol d pausing pattern, indicating that it is the
deoxycytidyl transferase activity and not just the
physical presence of Rev1 that helped alleviate the
stalling. In addition to the known complex mutation
sites, the catalytic activity of Rev1 similarly reduced
pausing at other sites where Pol d experienced difficulties
extending the primer (see, for example, lower molecular
weight bands indicating DNA synthesis pausing �10 nt
upstream of the complex mutation in Figure 3A).

In the absence of the Rad5/Mms2/Ubc13 pathway, the
catalytic activity of Rev1 is no longer required for
DRIM and the generation of complex mutations

The hypothesis shown in Figure 1C suggests that, in the
absence of the catalytic activity of Rev1, the stalled repli-
cation intermediates are processed in an error-free manner
via the Rad5/Mms2/Ubc13 pathway. This potentially
explains the reduced rate of complex mutations in the
pol3-Y708A rev1-cd strain in comparison to the pol3-
Y708A strain (Figure 1B). As discussed previously, we
predicted that inactivation of the error-free pathway
could prolong the replication stalling and enable the gen-
eration of complex mutations by Pol z even if the Rev1
deoxycytidyl transferase is not available. In our experi-
mental system, we expected that the pol3-Y708A rev1-cd
double mutants might regain the ability to accumulate
complex mutations at a high rate if the Rad5/Mms2/
Ubc13 pathway is inactivated. To test this prediction, we
compared the rate and spectrum of Canr mutation in the
pol3-Y708A and pol3-Y708A rev1-cd strains in the Mms2-
deficient background. Consistent with the previously pub-
lished data (73), the mms2D mutation alone results in a
mutator phenotype (Figure 4A and Supplementary Table
S1), presumably due to channeling the bypass of endogen-
ous DNA lesions to the mutagenic TLS pathway. The rate
of Canr mutation in the pol3-Y708A mms2D strain was,
thus, higher than in the single pol3-Y708A mutant, reflect-
ing the contribution of the mms2D mutator. The inter-
action of the mutator effects of pol3-Y708A and mms2D
was strictly additive (Figure 4A and Supplementary Table
S1), similar to the interaction of pol3-Y708A with other
mutations elevating endogenous damage-induced muta-
genesis (22). The spectrum of mutations in the pol3-
Y708A mms2D also appeared to be a combination of the
mutational spectra of the single pol3-Y708A and mms2D
mutants [Supplementary Table S2, Supplementary Figures
S5C and D; (22)]. This indicates that the Mms2 defect
does not significantly affect the DRIM pathway in
strains that carry functional Rev1. The effects of the
rev1-cd mutation on DRIM in the Mms2+ and Mms2�

strains, however, were dramatically different. In contrast
to the Mms-proficient strains and in full agreement with
our hypothesis, the rev1-cd mutation did not reduce
the overall rate of Canr mutation (Figure 4A and
Supplementary Table S1) or the rate of complex
mutation (Figure 4B, Supplementary Table S2 and
Supplementary Figure S5E) in the Mms2-deficient back-
ground. Thus, when the error-free Rad5/Mms2/Ubc13-
dependent bypass is inactive, the accumulation of Pol
z-dependent complex mutations at sites of replication
stalling no longer requires the catalytic activity of Rev1.

The nature of complex mutations reveals
template-switching DNA synthesis events triggered
by noncanonical DNA structures

The results described in previous subsections (Figures 2–4)
provided strong support for the idea that a large propor-
tion of Pol z-dependent mutations occur at sites of
replicative polymerase stalling and are triggered by a
C incorporation by Rev1 at the beginning of the ‘difficult’
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Figure 3. The catalytic activity of Rev1 alleviates replicative polymer-
ase stalling at sites of complex mutations. DNA synthesis by Pol d in
the presence or absence of Rev1 or Rev1-CD through the sites of
complex mutations #1 (A) and #10 (B) was as described in ‘Materials
and Methods’ section. All reactions contained PCNA, RFC and RPA.
The complex mutation sequences are shown in red to the left of the gel
images. The reaction with Pol d and Rev1-CD shown in the last lane in
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This was necessary to overcome a strong inhibitory effect of Rev1-CD
on Pol d-dependent synthesis with this substrate, which was presumably
owing to efficient binding of Rev1-CD to the primer/template with a G
in the first templating position.
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template sequence (Figure 1C). We next asked whether the
DNA template sequence at the sites of complex mutations
possessed any specific features that caused the replication
stalling and required the action of Rev1. It is well known
that DNA polymerases can be blocked by non-B DNA
structures. Therefore, we analyzed the CAN1 sequence
for the presence of repeats that could fold into unusual
secondary structures. We found no stable non-B structures
resembling those previously implicated in genome
instability in prokaryotic or eukaryotic cells (36–49).
Remarkably, however, 9 out of 10 polymerase pause
sites associated with the Pol z-dependent mutations were
immediately followed by short (4–6 nt) inverted repeat
sequences. This suggested that the polymerase pausing
could potentially be caused by small hairpin structures
formed by these repeats. To provide additional evidence
that these small structures can, in fact, form and inhibit
replicative polymerases, we studied the progression of
DNA synthesis through a 4-nt repeat sequence in both
directions by using either the coding or noncoding
strand of CAN1 as a template. With both substrates, the
synthesis paused exactly at the base of the proposed
hairpin (Figure 5), indicating that the non-B DNA struc-
ture was indeed responsible for the pausing. The ability of
Rev1 to incorporate a nucleotide after Pol d has paused
(Figure 3), thus, reflects a unique way of handling hairpin
template structures by this TLS polymerase.

We then hypothesized that the drastic sequence substi-
tutions that we score as complex mutations result not
from multiple sequential misincorporations as proposed
earlier (7), but rather from template-switching DNA
synthesis triggered by replicative polymerase stalling
at short-lived hairpin structures. About a quarter of
complex mutations observed in the pol3-Y708A strain
[Supplementary Figure S3; (22)] involve the introduction
of a completely foreign sequence that was long enough to
attempt the identification of a region in the vicinity of the
small hairpin that could potentially template these events.

In all of these mutation cases, the template for the
mutant sequence was found on the opposite DNA
strand immediately adjacent to the proposed hairpin
structure (two examples are shown in Figure 6). The al-
ternative template also contained up to 3 nt following the
mutant sequence that, when copied, would allow for the
generation of a correctly paired primer terminus after
realignment of the nascent strand with the original
template. These observations allowed us to propose a
more specific model of the complex mutation generation
that is supported by our biochemical, genetic and struc-
tural analysis (Figure 6). According to this model, repli-
cative polymerases stall synthesis upon encountering
short, and presumably transient, hairpin structures (step
1 in Figure 6). Unlike the replicative polymerases, Rev1
is efficient at inserting a nucleotide at the hairpin base,
so it takes over the replicative polymerase to extend
the primer terminus by 1 or 2 nt (step 2 in Figure 6).
A template G near the hairpin base is likely a prerequisite
for this step, which was the case for the complex
mutation sites that we studied. The incorporation of
a C by Rev1 is, thus, not necessarily mutagenic itself.
We propose, however, that Rev1 subsequently hands
over the primer terminus to Pol z, which is followed by
an intermolecular template switching (step 3 in Figure 6).
The synthesis continues using the opposite strand
template until the polymerase approaches the comple-
mentary hairpin on the opposite strand. Realignment of
the nascent strand with the original correct template (step
4 in Figure 6) produces primer termini that have one to
three correctly paired nucleotides at the 30-end and
multiple mismatches further into the double-stranded
region. These primer termini might not be good sub-
strates for replicative DNA polymerases that typically
require more than three complementary nucleotides at
the 30-end for efficient extension. Pol z, in contrast, is
highly efficient at extending mismatched primer termini
(3). Extension of the ‘realigned’ primer termini by Pol z
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Figure 4. Effect of the rev1-cd mutation on DRIM in Mms2-proficient and Mms2-deficient background. The diagrams show the rate of Canr
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(step 5 in Figure 6) would be consistent with the require-
ment for this polymerase for the generation of complex
mutations in vivo. Not all complex mutation sites we
previously observed contain a C at the beginning or
before the mutant sequence (22). This is consistent with
the observation that the requirement for the catalytic
activity of Rev1 in the generation of complex mutations
is strong but not absolute (Figure 1B). In contrast, the
physical presence of Rev1 was essential for the complex
mutation formation: no complex events of any kind were
seen in pol3-Y708A rev1D strain (Supplementary Table
S2 and Supplementary Figure S5A). This may reflect
the critical structural role of the Rev1 protein in
promoting the template switching, facilitating the
extension of multiply mismatched primer terminus by
Pol z or both. Curiously, complex mutations do occur,
albeit rarely, in Pol z-deficient strains. They typically
involve changes where the original sequence, the
mutant sequence or both are >6 nt [(22);
Supplementary Figure S3]. In two cases when the
mutant sequence was long enough to identify a unique
location in the yeast genome where the mutation was

templated, the ectopic template was found on a different
chromosome (Supplementary Figure S4). Remarkably,
this alternative template allowed for synthesis of a
DNA stretch that, when realigned to the original
CAN1 sequence, creates primer termini with seven or
eight correctly paired nucleotides, thus presumably
eliminating the requirement for Pol z for the extension
step.

Pol f extends mispaired primer termini that we propose
are generated during the formation of complex mutations

The last step of our model implies that the ‘realigned’
primers containing only one to three correctly paired nu-
cleotides at the 30-end are extended by Pol z to generate
the complex mutations. The model also implies that rep-
licative DNA polymerases are not efficient in extending
such primer termini because the complex mutations are
not formed in the absence of Pol z. Therefore, we asked
whether the primer termini depicted in Figure 6 could be
extended by purified T4 Pol, yeast Pol d or yeast Pol z
in vitro. To create singly primed single-stranded DNA sub-
strates for these assays, we used oligonucleotides that
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generated multiply mismatched primers identical to those
shown in Figure 6 (Figure 7A). Fully matched primers
that anneal at the same position of the CAN1 were used
as a control (Fig. 7A). Both T4 and Pol d extended the
mispaired primer termini extremely inefficiently
(Figure 7B and C). Instead, both enzymes degraded
these primers using their 30 exonuclease activity. The
control fully matched primers were extended by both T4
and Pol d, and little or no degradation was observed. In
contrast, Pol z extended the mismatched and control
matched primers with comparable efficiency (Figure 7D),
consistent with its proposed role at the last step of
complex mutation formation.

GC!CG transversion hotspots are associated with
exceptionally strong DNA polymerase pause sites at a
predicted hairpin structure

GC!CG transversions constitute the largest class of
spontaneous mutations in the pol3-Y708A strain and are

entirely Pol z-dependent (22). The 540-bp segment of the
CAN1 gene, in which we examined DNA polymerase
pausing, contains two sites where GC!CG transversions
were repeatedly observed (positions 352 and 364;
Supplementary Figure S2). Half of all GC!CG substitu-
tions within the 540-bp segment occurred at these hotspots
(22). Remarkably, we found that the hotspots immediately
flank a DNA region containing 5-nt inverted repeat se-
quences (Figure 8C). The hairpin formed by these
repeats would contain four G�C base pairs in the stem
region and, therefore, is predicted to be exceptionally
stable. Consistent with this prediction, the strongest
DNA synthesis pause sites we observed within the
540-bp region correspond to the base of this hairpin
(Figure 8A and B). In fact, very limited, if any, DNA
synthesis was seen beyond the hairpin in either direction.
Thus, similar to the complex mutations, the GC!CG
transversions apparently occur at sites where the replica-
tive polymerase is blocked by a hairpin structure. Because

A B

Figure 6. Template-switching mechanism for the formation of complex mutations. The models in panels (A) and (B) explain the formation of
complex mutations # 1 and #10, respectively. Template DNA strands are in black; the correct nascent strand sequences are in gray; the mutant
sequences are in red. Black triangles are the replicative polymerase stall sites from Figure 2. Potential sites of C incorporation by Rev1 are in blue
(see also Figure 3).
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the deoxycydidyl transferase activity of Rev1 can help al-
leviate the replicative polymerase pausing at such sites
(Figure 3), we next considered a possibility that the
GC!CG transversions are generated through an errone-
ous C incorporation by Rev1. Transversions at position
352 would, indeed, be consistent with polymerase pausing
during synthesis of the coding strand of CAN1 followed
by an incorrect C incorporation (Figure 8C). In contrast,
transversions at position 364 would involve pausing
during the noncoding strand synthesis and require an in-
correct G incorporation, presumably by an enzyme other
than Rev1. In excellent agreement with this scenario,
GC!CG transversions were no longer observed at
position 352 in the rev1-cd strain expressing the catalytic-
ally inactive Rev1, while the hotspot at position 364 per-
sisted (Figure 8C and Supplementary Figure S5B). Taken
together, the results suggest that GC!CG transversions
are strongly promoted by the replicative polymerase
stalling at hairpin structures and could occur through in-
correct nucleotide incorporation by Rev1 or another
DNA polymerase at the hairpin base. Because only 1 nt

is altered in these cases, it is not possible to determine
whether synthesis on an alternative template is involved
in the generation of these mutations. Among nine
GC!CG transversions observed previously in the
540-bp CAN1 segment outside the hotspots (22), several
map to bases of predicted hairpin structures, while others
do not (data not shown). This suggests the existence of
additional minor mutational pathways or, potentially, the
involvement of less stable DNA secondary structures that
our analysis did not identify.

DISCUSSION

This study reveals the molecular details of the interplay
between replicative DNA polymerases, the Rev1
deoxycytidyl transferase, Pol z and the Rad5/Mms2/
Ubc13 pathway in replication of structurally ambiguous
DNA regions. The results suggest that short (4–6 nt)
inverted DNA repeats, which were not generally thought
to present a challenge for the replication machinery, can
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fold into hairpin structures and cause replication pausing
and activation of mutagenic Pol z/Rev1-dependent DNA
synthesis. This is consistent with earlier observations that
short DNA repeats can form stable hairpins in solution
and in double-stranded DNA in vivo (74–77). The stability
of the structures depends on the nucleotide composition of
the stem and loop regions; stable hairpins with as few as
two correctly paired nucleotides in the stem were reported
in these studies. The genetic and biochemical data pre-
sented here provide strong support for the following
model (Figure 9). The replicative polymerase stalling at
the base of a small hairpin provides a signal for the
recruitment of the TLS polymerase Rev1. The Rev1 is
not significantly inhibited by the hairpin and incorporates
a nucleotide across from the base of the structure in an
attempt to relieve the stalling. The nucleotide incorpor-
ation by Rev1 triggers a template-switching event that
allows for the hairpin bypass. This bypass is mutagenic
owing to the use of an ectopic DNA template and the
involvement of the low-fidelity Pol z (Figure 9, top). If
Rev1 does not take over the primer terminus at the
hairpin base, the stalled replication intermediates are pro-
cessed via the Rad5/Mms2/Ubc13 pathway in an error-
free manner (Figure 9, bottom). The availability of Rev1
at replication forks stalled at the hairpin structures may be
the key factor determining whether the stalling is resolved
via the error-prone or an error-free mechanism.
Previous studies led us to conclude that DRIM does not

reflect mutagenic bypass of endogenous DNA lesions but
rather results from error-prone copying of undamaged
DNA by Pol z (22). The identification of sequences with
a potential for hairpin structure formation as a major
cause of DRIM provides further support to this notion.
We observed earlier that combining a DNA replication
defect, such as the one caused by the pol3-Y708A
mutation, with a nucleotide excision repair or a base
excision repair defect causes an additive increase in the
mutation rate (22), although all the single mutants are
Pol z-dependent mutators. The action of Pol z on
distinct types of substrates, hairpins in the replication-
deficient strains and DNA lesions in the repair-deficient
strains is in excellent agreement with the observed additive
interaction. Similar additivity is seen in this study when
the pol3-Y708A and mms2 mutations are combined
(Figure 4 and Supplementary Table S1). This is consistent
with the view that the mutator phenotype of mms2 strains
results from a larger proportion of endogenous DNA
lesions being bypassed by the mutagenic Pol z-dependent
TLS pathway in these strains (73).

The additive interaction of pol3-Y708A and mms2 also
indicates that the inactivation of the Rad5/Mms2/Ubc13
pathway does not increase DRIM. In contrast, inactiva-
tion of the catalytic activity of Rev1 reduces DRIM,
including the template-switching–dependent complex mu-
tations, apparently by channeling the processing of the
stalled replication intermediates to the Rad5/Mms2/
Ubc13 pathway (Figure 4). This suggests that the Rev1/
Pol z-dependent and the Rad5/Mms2/Ubc13-dependent
bypass pathways do not compete for the same stalled
intermediates, but the Rad5/Mms2/Ubc13 pathway
rather acts only after the Rev1/Pol z-dependent processes
are completed. In cells with functional Rev1 and Pol z,
nearly all replication-blocking structures are processed
through the mutagenic pathway, and the error-free
pathway serves as a back-up for the cases when Rev1
and Pol z fail to bypass the structure. This is consistent
with the fact that the mutagenic activity of Rev1 and Pol z
during DRIM is regulated by monoubiquitylation
of PCNA at lysine 164 (6), and the error-free bypass
requires polyubiquitylation of PCNA at the same
residue (78,79). These processes can only occur sequen-
tially. The Rad5/Mms2/Ubc13 pathway is thought to act
postreplicatively, at least in the case of DNA damage
bypass (72). A striking feature of the Rev1/Pol z-depend-
ent bypass of the proposed hairpin structures is that the
ectopic template used for the bypass is found on the
opposite strand immediately adjacent to the polymerase
stall site (Figure 6). This led us to speculate that, in
contrast to the postreplicative error-free bypass, the
Rev1/Pol z-dependent template switching occurs at the
replication fork when the opposite strand is still available
in the single-stranded form. It is noteworthy that while the
pol3-Y708A strain, like many other strains undergoing
DRIM, shows moderate growth deficiency, the rev3,
rev1, mms2 or double rev1-cd mms2 mutations do not
decrease fitness further (our unpublished observations).
This is consistent with the existence of multiple redundant
pathways that could resolve stalled replication forks.

Several additional observations suggest that both Rev1
and Pol z are needed to keep the template-switching events
within close proximity of the original replication stalling
site. Although the pol3-Y708A strain could accumulate
complex mutations at a high rate in the absence of the
catalytic activity of Rev1 if we also inactivated MMS2
(Figure 4, Supplementary Table S2 and Supplementary
Figure S3), none of these complex events were templated
in the proximity of the mutation site. In these cases, the
rather short mutant sequences did not allow us to identify
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Figure 9. Pol z and Rev1 facilitate the mutagenic bypass of noncanonical secondary structures in DNA.
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the location of ectopic template sites with any degree of
certainty. Analysis of the spectrum of mutations that
occurred in the absence of Pol z, however, provided an
illuminating example. The rare complex mutations found
in the pol3-Y708A rev3D strain typically involved more
extensive sequence changes than those in Pol z-proficient
strains [(22); Supplementary Figure S3], and the two
largest sequence substitutions were clearly templated on
a different chromosome (Supplementary Figure S4).
Finally, one more confirmation of the role of Pol z and
Rev1 in limiting the distance at which the template
switching can occur comes from the analysis of deletions
between short direct repeats in the absence and presence of
Pol z/Rev1. Such deletions are believed to result from rep-
lication slippage (template switching without subsequent
realignment of the primer) and are strongly increased by
replicative DNA polymerase defects, including the pol3-
Y708A (22,80,81). We have shown previously that
although inactivation of Pol z does not affect the
frequency of these events, it greatly increases the size of
the deletions, presumably allowing for slippage over
greater distances (22). The inactivation of Rev1 had a
similar effect on the deletion sizes in the present study
(Supplementary Figure S5A). These observations sug-
gest that the biological significance of the Pol z/Rev1-
dependent template switching could be to provide a
means of efficient bypass of replication impediments
directly at the fork and prevent primer relocation to distant
loci, which could lead to global genomic rearrangements.

The hairpin structure formation in vivo is expected to be
inhibited by the single-strand DNA binding protein RPA.
Interestingly, we observed similar pausing pattern in the
in vitro DNA synthesis reactions with T4 Pol, which were
performed in the absence of accessory proteins, and in the
yeast Pol d reactions, which contained enough RPA to
cover the entire single-stranded template (Figure 2).
Moreover, we observed no difference in the Pol d stalling
pattern when RPA was omitted from the reactions (data
not shown). This suggests that RPA may not efficiently
prevent the formation of the small hairpin structures.

Pol z-dependent complex mutations are also generated
during the bypass of endogenous DNA lesions (57,82,83).
It is likely that the replicative polymerase stalling is
induced by the lesions rather than by noncanonical
DNA structures in these cases. To explain the origin
of these mutations, the authors proposed a
misincorporation-slippage model wherein the mutagenic
bypass of a damaged base precedes and initiates a subse-
quent slippage event. Although DRIM is largely unrelated
to the bypass of endogenous lesions (22), we can not
exclude that some of the complex mutations we observe
occur via the misincorporation-slippage mechanism.
Among the complex mutations in the pol3-Y708A strain
that involve multiple changes within at least 3 nt, two
potentially distinct classes can be noted. About half of
the mutations involve a change of a 3–6 nt stretch to a
completely different sequence. The other half seemingly
involved two different point mutations (base substitutions
or frameshifts) separated by two to four unchanged
nucleotides (Supplementary Figure S3). We observed
that all mutations of the first class (complete sequence

replacements) could be easily explained by template
switching, using either the opposite strand template as
shown in Figure 6 or (in the minority of cases) a nearby
ectopic location on the same strand [Supplementary
Figure S1 in (22)]. In contrast, only one of four mutations
of the second class could be explained by the template-
switching mechanism proposed in Figure 6. It is, there-
fore, possible that at least two distinct pathways exist
that lead to complex mutations. Pol z, however, is an
essential player in each of these pathways, likely because
they all require its unique ability to extend primers with
multiple mismatched nucleotides.
Complex mutations associated with template switching

at short inverted repeat sequences are well known to occur
in bacteriophage T4 and E. coli (46,47,52–56). However,
the mechanism of these events supported by extensive
genetic studies is different from the model for Pol z/
Rev1-dependent mutagenesis proposed in Figure 6. The
Pol z/Rev1-dependent mutations in our model are trig-
gered by replicative polymerase stalling at hairpins
formed by perfect inverted repeats and involve the use
of an alternative template outside of the repeat region.
These mutations destroy the original palindromic
sequence. In contrast, in the model originally proposed
by Lynn Ripley (84) and substantiated by the Lovett
laboratory (53–55), complex mutations occur at sites
of imperfect inverted repeats when one side of the
quasipalindrome is mistakenly used as a template for rep-
lication of the other side. The mutations, thus, lead to
perfection of the quiasipalindrome. None of the Pol z/
Rev1-dependent complex mutations we observed could
be explained by this mechanism despite the presence of
multiple imperfect inverted repeats in the yeast CAN1
gene sequence. This could reflect differences in the
severity of replication problems created by perfect and
imperfect hairpins in the different experimental systems,
the ways the prokaryotic and eukaryotic replication
machineries handle hairpin structures, the availability of
DNA polymerases capable of template-switching DNA
synthesis or other factors.
Several recent reports implicate eukaryotic TLS poly-

merases in facilitating replication of alternatively
structured DNA, including G-quadruplexes and other
non-B DNA structures that constitute major obstacles
for the replication machinery (85–88). The present study
expands these observations by suggesting a role for Pol z
and Rev1 in the bypass of small hairpin structures that are
much more common in all genomes. Furthermore,
although it is becoming increasingly clear that DNA se-
quences capable of adopting non-B DNA conformations
are prone to mutation, our study gives this view a new
perspective. Under conditions of perturbed replication,
we observed little mutagenesis other than that dictated
by the local DNA structure. Both complex mutations
and base substitution hotspots occurred at sites of repli-
cative polymerase stalling at the predicted small hairpin
structures (Figures 2 and 8). In our experimental system,
the use of a replication-deficient strain artificially elevated
the rate of these events, which allowed us to decipher their
mechanism. The significance of these findings, however, is
not limited to the specific Pol d mutant used here. DRIM
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is caused by a wide variety of defects in the replisome
components (6,19,89). Mutations in Pol d and Pol e that
could potentially result in a defect in the replication fork
progression and recruitment of error-prone polymerases
have been found in human cancers (90–93). We also pre-
viously reported that treatment of wild-type yeast cells
with the replication inhibitor hydroxyurea causes a Pol
z-dependent increase in mutagenesis that resembles
DRIM (22). Thus, the results of this study are likely to
be applicable to a variety of biologically and clinically
important situations. Reduction in the dNTP pool and
replication inhibition due to changes in the environment
or therapeutic treatments are all expected to trigger Pol z-
and Rev1-dependent mutagenesis via the mechanism we
described.
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