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RESEARCH ARTICLE
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L. Doering1*

1 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri,
United States of America, 2 Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller
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¤ Current address: WuXi AppTec, Shanghai, PRC
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Abstract
Cryptococcus neoformans is an opportunistic yeast that kills over 625,000 people yearly

through lethal meningitis. Host phagocytes serve as the first line of defense against this

pathogen, but fungal engulfment and subsequent intracellular proliferation also correlate

with poor patient outcome. Defining the interactions of this facultative intracellular pathogen

with host phagocytes is key to understanding the latter’s opposing roles in infection and

how they contribute to fungal latency, dissemination, and virulence. We used high-content

imaging and a human monocytic cell line to screen 1,201 fungal mutants for strains with al-

tered host interactions and identified multiple genes that influence fungal adherence and

phagocytosis. One of these genes was PFA4, which encodes a protein S-acyl transferase

(PAT), one of a family of DHHC domain-containing proteins that catalyzes lipid modification

of proteins. Deletion of PFA4 caused dramatic defects in cryptococcal morphology, stress

tolerance, and virulence. Bioorthogonal palmitoylome-profiling identified Pfa4-specific pro-

tein substrates involved in cell wall synthesis, signal transduction, and membrane trafficking

responsible for these phenotypic alterations. We demonstrate that a single PAT is responsi-

ble for the modification of a subset of proteins that are critical in cryptococcal pathogenesis.

Since several of these palmitoylated substrates are conserved in other pathogenic fungi,

protein palmitoylation represents a potential avenue for new antifungal therapeutics.

Author Summary

Cryptococcus neoformans is a ubiquitous environmental yeast that kills over 625,000 peo-
ple annually, mainly in developing countries. Healthy humans frequently inhale infectious
particles without noticeable symptoms. However, in immunocompromised people, the
initial lung infection can spread to other sites, particularly to the central nervous system
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where it causes lethal brain infection. The infected host responds by deploying immune
cells to engulf and kill the yeast, but C. neoformans can survive this engulfment and even
multiply within the host cells. To understand the interactions between the invading mi-
crobe and host cells we screened 1,201 fungal mutants to identify fungal factors that influ-
ence these processes. One mutant, lacking an enzyme that modifies proteins with the lipid
palmitate, showed an increase in engulfment by the host along with dramatic defects in
morphology, stress resistance, and virulence. We went on to identify the proteins this en-
zyme modifies and explain how its absence leads to altered cell wall synthesis, signal trans-
duction, and membrane trafficking; these changes explain the behavior of the mutant. We
also found that the mutant could not cause disease in an animal model. Our work shows
that protein palmitoylation is critical for cryptococcal pathogenesis and presents a poten-
tial avenue for antifungal therapy.

Introduction
Cryptococcus neoformans is a fungal pathogen that causes over 625,000 deaths per year, mainly
in severely immunocompromised individuals. Cryptococcosis is contracted by inhalation of in-
fectious particles from the environment [1], which leads to a primary pulmonary infection. In
healthy people this infection is typically cleared, but in immunocompromised hosts the organism
can proliferate and disseminate, with a tropism for the central nervous system where it causes le-
thal meningoencephalitis. As a result, this pathogen is a major threat to AIDS patients and to the
rapidly growing population of individuals with other immunosuppressive conditions [2–5]. Host
phagocytes, mainly macrophages, are critical for initial control of this facultative intracellular
pathogen [6]. However, as the flip side to their positive role as the first line of host defense, these
cells may also serve as sites for replication and latency, or potentially as vehicles for yeast dissemi-
nation [1]. In line with these activities, several studies have demonstrated a correlation between
poor patient outcomes and the capacity of clinical strains to be phagocytosed and/or to prolifer-
ate intracellularly [7, 8]. Understanding the opposing roles of macrophages in cryptococcal infec-
tion and their interactions with C. neoformans is key to our ability to influence such events in
favor of the host. Despite the importance of these interactions to cryptococcal pathogenesis, the
critical features of the host and fungus that govern them have not been determined.

We developed an image-based high-throughput screening (HTS) assay to probe fungal-host
cell interactions [9] and evaluated a C. neoformans partial deletion collection [10] for altered en-
gulfment by a human macrophage-like cell line. One ‘hit’ lacked a gene that encodes a protein S-
acyltransferase (PAT), incriminating protein palmitoylation as a key pathway in cryptococcal
pathogenesis. Protein palmitoylation, the reversible addition of palmitate to cysteine, can regulate
the stability, localization, and function of target proteins [11]. The enzymes mediating this modi-
fication were first identified in themodel yeast S. cerevisiae [12, 13] and are now recognized as im-
portant effectors in eukaryotic cells [11]. Although protein palmitoylation has been shown to
influence infectivity in viruses [14], bacteria [15], and parasites [16–18], its role in fungal patho-
genesis has not been explored. The importance of this lipid modification in fungal pathogens is
supported by studies of Ras1 localization inAspergillus fumigatus, C. neoformans, and Candida
albicans [19–21], but no other proteins have been shown to be functionally palmitoylated in these
organisms. Finally, no PAT has been characterized in a pathogenic fungus. Our studies demon-
strate that a single PAT is a major determinant of cryptococcal pathogenesis and, by defining the
relevant palmitoylome, we identify the cellular mechanisms by which defects of this fatty acid
modification dramatically alter fungal morphology, host interactions, and virulence in vivo.
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Results

Identification of fungal genes that influence interactions with host
macrophages
C. neoformans engulfment by host cells and subsequent intracellular proliferation has been im-
plicated in dissemination, virulence, and ultimately in patient outcome [8, 22, 23]. However,
the full complement of fungal genes that participate in these processes has not been defined,
and how individual gene products modulate interactions with host phagocytes is not known.
To address cryptococcal interactions with host cells, we used an automated high content imag-
ing method [9] to quantify the interactions between a human monocytic cell line (THP-1) and
mutant fungi from a deletion collection made in the highly pathogenic reference strain H99
[10]. Of the 1,201 mutants we screened, 56 (4.7%) showed significant alterations in phagocytic
index (Fig 1A). These mutants (S1 Table) were roughly equally distributed between strains
with decreased and increased engulfment (30 and 26, respectively); the ten most extreme in
each category are shown in Table 1. An example data set from one plate of the mutant collec-
tion (Fig 1B) shows strikingly increased phagocytosis of three mutants, two of which, pka1 and
rim101, are known to have altered cell surface structures that would explain this phenotype
[24, 25]. Additionally, pbx1, the top hit of the high uptake mutants (Table 1), has defects in cell
wall structure and capsule assembly that cause increased engulfment by macrophages [26].
These observations validated our strategy for probing the interactions between C. neoformans
and macrophages and encouraged us to further pursue novel hits from our screen.

A putative S-acyltransferase regulates C. neoformans uptake and
adherence
Another strain (2A12) that consistently demonstrated an elevated phagocytic index (Fig 1B and
Table 2) lacks the uncharacterized gene CNAG_03981. This gene is highly homologous to S.
cerevisiae PFA4, which encodes a palmitoyl acyltransferase (PAT), and was accordingly given
the same name (following guidelines in [27]). PATs are DHHC zinc finger domain-containing
enzymes that mediate the reversible addition of palmitate to proteins, thereby regulating their
membrane association and biological function [11]. Eukaryotic cells often express multiple
DHHC domain proteins, which have similar enzymatic activity but modify variably overlap-
ping groups of substrates [28]. These enzymes play key roles in protein fatty-acylation and
membrane targeting [11], but have never been studied in C. neoformans or any other fungal
pathogen. There are seven putative PATs encoded in the H99 genome; four of these were delet-
ed in the collection that we screened but only pfa4Δ differed significantly from wild-type cells
(Table 2). This suggested that Pfa4 acylates at least one protein that both influences host cell in-
teractions and is not modified by other PATs. Given the limited knowledge of protein palmitoy-
lation in C. neoformans biology and pathogenesis, we chose this mutant for mechanistic study.

We first generated independent pfa4 deletions in C. neoformans reference strain H99 (used
for the deletion collection) and its more genetically tractable derivative KN99 [29]. Like 2A12,
both mutants showed consistent increases in adherence to and engulfment by macrophages
compared to wild-type cells (Fig 1C), with the greater uptake readily visible by confocal micros-
copy (Fig 2A and S1 and S2 Videos). These phenotypes, which were independent of the method
used to label the cells (S1A and S1B Fig), were all reversed by complementation of the mutant
with the wild-type gene at the endogenous locus.

The extremely high numbers of internalized mutant cells (Figs 1C and 2A) could potentially
alter intracellular trafficking of C. neoformans, which is usually delivered to lysosomes after en-
docytosis [30]. To test this we used confocal microscopy to assess the progression of pfa4Δ and
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wild-type cells through various intracellular compartments after their exposure to host phago-
cytes (S2A Fig). The distribution of wild-type and mutant fungi between the cell surface (ad-
herent cells), early endosomes (marked with EEA1), and lysosomes (marked with LAMP-1)
was similar at late time points. The only significant differences were observed soon (15 min)
after assay initiation, when a greater fraction of wild-type cells remained surface-accessible (ad-
herent) while more mutant cells had already been phagocytosed (although not yet associated
with EEA1). Overall, although the mutant is more efficiently internalized, both strains reach
EAA1 and LAMP-1 compartments with similar dynamics. It has recently been suggested that
C. neoformans-containing lysosomes do not completely acidify [31]. To test whether acidifica-
tion differed between lysosomes containing pfa4Δ and wild-type yeast, we performed a phago-
cytosis assay in the presence of Lysotracker Red, a dye that becomes trapped and fluorescent in
acidified organelles. We found that both strains were similarly distributed between unstained
phagosomes and lysosomes (positive for Lysotracker; S2B and S2C Fig)

Fig 1. Identification of cryptococcal mutants with altered interactions with macrophages. (A) Distribution of 1,201 fungal mutants categorized by
adjusted phagocytic index (fungi internalized/100 host cells, corrected for differences in inoculum; see Materials and Methods). Results were compiled from
three independent replicate screens. Vertical dashed lines, two standard deviations (σ) above and below the mean (μ). (B) Plate 2 of the deletion collection
(numbered 1 to 93) was assayed as in Materials and Methods. Shown are raw phagocytic index (top),C. neoformans counts in a parallel inoculum-only plate
(middle), and adjusted phagocytic index (bottom). These results were representative of three independent replicate screens of this plate. Adjusted
phagocytic indices of the three mutants indicated in green (pfa4Δ, pka1Δ, and rim101Δ) consistently exceeded our threshold (upper dotted line in the bottom
graph) of two standard deviations above the plate mean (lower dotted line). This analysis shows only 93 of the Plate 2 strains: documentation for the mutant
collection indicated that 2B2 was incorrect so it was omitted from the analysis and mutants 2B5 and 2E10 could not be recovered from the original plate. (C)
Phagocytic and adherence indices for library strain 2A12 (pfa4Δ) and an independent PFA4 deletion, each with its matched parental strain (H99 and KN99,
respectively). All strains were screened ± serum opsonization as shown and mean values ± SEM are plotted. *, P < 0.05; **, P < 0.0001 compared to
respective parent strain (Tukey’s multiple comparisons test).

doi:10.1371/journal.ppat.1004908.g001
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C. neoformans lacking PFA4 exhibits morphological defects and surface
changes
In addition to an increased number of internalized pfa4Δ cells, our confocal studies revealed an
unusual and dramatic change in their morphology (Fig 2A and S1 and S2 Videos). While wild-
type cells are spherical, the mutant cells appeared to have collapsed in on themselves, mani-
fested as membrane staining in either crescent shapes or double rings depending on cell

Table 1. C. neoformansmutants showing altered interactions with macrophages.a

Index (log2)
b Library wellc Gene ID Gene named Biological role

High Phagocytosis 2.5 4C6 CNAG_01172 PBX1 Surface glycan synthesis and remodeling

2.4 8E6 CNAG_02797 CPL1 Capsule synthesis and/or assembly

2.3 2G9 CNAG_05431 RIM101 Transcription factor; regulation of cell wall assembly in response to pH

2.1 11A5 CNAG_04514 MPK1 MAP kinase; cell integrity signaling and metabolite resistance

2.1 9H11 CNAG_03018 ASG101 Zinc finger transcription factor; homologous to S. cerevisiae ASG1

1.9 2E9 CNAG_00396 PKA1 cAMP dependent protein kinase; mating and virulence signaling

1.8 12B2 CNAG_01551 GAT201 Transcription factor; regulation of anti-phagocytic mechanisms

1.7 1A9 CNAG_06086 CDK8 Cyclin-dependent protein kinase 8

1.5 10D3 CNAG_04863 VPS25 Component of the ESCRT complex; protein sorting/degradation

1.4 8F11 CNAG_03188 SET202 Histone-lysine N-methyltransferase

Low Phagocytosis -4.0 4H8 CNAG_01964 OPT1 Proton-coupled oligopeptide transporter

-2.7 4C12 CNAG_01640 CSF1 Hypothetical protein; homologous to S. cerevisiae CSF1

-2.6 9B5 CNAG_06759 LPI1 Dehydrogenase, similar to Zinc-binding oxidoreductases

-2.5 5G8 CNAG_07351 LPI2 Hypothetical protein; no homologs in S. cerevisiae

-2.4 4H9 CNAG_06370 BAT2 Branched-chain-amino-acid aminotransferase

-2.2 12D6 CNAG_02580 LPI3 Hypothetical protein; no homologs in S. cerevisiae

-2.0 9E4 CNAG_01262 GPB1 G-protein β-subunit involved in pheromone sensing and mating

-2.0 9A12 CNAG_06074 LPI4 Cytoplasmic protein of unknown function

-2.0 10H11 CNAG_00414 MAK32 Hypothetical protein; homologous to S. cerevisiae MAK32

-2.0 1F6 CNAG_07534 TRS130 Hypothetical protein; homologous to S. cerevisiae TRS130

a Top ten mutants with highest and lowest phagocytic index. See Supplementary S1 Table for a complete list.
b Value shown is the average (on a binary log scale) of the adjusted uptake of each strain from three independent screens.
c Location of the strain in the deletion collection (see Liu et al., 2008).
d Bold indicates new names given to uncharacterized genes either based on homology to S. cerevisiae per nomenclature guidelines (see Inglis et al.,

2014) or, for genes with no homology to S. cerevisiae, based on phenotype: LPI mutants, for Low Phagocytic Index. See Supplementary S1 Table for

complete list and HPI mutants (High Phagocytic Index).

doi:10.1371/journal.ppat.1004908.t001

Table 2. Comparison of putative PATs present on the deletion collection.

Index (log2)
a Library wellb Gene ID Gene name Description S. cerevisiae homolog

PATs 1.142 2A12 CNAG_03981 PFA4 4 TMD palmitoyltransferase PFA4

0.005 6F1 CNAG_00274 Unnamed 4 TMD palmitoyltransferase SWF1/ERF2c

-0.408 8A7 CNAG_00436 AKR1 6 TMD palmitoyltransferase with ankyrin repeats AKR1

-0.416 14H6 CNAG_02481 Unnamed 4 TMD palmitoyltransferase PFA3/PFA4c

a Values are the average (on a binary log scale) of the adjusted uptake of each strain from three independent screens.
b Location of the strain in the deletion collection (see Liu et al., 2008).
c These C. neoformans genes do not have a single homolog in S. cerevisiae, they are most similar to the pair of genes indicated.

doi:10.1371/journal.ppat.1004908.t002
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Fig 2. pfa4Δmutant cells exhibit altered uptake by macrophages andmorphological changes. (A) Confocal images of THP-1 cells exposed for 60min
to serum-opsonized wild-type (top) or mutant (bottom) fungi. Z-stack frames show bottom (side attached to the coverslip), middle, and top sections of the cells
as also indicated by the horizontal arrow above the images. Corresponding movies are available as S1 and S2 Videos. Scale bar, 10 μm. (B) Representative
fluorescent images of wild-type (left) and pfa4Δ (right) cells stained with Lucifer Yellow (LY), Pontamine (Pont), or Uvitex 2B (UV2B). Each pair of images was
collected at the same settings, although brightness and contrast for the inset of Pont-stained pfa4Δwere enhanced to better showmorphological defects. Scale
bar, 10 μm. (C) SEM images of wild-type (top) and pfa4Δ (bottom) cells grown on YPD at 30°C. Similar images were obtained from two independent
experiments using both H99 and KN99 genetic backgrounds. Scale bars on the upper panel (main figure, 10 μm; inset, 2.5 μm) also apply to the lower panel.

doi:10.1371/journal.ppat.1004908.g002
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orientation. This aberrant morphology occurred whether the fungi were inside macrophages
(Fig 2A) or grown independently (Fig 2B), indicating that the alteration is intrinsic to the mu-
tant rather than induced by the host cells. We tested other dyes to rule out the possibility that
the shape change was due to the Lucifer Yellow (LY) stain used in our phagocytosis studies; in
all cases we observed a similar phenotype (Fig 2B). Next, to eliminate the possibility that any
compound that binds cell wall structures induces cell collapse, we imaged actively growing, un-
stained wild-type and pfa4Δmutant cells by brightfield and differential interference contrast
(DIC) light microscopy. Under these unstained, actively growing conditions we could easily de-
tect the same aberrant shapes seen in pfa4Δ cells stained with various dyes (S3 Fig), indicating
that they represent an intrinsic feature of this mutant. Finally, to get a detailed view of this mor-
phological defect we examined the cells by scanning electron microscopy. Consistent with our
light microscopy results, wild-type cells were globular and smooth while pfa4Δ cells were dra-
matically deformed (Fig 2C). Surprisingly, this has little effect on their ability to replicate at
30°C, where their growth rate is close to that of wild-type cells.

The pfa4Δmutant showed altered initial interactions with host cells and aberrant morphology.
One model that explains both observations is that the mutant has fundamental defects in cell wall
structure that alter both surface molecule exposure and cell wall integrity. To probe cell wall orga-
nization, we used dye and lectin binding with flow cytometry to assess the accessibility of various
cell wall components (Fig 3). We found that chitin accessibility, probed with calcofluor white
(CFW), was not significantly altered in pfa4Δ, unlike the decreased signal in a chitin synthase mu-
tant (chs3Δ) included as a control (Fig 3B). In contrast, probes of chitosan (Eosin Y; EoY) and
mannans (Concanavalin A lectin; ConA) showed that these glycans were much more accessible
in the pfa4Δmutant (Fig 3B), supporting aberrant wall structure; this was also reflected in an al-
tered staining pattern for ConA (S4 Fig). Similarly, LY and pontamine (Pont), also dyes that bind
cell wall (although their specific targets are not defined), showed clear changes in binding the mu-
tant compared to controls (Fig 3B). The abnormal exposure of chitosan andmannans at the sur-
face of pfa4Δ cells could explain their greater recognition by macrophages (see Discussion).

Fig 3. Exposure of cell surface components is altered in pfa4Δ cells. (A) Example of flow cytometry profiles used to assess the exposure/accessibility of
cell wall components. Fluorescence intensity profiles of H99 and chs3Δ cells, either unstained (gray) or stained with calcofluor white (CFW; light blue) are
overlaid to illustrate the difference in mean fluorescence intensity (ΔMFI). (B) ΔMFI for staining with CFW (binds chitin), Eosin Y (binds chitosan),
Concanavalin A (binds mannoproteins), LY, and Pont (bind unspecified cell wall components); mean ± SEM of three independent experiments, with values
normalized to the highest bar for each strain.

doi:10.1371/journal.ppat.1004908.g003
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We reasoned that the altered arrangement of cell wall components in the pfa4Δmutant
would threaten overall cell integrity. We tested this hypothesis by plating serial dilutions of
pfa4Δ in the presence of various stressors. Compared to wild-type and the complemented mu-
tant, pfa4Δ was sensitive to plasma membrane damaging agents (SDS and H2O2), osmotic
stress (KCl and NaCl), cell wall binding dyes (CFW, CR, and LY), and elevated temperature
(37°C) (Figs 4A and S5). Only temperature sensitivity could be rescued by sorbitol (Fig 4A),
suggesting that the cell integrity defects and temperature sensitivity are caused by perturbation
of different pathways. This experiment also indicates that Pfa4 is not absolutely required for
growth at high temperatures; in support of this conclusion, the pfa4Δ cells continued to grow
slowly at 37°C for over a day even in the absence of sorbitol (S5A Fig). The mutant was also

Fig 4. pfa4Δ has defects in cell wall integrity and structure. (A) 10-fold serial dilutions of the indicated strains on medium supplemented as shown. All
plates were incubated for 3 days at either 30°C (top) or 37°C (bottom). (B) TEM of cells grown in YPD at 30°C. Each strain name is followed by the plasmid it
carries: EV, empty vector; pfa4AS, vector expressing catalytically-inactive Pfa4; PFA4, vector expressing wild-type Pfa4. Wild-type cells expressing mutant or
wild-type PFA4 looked like wild-type + EV. Scale bar, 500 nm. (C) Top, examples of normal and aberrant cell wall morphology; c, capsule; o, outer layer; i,
inner layer. In normal cells (green outline) the inner layer was�50% of total wall thickness, while in mutants the inner layer was <50% (pink outline) or not
visible (blue outline). Bottom, distribution of cell wall morphologies in various strains; only cells where the plasmamembrane was clearly seen were
measured. (D) Left, representative micrographs of the indicated strains, stained with India ink to show capsule. Right, capsule thickness of the same strains
(individual data points and mean ± SD). *, P <0.0001 (Student’s t-test) comparing wild-type and mutant.

doi:10.1371/journal.ppat.1004908.g004
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hypersensitive to treatment with cell wall lysing enzymes (S5C Fig), an assay which probes cell
wall stability as well as cellular response to cell wall damage [32]. In all cases genomic or plas-
mid complementation of pfa4Δ restored wild-type phenotypes.

The pleiotropic effects of PFA4 deletion suggested the dysfunction of one or more protein
substrates of palmitoylation, which are not lipidated and therefore mislocalized, misfolded
and/or degraded. To test whether the enzymatic activity of Pfa4 was indeed responsible for
these phenotypes, we mutated its catalytic DHHC sequence to DHAS (S5D Fig); mutation of
this cysteine abolishes PAT activity in other systems [12, 13, 16]. When both forms of the pro-
tein were expressed in pfa4Δ, only the wild-type rescued the mutant’s sensitivity to cell wall
stress (S5E Fig), showing that the observed defects are due to a lack of PAT enzymatic activity.

The inability of pfa4Δ to withstand cell wall stress could reflect defects in cell wall structure,
inability to respond to and repair a damaged wall, or both. To investigate cell wall structure we
used transmission electron microscopy (TEM). The walls of wild-type strains and of pfa4Δ ex-
pressing wild-type PFA4 were fairly uniform in thickness, and showed the expected multilay-
ered organization [33]: an electron-dense inner layer surrounded by a more electron-lucent
layer and then an outer rim of capsule (Fig 4B; the capsule layer is thin because the strains were
grown in rich medium). In these cells the inner layer was always�50% of the total wall width
(example shown in Fig 4C, top image). In contrast, the cell walls of the mutant (with or without
the catalytically-dead Pfa4AS) were generally thinner, primarily due to a reduction in the inner
layer (Fig 4B and 4C, middle image). In ~80% of these cells the inner layer was<50% of the
total wall width or was completely absent (Fig 4C, graph); in many of them the existing outer
layer was also disorganized (Fig 4C, bottom image).

We next tested whether pfa4Δ cells have defects in cell wall stress signaling that render them
unable to respond to environmental changes, by growing serial dilutions of wild-type, mutant,
and mutants expressing either PFA4 or the catalytically-dead pfa4AS on media containing caf-
feine (S5E Fig). Caffeine stimulates the cAMP/PKA pathway, activating PKA1/2 and thereby
mimicking cell wall stress. This chemical activation of the cell integrity pathway can be lethal if
there is a preexisting defect in the pathway [34]. pfa4Δ could not grow under these conditions,
consistent with a signaling defect in response to cell wall stress. Taken together, these results in-
dicate that pfa4Δ cells have both altered cell wall structure and defective transduction of signals
from the cell integrity pathway that would normally compensate for such changes. This results
in a disordered wall with altered exposure of cell wall components, which in turn likely facili-
tates recognition by host cells (see Discussion).

A distinguishing feature and major virulence factor of C. neoformans is its polysaccharide
capsule, which associates with the cell wall via α-glucan [33, 35]. We observed that pfa4Δ cells
were clumpy in culture, a characteristic often seen in hypocapsular cryptococci that suggested
these cells might have a capsule defect. Interestingly, this was not observed: the capsules of
pfa4Δ cells were morphologically similar to those of wild-type under inducing conditions, al-
though they were slightly smaller overall (Fig 4D).

Pfa4 is required for in vitro and in vivo virulence
C. neoformans survives and proliferates within macrophage phagolysosomes [31, 36, 37]. We
assessed the behavior of pfa4Δ cells in this challenging environment and found that host
phagocytes rapidly killed them (Fig 5A). In contrast, wild-type and complemented mutant cells
showed robust growth in this context (Fig 5A), and even caused host cell numbers to decrease
slightly (they were unperturbed by the pfa4Δmutant).

We further tested the virulence of pfa4Δ in a mouse model of cryptococcosis, monitoring
disease progression by weight loss. Infection with wild-type or the complemented mutant killed
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50% of the mice in 16 days, with all animals steadily losing weight by about two weeks and suc-
cumbing to infection by day 18 (Fig 5B). In contrast, mice infected with pfa4Δ showed a mod-
est (3–5%) and transient (days 8–14) weight loss early in infection, but recovered and grew
normally until the study was terminated at day 45; no CFU were recovered from lung or brain
at that time. This dramatic effect of a single PAT on fungal pathogenesis is unprecedented.

Identification of Pfa4-specific substrates
Despite the importance of palmitoylation to fundamental processes of cell biology [11], the pal-
mitoylome of C. neoformans, like that of other fungal pathogens, has never been defined, with
only one protein (Ras1) shown to be functionally palmitoylated [19]. The dramatic effects of
PFA4 deletion, which our active-site mutation studies showed are due to lack of enzymatic activi-
ty, indicate that this lipid modification is crucial for cryptococcal cell integrity and virulence. To
mechanistically explain these observations, we used fatty acid chemical reporter labeling and
bioorthogonal chemistry proteomics to determine the specific set of proteins modified by Pfa4
[38–40]. In this method, cells are metabolically labeled with alk-16, a palmitic acid analog with
an alkyne group, which is incorporated into proteins in place of the normal fatty acid (Fig 6A).
Proteins modified with alk-16 can then be labeled with azide-functionalized reagents via ‘click
chemistry’ for fluorescence detection or proteomic analysis (Fig 6A; [39–41]). We grew wild-
type and pfa4Δ cells with alk-16, and then performed labeling reactions with azido-rhodamine
for in-gel fluorescence detection (Fig 6B; [38]). The total protein profile of the mutant was similar
to that of wild-type, although there were fewer species at high molecular weights; alk-16 labeling
did not alter this pattern. The alk-16-labeled proteins of both strains also showed similar profiles,
but with a slight decrease in the overall levels of modified proteins in the mutant (Fig 6B).

We next reacted alk-16-labeled proteins with azido-biotin, purified the biotinylated proteins
with streptavidin beads, and evaluated Pfa4-specific alk-16-labeled proteins by comparative
proteomics. Of the 427 proteins identified in two independent experiments with at least 2
unique peptides, 72 showed�5-fold enrichment in the wild-type compared to the pfa4Δmu-
tant in both studies (S1 File). High-confidence Pfa4 substrates included proteins that act in a

Fig 5. pfa4Δ is avirulent in vitro and in vivo. (A) Fungi and THP-1 cells were co-incubated for 1 hr at MOI� 1 and then washed vigorously to remove free
cryptococci. THP-1 cells were lysed for assessment of CFU immediately after washing (denoted as ‘associated’) and at two subsequent time points.
Averages + SEM compiled from three independent experiments are plotted relative to the initial inoculum. (B) 10 AJ/Cr mice per group were infected
intranasally with 5 x 104 C. neoformans and monitored for up to 45 days. The inocula used for nasal inhalation for each group were verified by spotting in
YPD agar.

doi:10.1371/journal.ppat.1004908.g005
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Fig 6. Identification of Pfa4-specific substrates and Pfa4-dependent Chs3 localization. (A) Schematic
depiction of bio-orthogonal labeling of proteins with alk-16 and an azido-reporter (tag, azido-rhodamine for
fluorescence detection or azido-biotin for affinity purification). (B) Total proteins from wild-type and mutant
cells labeled ± alk-16, resolved by SDS-PAGE, and analyzed by Coomassie stain or in-gel fluorescence. MW
standards (in kDa) are indicated on the right. (C) Localization of Chs3-mCherry expressed in the strain
indicated and visualized by fluorescence (left, shown as a negative image for clarity) or brightfield microscopy
(right). Scale bar, 5 μm.

doi:10.1371/journal.ppat.1004908.g006
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variety of cell wall processes, including cell wall synthesis, membrane trafficking, signal trans-
duction, and transport (Table 3). At the top of our list was chitin synthase 3 (Chs3), which has
been characterized as a Pfa4 substrate in S. cerevisiae [42, 43]. Interestingly, a second chitin
synthase (Chs1) is also a Pfa4 substrate.

A number of substrates from our Pfa4-dataset have homologs that are known to be palmi-
toylated in S. cerevisiae, although not necessarily by Pfa4; these include Sso1 and Sso2, Vac8,
Gpa2, Yck1 and Yck2, and Env7 [28]. Some have homologs known to be palmitoylated in
other systems, such as Rho11 [44] and Vac8 [16]. Notably, C. neoformans Ras1 was labeled by
alk-16 independent of Pfa4 (S1 File). This is consistent with previous studies in budding and
fission yeast demonstrating that Ras1 is also a substrate of the Erf2/4 PAT complex, which is
intact in our mutant [28, 41, 45]. Together, our results indicate that Pfa4 does not significantly
alter global levels of fatty-acylation in C. neoformans, but palmitoylates specific proteins central

Table 3. C. neoformans palmitoylated proteins enriched in wild-type over pfa4Δ samples.a

Accession
number

Gene ID Gene
name

Descriptionb S. cerevisiae gene
(Y/N)c

Cell wall synthesis

J9VXM5 CNAG_05581 CHS3 Major chitin synthase (class IV) CHS3 (Y)

O13356 CNAG_03099 CHS1 Minor chitin synthase (class IV) CHS3 (Y)

Membrane trafficking

J9W480 CNAG_05615 Unnamed Plasma membrane t-SNARE (Syntaxin 1B) SSO1/2 (Y)

J9VSG0 CNAG_04484 Unnamed Hypothetical protein; contains the Uso1/P115-like domain, present in vesicle
tethering proteins

USO1 (Y)

J9VP42 CNAG_05933 Unnamed Hypothetical protein; contains a Sec1-like domain, implicated in vesicle
docking and exocytosis

SLY1 (N)

Signal transduction

T2BQF0 CNAG_00556 CCK1 Casein kinase I YCK1/2 (Y)

J9VX74 CNAG_04505 GPA1 Guanine nucleotide-binding protein (Large G-protein) subunit alpha GPA2 (Y)

J9VN71 CNAG_06606 RHO11 Rho family GTPase (one of three similar to ScRho1) RHO1 (N)

J9VPP9 CNAG_02458 Unnamed GTPase activating protein (Rho-GAP) RGD2 (Y)

J9VGM9 CNAG_03796 Unnamed Similar to NAK-protein kinases (serine/threonine kinases) ENV7 (Y)

Membrane transporters

J9VUI4 CNAG_01683 STL1 Putative monosaccharide transporter STL1 (N)

J9VKM7 CNAG_03664 NIC1 Major nickel transporter None

J9VHU4 CNAG_00815 SIT1 Siderophore iron transporter SIT1 (N)

J9VNQ3 CNAG_03824 Unnamed Mitochondrial phosphate transporter MIR1 (Y)

Other

J9VIT9 CNAG_00354 VAC8 Vacuolar protein 8 VAC8 (Y)

J9VJV1 CNAG_02981 SIN3a Paired amphipathic helix protein; contains domains found on transcriptional
regulators

SIN3 (Y)

J9VMS8 CNAG_00854 ERG2 C-8 sterol isomerase ERG2 (N)

J9VVE7 CNAG_02129 Unnamed Hypothetical protein; contains domain of unknown function unique to fungi None

J9VVG0 CNAG_02114 Unnamed Hypothetical protein; contains fungal-specific SUR7 domain None

J9VKY1 CNAG_01010 Unnamed Hypothetical protein; similar to mitochondrial transporters None

J9VWW5 CNAG_04383 Unnamed Acetyltransferase None

a Top high confidence hits identified in the proteomics analysis as Pfa4-specific substrates.
b If the protein function has not been reported, the description is based on annotations in FungiDB (www.fungidb.org) for the corresponding gene.
c Gene name of closest S. cerevisiae homolog, along with whether the protein was found to be palmitoylated (Y) or not (N) in a global analysis of

palmitoylation in S. cerevisiae (Roth et al., 2006).

doi:10.1371/journal.ppat.1004908.t003
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to stress resistance and consequently to virulence, despite the presence of six other probable
PAT genes in the cryptococcal genome.

Chs3 is critical for normal wall synthesis and maintenance [32, 46]. The discovery that it is a
major substrate of Pfa4 is consistent with the multiple cell wall-related defects we observed in
the pfa4Δmutant, and explains how Pfa4 influences cell morphology, integrity, and conse-
quently virulence. To establish a direct link between Pfa4-mediated palmitoylation and Chs3
function, we generated strains expressing Chs3-mCherry from the endogenous locus in both
wild-type and pfa4Δ backgrounds. Palmitoylated Chs3 localized to internal compartments and
to the plasma membrane, seen as a homogeneous rim outlining the cells (Fig 6C, top panel). In
contrast, in the pfa4Δ cells, Chs3 is restricted to internal membranes, with occasional staining
of vacuoles, suggestive of degradation (Fig 6C, bottom panel). This mislocalization of Chs3 is
consistent with lack of palmitoylation of this protein and the cell wall-related defects observed
in pfa4Δ cells. Interestingly, pfa4Δ and chs3Δ cells do not have completely congruent pheno-
types. For example, chs3Δ does not exhibit the increased phagocytosis that first brought pfa4Δ
to our attention (Fig 7A), although both strains show increased sensitivity to some cell wall
stressors (Fig 7B) and poor retention of melanin at the cell wall (Fig 7C–7E, and [32]). Differ-
ences between the two mutants are likely due to the redundancy of both chitin synthases and
palmitoyltransferases in C. neoformans, as well as the reduced palmitoylation of other Pfa4 sub-
strates in the pfa4Δmutant (see Discussion).

Discussion
Phagocytes play multiple roles in cryptococcal pathogenesis, destroying fungi under some cir-
cumstances but also potentially harboring them and enabling them to survive, proliferate, and
disseminate [1, 36]. Some outcomes of cryptococcal interactions with macrophages, including
fungal engulfment and intracellular proliferation, correlate highly with patient outcome [7, 8].
These observations make host-pathogen interactions a compelling area of study, and raise the
question of whether they might present feasible targets for antifungal therapy. Pursuing this
question, however, requires mechanistic understanding of these events from the vantage point
of both host and pathogen.

As a first step in such investigations, we used a high-content imaging-based assay to screen
1,201 C. neoformansmutants (corresponding to ~17% of the genome). We found 56 mutants
that showed significantly altered uptake by host cells, including 29 lacking genes of unknown
function that have not previously been investigated. Many of the mutants showing increased
engulfment had been reported to be defective in host-pathogen interactions in other models;
this validated our screen and provided strong support for uncharacterized hits. The genes de-
leted in several of the high-uptake mutants encode proteins involved in synthesis or remodel-
ing of the cell wall and/or capsule, surface structures that interact most directly with host cells.
Others encode signaling molecules or transcription factors involved in the response to environ-
mental changes, such as would be encountered during infection. Intriguingly, most of the hits
with reduced engulfment, more than half of which encode proteins with no known homologs
in S. cerevisiae, have never been investigated. Future studies defining their biological roles
should increase our understanding of C. neoformans’ interactions with host cells. Notably, the
level of engulfment has no simple relationship to overall virulence in animal models, perhaps
illustrating the complex role of phagocytosis in cryptococcal infection [36, 47]. For example,
two hypervirulent mutants [10] showed opposite uptake results, with one (9A12) very poorly
internalized while the other (2G9; lacking RIM101) was avidly engulfed.

One mutant that demonstrated increased uptake by phagocytes lacks PFA4, which encodes
a protein containing the well-characterized DHHC domain characteristic of PAT enzymes.
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PATs catalyze the post-translational addition of palmitate to proteins, a reversible modifica-
tion that can influence the localization, stability, and/or function of their substrates. The C.
neoformansH99 genome contains seven genes encoding DHHC-domain proteins, and func-
tional redundancy is common in this family of enzymes. It was therefore surprising that

Fig 7. Phenotypic comparison of pfa4Δ and chs3Δ cells. (A) THP-1 uptake assay. Adherence and
engulfment of wild-type, pfa4Δ, and chs3Δ strains were assayed as in Fig 1. *, P < 0.05; **, P < 0.0001
compared to H99 control (Tukey’s multiple comparisons test). (B) 10-fold serial dilutions of the indicated
strains were grown at 30°C on the indicated media. (C) 10-fold serial dilutions of the indicated strains were
spotted on L-DOPAmedium for detection of melanin. Melanin released into the medium is visible as a dark
halo. (D) Melanin release into liquid medium. Cultures of the strains indicated were grown for 18–24 hr in
glucose-free asparagine medium containing L-DOPA (see Materials and Methods), subjected to
centrifugation, and photographed. The image shown is representative of three independent experiments,
each done in duplicate or triplicate. (E) Quantitation of released melanin in the supernatant fractions from (D).
Shown are the averages ± SD of all three experiments. **, P < 0.0001 compared to KN99 control (Dunnett's
multiple comparisons test). The lac1Δ strain was used as a negative control for melanin production in panels
C-E.

doi:10.1371/journal.ppat.1004908.g007
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deletion of PFA4 had such a dramatic effect on C. neoformansmorphology, stress sensitivity,
and virulence. This suggested that Pfa4 modifies specific substrates that are critical in crypto-
coccal biology. For this reason, and because of the recent attention to PATs as potential anti-
microbial drug targets [48, 49], we investigated the mechanism(s) by which lack of Pfa4
causes these phenotypes.

We postulated that Pfa4 was the primary or sole PAT modifying important cryptococcal
proteins required for cell integrity and virulence. Our proteomic analysis supported this hy-
pothesis, identifying 72 proteins as preferentially palmitoylated by Pfa4 (Table 3 and S1 File).
As in S. cerevisiae [42], Chs3 is a key Pfa4 target. This protein is one of eight cryptococcal chitin
synthases and is responsible for synthesizing the majority of cellular chitin during vegetative
growth [32, 46]. If Chs3 does not properly localize and act in pfa4Δ cells as a result of lacking
palmitoylation, one would expect to see cell walls with reduced chitin and consequently im-
paired function. This is exactly what we observe: Chs3-mCherry in the mutant is mostly re-
stricted to internal membranes and is depleted from the plasma membrane compared to in
WT cells (Fig 6C); as a consequence, the inner layer of the cell wall, which corresponds to the
layer containing chitin [33], is markedly reduced. Chs1, another class IV chitin synthase, is also
preferentially modified by Pfa4 and may contribute to these cell wall defects.

Beyond altered chitin synthase activity, cell wall production is likely further compromised
in pfa4Δ cells secondary to defects in intracellular traffic. Pfa4 substrates that we identified in-
clude several proteins involved in protein secretion that are known to be palmitoylated in S.
cerevisiae (Table 3) or other organisms. Since multiple proteins involved in cell wall biogenesis
are membrane proteins that travel to their site of action in secretory vesicles, dysfunction of
SNARES or other proteins involved in this transport could alter cell surface composition via
partial blockade or mislocalization of vesicle cargo.

Aberrant cell wall synthesis probably causes the dramatically altered morphology of pfa4Δ
cells (Figs 2 and S3). Such changes were previously only seen in dying cryptococci that had
been exposed to harsh conditions, such as digestion with lysosomal extracts in vitro or ex-
tended growth in infected animals [50, 51]. In contrast, pfa4Δ shows wall collapse even dur-
ing normal growth in culture in the absence of any stains or exogenous compounds. Mutant
cells are also hypersensitive to salt and sorbitol, suggesting defects in regulating turgor pres-
sure. Regulatory disturbance is further suggested by the sensitivity of pfa4Δ to caffeine, which
activates the cell integrity pathway. These phenotypes are consistent with our identification
of several proteins that function in signal transduction as Pfa4 substrates (Table 3). These in-
clude Rho11, a GTPase that acts in cell integrity signaling via the MAP kinase pathway [52],
and an uncharacterized protein similar to Rho GTPase activating protein (GAP) that may be
the Rho11 GAP. Mislocalization of these proteins would likely impair the cellular response to
cell wall damage. We also identified the α subunit of the large G-protein Gpa1 as a Pfa4 sub-
strate; this protein is upstream of cryptococcal cAMP signaling and is involved in pheromone
and mating responses [53], which could explain the mating defects when pfa4Δ strains are
crossed to each other (S6 Fig). Perturbation of multiple signaling pathways due to lack of
Pfa4 severely limits the mutant cells’ ability to respond appropriately to changing environ-
mental conditions, exacerbating the effects of defective wall synthesis and undermining mu-
tant survival in the host.

We considered the possibility that the increased uptake of pfa4Δ cells by host phagocytes re-
flected inviability of the yeast. However, we ruled out this possibility by demonstrating viability
of the mutant under conditions of our uptake assays (S5 Fig). Furthermore, killing fungi by treat-
ment with heat, ethanol, or azide did not alter uptake of wild-type (S1C Fig) or mutant cells.

The combination of impaired cell wall synthesis and inability to appropriately respond to
this condition results in weak and disorganized walls. This may impair other key virulence
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attributes of C. neoformans, such as the polysaccharide capsule, which associates with the cell
wall. A perturbed wall, even in cells where the capsule is only slightly reduced in radius (as with
pfa4Δ), may alter the capsule so that it cannot maintain its normal antiphagocytic role and ex-
poses underlying wall components. This, combined with the changed wall arrangement, could
explain our observation of abnormally high surface accessibility of specific cell wall compo-
nents (Fig 3). These included cell wall mannoproteins [54, 55], which can interact with host
phagocyte mannose receptors, and chitosan, which also interacts with macrophage receptors
and induces a robust inflammatory response [56, 57]. Greater accessibility of these glycans
could in turn explain the increased phagocytosis of pfa4Δ cells by macrophages. Once engulfed,
these less robust cells, with defects in cell wall, signal transduction, and virulence factor expres-
sion, fare poorly (Fig 5A). Potentially reducing the pathogenicity even of cryptococci that re-
main outside of host phagocytes, we found important membrane transporters that are not
correctly palmitoylated in the mutant. These include a putative carbohydrate transporter, a
phosphate transporter, and NIC1 and SIT1, which transport nickel and siderophore-iron com-
plexes, respectively [58, 59]. Because these metals are limiting during infection, incorrect pro-
cessing or targeting of their transporters could influence pathogenesis. Furthermore, melanin,
an important virulence factor in this pathogen, is poorly retained at the cell wall (Fig 7C–7E), a
phenotype also seen in chs3Δ cells [32] and associated with reduced virulence. Ultimately, all of
these factors combine to result in avirulence of the pfa4Δmutant (Fig 8).

In contrast to our findings, the initial survey of cryptococcal deletion mutants [10] catego-
rized the strain deleted for PFA4 (2A12) as normal in virulence. This may reflect the practical
strategy used in that large-scale study, where pools of mutants were assayed, or the timing of
those virulence studies. We did observe that animals infected with pfa4Δ initially show mild
symptoms of disease, suggesting the initiation of a pathogenic process that might be interpreted
as normal infectivity in short-term studies (as in ref. [10]), but that they subsequently clear the
infection and recover completely. Consistent with our observations, 2A12 does show reduced
virulence in recent studies of this deletion library using both an IV mouse model and inverte-
brate models of infection (performed at room temperature) [60]. The latter also supports our
conclusion above that Pfa4’s contribution to virulence is temperature independent.

As well as demonstrating the key role of Pfa4-dependent palmitoylation in C. neoformans,
our work provides valuable data sets to the community from both our screen and our palmitoy-
lome analysis. It also bolsters a model that explains why multiple PATs have been retained dur-
ing evolution despite the widespread redundancy of these enzymes: key PATs like Pfa4 may
modify specific substrates that perform critical functions, in addition to sharing substrates with
other PATs. This concept is supported by the recent identification of specific PATs that regu-
late central pathogenic processes in Toxoplasma and Plasmodium [16–18].

Our determination of the Pfa4-palmitoylome offers new insights into the role of an impor-
tant regulatory lipid modification in the biology of C. neoformans. Pfa4 in C. neoformans is no-
table in modifying proteins that exhibit diverse modes of membrane association, including
those that are otherwise predicted to be soluble or to have one or many membrane-spanning
domains (Table 3). In contrast, its S. cerevisiae homolog appears to be restricted to modifying
polytopic membrane proteins [28, 42]. Several cryptococcal Pfa4 substrates are also fungal-spe-
cific (e.g., the chitin synthases, vacuolar protein 8, the nickel and siderophore transporters, and
the product of CNAG_02114). Finally, cryptococcal Pfa4 is unique among PATs studied to
date in that it is essential for virulence in an animal model. The closest human homolog of
Pfa4, DHHC6, is considerably distant in sequence homology, with the similarity restricted to
the catalytic DHHC domain. These findings encourage efforts towards development of specific
PAT inhibitors as novel avenues for therapeutics.
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Fig 8. Model of Pfa4 function and relationship to morphology, stress tolerance, and virulence.

doi:10.1371/journal.ppat.1004908.g008
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Materials and Methods

Strains, growth conditions, and reagents
Strains used were C. neoformans serotype A strain H99α, its derivative KN99α, and deletions
in these backgrounds (see below). The cryptococcal partial deletion collection in H99α [10]
was purchased from the Fungal Genetics Stock Center (University of Missouri, Kansas City,
MO) and H99α chs3Δ was a generous gift from Jennifer Lodge (Washington University). Fun-
gal strains were maintained at -80°C and grown at 30°C on yeast peptone dextrose (YPD) with
antibiotics as appropriate (100 μg/mL of nourseothricin (clonNAT, WERNER BioAgents, Ger-
many) or 100 μg/mL G418 (Geneticin, Life Technologies, USA)).

The human monocytic cell line THP-1 (ATCC TIB-202) was grown in THP-1 complete
media (RPMI-1640 with L-glutamine supplemented with 1 mM sodium pyruvate, 0.05%
2-mercaptoethanol, 10% FBS, and 100 units/mL Penicillin- 100 μg/mL Streptomycin solution
as indicated) and differentiated with phorbol 12-myristate 12-acetate (PMA, from Sigma,
St. Louis, MO) as described in [9]. THP-1 cultures were split every 3–4 days (inoculum of 105

cells/mL) and new batches were thawed every month.
All tissue culture plasticware and media were from BD Falcon and Sigma, fungal media

components from Difco, PCR primers from Sigma, biolistic transformation reagents and mate-
rials from Bio-Rad, DH5α cells from Life Technologies, and restriction enzymes from New En-
gland Biolabs. Reagents for electron microscopy were from Ted Pella (Redding, CA) and
Polysciences (Warrington, PA); antibodies for immunofluorescence were from Abcam
(ab2900, anti-EEA1 rabbit polyclonal) or the Developmental Studies Hybridoma Bank (clone
H4A3, University of Iowa); and antibodies for immunoblotting were from Sigma (clone HA-7
anti-HA mouse monoclonal and anti-FLAG rabbit polyclonal). Reagents for bioorthogonal la-
beling and click chemistry were from Sigma, except for azido-rhodamine, which was prepared
as previously described [38].

Library screening
To screen fungal mutants, THP-1 cells were seeded in 96-well plates (3.33 ×105 cells/mL,
100 μL), incubated for 48 hr (37°C, 5% CO2) in THP-1 complete media, washed three times
with 150 μL RPMI-1640, and cultured for one day in serum-free media with antibiotics. In par-
allel a 96-pin replicator (Nalge Nunc International, Rochester, NY) was used to inoculate
strains from the C. neoformans deletion collection into a Nunc Edge—96 well microplate con-
taining 150 μL YPD per well. The microplates were incubated at 30°C overnight on a mini-or-
bital shaker (BELLCO Biotechnology, Vineland, NJ), followed by transfer of a 35 μL aliquot
from each well into a new 96-well flat-bottom microplate (Costar 3904). The transferred cells
were washed once with PBS (pH 7.5), once in Mcllvaine’s buffer (pH 6.0), and then resus-
pended in 100 μL of the same buffer containing 100 μg/mL Lucifer Yellow dye (Sigma L0144).
After a 30 min incubation at RT with gentle agitation the cells were collected, washed once
with PBS, and opsonized (30 min, 37°C) in 100 μL 40% human serum with gentle agitation.
Serum was obtained from healthy donors with informed consent under a protocol approved by
the Washington University in St. Louis Institutional Review Board. Finally, the cells were
washed three times with PBS, resuspended in 150 μL RPMI-1640, and 35 μL from each well
was diluted into 1 mL of pre-warmed RPMI-1640 in a deep-well 96-well plate (Nunc). To initi-
ate the assay, the medium from each well containing THP-1 was aspirated and replaced by
100 μL of the cryptococcal suspension. After a 1 hr incubation (37°C, 5% CO2) the plates were
washed vigorously four times with 150 μL PBS using a microplate washer (ELx405TM Select
CW, Biotek, Winooski, VT). The samples were then immediately fixed in 150 μL 4%
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formaldehyde (20 min, 4°C), washed twice with PBS, and permeabilized for 20 min at RT with
0.1% saponin in PBS (150 μL). Samples were next washed twice with PBS, stained (15 min, RT,
in the dark) with 2 μg/mL DAPI and 0.25 μg/mL HCS CellMask Deep Red (Life Technologies)
in PBS, washed twice more with PBS, and 100 μL of 10 mMNaN3 in PBS was added to each
well. Plates were either imaged immediately (on an IN Cell 1000 analyzer, GE, Piscataway, NJ)
or stored at 4°C for later analysis. GE INCell Investigator Developer Software was used to iden-
tify host cell and fungal borders and calculate the overlap as described in [9]. Fungal cells that
overlapped>50% with host cell bodies were considered internalized,�50% were considered
adherent, and fungal cells with no overlap were not counted. In parallel with the screening
assay, an aliquot of each fungal cell suspension was pipetted into empty 96-well plates for enu-
meration to allow normalization of results to fungal cell number (macrophage uptake of C.
neoformans is linear in the range of fungal concentrations used in these assays [9]). The results
were analyzed plate-wise (to reveal any systematic errors in different plates) before normaliza-
tion and calculation of values relative to wild-type.

Fungal genome manipulation
We used the split marker method [61] to delete PFA4 (CNAG_03981) in H99α and KN99α
after amplifying NAT resistance split marker fragments from genomic DNA of strain 2A12
(pfa4Δ) from the Madhani deletion collection. For chromosomal complementation, we used a
split marker approach to replace the NAT cassette of the mutant with wild-type genomic PFA4
sequences in tandem with a G418 resistance cassette. For endogenous tagging of the CHS3
gene (CNAG_05581) with mCherry, the last 1,674 bp of CHS3 were amplified with a BamHI
site replacing the STOP codon and ligated to a BamHI/AvrII-cut fragment composed of
mCherry followed by an HA epitope, a STOP codon, and 445 bp of the TRP1 terminator. The
ligated fragment was cloned in front of a NAT resistance cassette and 616 bp of the CHS3 ter-
minator (sequences immediately following the STOP codon) were subsequently cloned after
the NAT cassette. The resulting plasmid was digested with BglII/MluI to release the 5’ fragment
of the split marker and with XmaI/EcoRV to release the 3’ fragment of the split marker. Trans-
formation was by biolistics (Bio-Rad PDS-1000/He) as described in [62].

For plasmid construction, a fragment encompassing the PFA4 coding locus and 226 bp of 3’
sequence was amplified so as to incorporate sequence that encodes 1.5X HA epitope tags in
place of the first 2 codons. Fusion PCR was used to ligate this fragment to a second amplicon
consisting of 900 bp of 5’ sequence (including the starting ATG) and sequence encoding 1.5X
HA epitope tags, so as to reconstitute sequence encoding an N-terminal 3X HA-tagged Pfa4 se-
quence. This product (~3.5 kb) was cloned into ApaI/KpnI-digested pIBB103 [63] for expression
and also used as template for mutagenesis of the DHHCmotif into DHAS using overlapping
primers containing the codon change. Plasmid transformation was as described in [63].

Fluorescence microscopy and flow cytometry
Cells were grown overnight at 30°C in YPD (with appropriate antibiotics if needed to main-
tain plasmids), diluted as for phenotyping, washed in PBS, and resuspended at 107/mL for
staining as follows (all manipulations at RT): For LY and EoY (Sigma), cells were washed
once in McIlvaines buffer, pH 6.0; resuspended in the same; and incubated for ~15 min with
250 μg/mL of the dye. For CFW (Fluorescent Brightener 28, Sigma), UV2B (Polysciences,
Inc.) and Pont (Pontamine fast scarlet 4B, Bayer Corp., Robinson, PA), cells were stained in
PBS with 100 μg/mL of CFW or UV2B or a 1:10,000 dilution of Pont (w/v). For ConA-FITC
(Sigma), cells were stained with 30 μg/mL in Hepes-buffered saline, pH 7.0, containing 10
mM each MgCl2 and CaCl2.
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For fluorescence microscopy, stained cells were washed twice, resuspended in the same vol-
ume of the corresponding buffer, mixed vigorously, spotted onto glass slides, covered, and im-
aged immediately on a wide field Zeiss Axioskop 2 MOT Plus with appropriate filters (DAPI
for CFW and UV2B; FITC for LY, EoY, and ConA-FITC; and Texas Red for Pont). For the
Chs3-mCherry strains, overnight cultures grown in YPD were washed twice with PBS, resus-
pended in 3 mL of PBS, and 6 μl were spotted on polylysine-coated glass slides and imaged im-
mediately. For flow cytometry cells were washed three times, fixed in 3.7% formaldehyde/PBS
(10 min; RT) or resuspended in PBS with 10 mMNaN3 and analyzed on an LSRII flow cytome-
ter (Becton Dickinson, Franklin Lakes, NJ) for analysis using FlowJo software (Tree Star Inc.,
Ashland, OR).

Electron microscopy (EM)
For transmission EM, overnight cultures grown in YPD were diluted 10-fold, grown to OD600

= 0.2 (~107/mL), and washed twice in PBS. The cell pellet was resuspended in 1 mL of primary
fixation mix (2.5% paraformaldehyde/2% glutaraldehyde in 100 mM cacodylate buffer, pH
7.2), incubated for 1 hr at room temperature (RT), washed in the same buffer, and post-fixed
in 1% osmium tetroxide (Polysciences, Inc.) for 1 hr at RT. Samples were then rinsed in the
same buffer, followed by dehydration in a graded series of ethanol and propylene oxide prior to
embedding in Eponate 12 resin (Ted Pella, Inc.). Sections of 90 nm were cut with a Leica Ultra-
cut UCT ultramicrotome (Leica Microsystems, Inc., Bannockburn, IL), stained with uranyl ac-
etate and lead citrate, and viewed on a JEOL 1200EX transmission electron microscope (JEOL
USA Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera (Advanced Mi-
croscopy Techniques, Woburn, MA).

For scanning EM, cultures were grown and fixed as above but in sodium phosphate buffer,
then washed and 8.8 x 106 cells (4 x 106 cells/cm2) were added to wells of a 6-well plate contain-
ing a polylysine-coated plastic coverslip. After incubation at 4°C for 1–2 hr the coverslips were
washed twice with DPBS, re-fixed in 2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M Soren-
sen’s sodium phosphate buffer (potassium-free, pH 7.4), and then sequentially rinsed in buffer
and NanoPure Ultra-filtered deionized water. They were next post-fixed in 1% osmium tetroxide
(aqueous) for 1 hr, rinsed with NanoPure Ultra-filtered deionized water, dehydrated in ethanol
(30%, 50%, 70%, 80%, 90%, 3X 95%, and 3X absolute ethanol), critical point dried (Tousimis
Samdri-780, Rockville, MD) via liquid carbon dioxide, mounted on aluminum stubs with dou-
ble-sided adhesive carbon tabs, and sputter coated (Tousimis Samsputter-2a) with gold-palladi-
um. Images were acquired using a Hitachi S2600 (Hitachi-hitec, Tokyo, Japan) instrument.

Phenotyping
Strains to be tested were grown overnight in YPD, diluted to ~2 x 106/ml, and grown for two
doublings. The cultures were then serially diluted (10-fold) and spotted (5 μL) onto buffered
(pH 6.8 with 100 mM KPO4 buffer) synthetic dextrose medium with 1 mg/mL calcofluor white
or onto YPD with 1.2 M NaCl; 1.2 M KCl; 0.01 and 0.03% SDS; 1, 3, and 5 mMH2O2; 0.1, 0.25,
0.5, 0.75, and 1 mg/mL caffeine; 1 mg/mL Congo red (stock prepared in 70% ethanol); or
25 μg/mL Lucifer Yellow. The same plates were also prepared containing various concentra-
tions of sorbitol (0.5, 1, or 1.5 M). Plates were incubated at 30°C and 37°C for 3–4 days. Sensi-
tivity to lysing enzymes was tested as in [64].

Capsule induction
Cells were grown overnight in YPD, washed twice with DMEM, and 1 mL aliquots (106 cells)
were pipetted into 24-well tissue culture plates (3 wells per strain) and incubated (37°C; 5%
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CO2) for 24 hr. The suspension was washed twice with deionized water (dH2O), resuspended
in 24 μL dH2O, mixed with ~8 μL of India ink and visualized on a Zeiss Axioskop 2 MOT Plus
microscope. At least 150 cells from each strain (50 per well) were analyzed with ImageJ (NIH)
for capsule thickness ((outer capsule diameter minus cell wall diameter)/2).

Melanin assays
For solid media assays, the cells were grown overnight in YPD medium at 30°C, diluted the
next morning in 5 mL of YPD, grown to an OD600 of 0.2, washed twice in PBS, and adjusted to
107 cells/mL in PBS. 10-fold serial dilutions were made and 5 μL of each dilution spotted on
L-DOPA (1 mM) plates. The plates were incubated at 25°C, 30°C, and 37°C for 3–4 days in
the dark.

For assays in liquid medium, cells of each strain were grown similarly overnight, diluted in
25 mL of YPD, and allowed to grow for 2–3 generations. At that point, the cells were washed in
PBS, resuspended in 2 mL glucose-free asparagine and salts media, and the cell density was
quantified. The strains were adjusted to 5 x 107 cells/ml and incubated at 25°C for 18–24 hr in
asparagine medium containing 1 mM L-DOPA. The cultures were spun down at 1000xg for 10
min, and photographed. To quantify the melanin in the media, the OD405 was measured for
100 μL aliquots of the supernatant fractions.

Virulence assays
To assess fungal survival in macrophages, THP-1 cells grown in 12-well plates (250,000 cells
per well), were washed with assay medium (RPMI + 1% FBS). In parallel, overnight fungal cul-
tures (OD600 = 0.2–0.4; 1–2 x 107/mL) were washed twice with PBS, resuspended (108 cells/
mL) in 40% human serum for opsonization (37°C; 30 min; with rotation), rewashed, resus-
pended in assay medium, and added to the THP-1 cells at an MOI of 0.1 or 1.0 as indicated.
Plates were incubated for 1 hr, rinsed twice with 1 mL Dulbecco’s PBS (DPBS), and incubation
continued for 0 hours (to measure initial association) or for the time indicated after addition of
RPMI + 1%FBS. At the desired assay time points the medium was aspirated, wells were washed
once with 1 mL DPBS, 1 mL of lysis buffer (0.05% SDS, 1 mM EDTA) was added, and the plate
was shaken on a plate mixer for ~3 min. The resulting lysate was collected, vortexed vigorously,
diluted, and spotted onto YPD media for determination of colony forming units (CFU).

To test virulence in mice, strains were cultured overnight in YPD, collected, washed in PBS,
diluted to 106 cells/mL in PBS, and briefly sonicated (to disperse clumps seen in pfa4Δ). Sonica-
tion did not adversely affect mutant viability. Aliquots (50 μL) of the suspension were used to
intranasally inoculate groups of ten mice (4–6 week-old female A/Jcr mice; National Cancer In-
stitute) and dilutions of the suspension were plated immediately after infection to confirm in-
ocula. Animals were monitored closely and sacrificed if they lost>20% relative to peak weight
or at the end of the experiment (45 days). Homogenates of lungs and brains from 3 of the sur-
viving mice infected with pfa4Δ were plated to determine organ burden.

Alk-16 labeling and click chemistry
Whole cell lysates (50 μg) were diluted with SDS buffer (4% SDS, 150 mMNaCl, 50 mM
triethanolamine pH 7.4, Roche EDTA-free protease inhibitor cocktail) to 44.5 μL and then re-
acted with 5.5 μL freshly prepared click chemistry reaction cocktail containing azido-rhoda-
mine (1 μL, 10 mM stock solution in DMSO), tris(2-carboxyethyl)phosphine hydrochloride
(TCEP) (1 μL, 50 mM freshly prepared stock solution in deionized water), tris[(1-benzyl-1H-
1,2,3-triazol-4-yl)methyl]amine (TBTA) (2.5 μL, 10 mM stock solution in DMSO/t-butanol)
and CuSO4•5H2O (1 μL, 50 mM freshly prepared stock solution in deionized water)] for 1 h at
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room temperature. The click reactions were terminated by the addition of ice-cold methanol (1
mL). The mixtures were placed at −20°C overnight and then centrifuged at 18,000×g for 20
min at 4°C to precipitate proteins. The supernatants from the samples were discarded. The pro-
tein pellets were washed with methanol twice, allowed to air-dry for 10 min, resuspended in
35 μL of SDS lysis buffer, and diluted with 12.5 μL 4× reducing SDS-loading buffer (40% glyc-
erol, 200 mM Tris-HCl pH 6.8, 8% SDS, 0.4% bromophenol blue) and 2.5 μL 2-mercaptoetha-
nol. The resulting samples were heated for 5 min at 95°C and resolved on 4–20% SDS-PAGE
gels (Bio-Rad). For in-gel fluorescence scanning, the gels were destained in 40% methanol, 10%
acetic acid for at least 1 h, and then scanned on a GE Healthcare Typhoon 9400 variable mode
imager with excitation and emission at 532 nm and 580 nm, respectively. After scanning, gels
were also stained with Coomassie Brilliant Blue (Bio-Rad).

Affinity enrichment of palmitoylated proteins and mass spectrometry
For affinity purification of alk-16-modified proteins, 2 mg of cell lysates labeled with alk-16 were
subjected to Cu(I)-catalyzed click reaction as described above, except that azido-biotin was
substituted for azido-rhodamine. Methanol-precipitated and washed protein pellets were resus-
pended in 200 μL of 4% SDS buffer (50 mM TEA, 150 mMNaCl, pH 7.4). Equal amounts of
protein for each sample were diluted 1/4 by volume with 50 mM TEA buffer (150 mMNaCl, pH
7.4). 60 μl prewashed streptavidin agarose beads (Invitrogen) were added to each sample and the
protein and bead mixtures were incubated for 1 h at room temperature on a nutating mixer. The
beads were then washed once with PBS and 0.2% (w/v) SDS, three times with PBS and twice
with 250 mM ammonium bicarbonate (ABC). Beads were resuspended in 500 μl 8 M urea, re-
duced with 10 mMDTT for 30 min, and then alkylated with 50 mM iodoacetamide in the dark
for another 30 min. Finally, the beads were washed with 25 mM ammonium bicarbonate three
times and digested with 0.5 μg of trypsin at 37°C overnight. The supernatant of each sample was
collected, dried, and solubilized in 5% acetonitrile/1% formic acid for LC-MS analysis.

LC-MS analysis was performed with a Dionex 3000 nano-HPLC coupled to an Orbitrap XL
mass spectrometer (ThermoFisher). Peptide samples were pressure-loaded onto a home-made
C18 reverse-phase column (75 μm diameter, 15 cm length). A 180-minute gradient increasing
from 95% buffer A (HPLC grade water with 0.1% formic acid) and 5% buffer B (HPLC grade
acetonitrile with 0.1% formic acid) to 75% buffer B in 133 minutes was used at 200 nL/min.
The Orbitrap XL was operated in top-8-CID-mode with MS spectra measured at a resolution
of 60,000@m/z 400. One full MS scan (300–2000 MW) was followed by three data-dependent
scans of the nth most intense ions with dynamic exclusion enabled. Acquired tandemMS spec-
tra were extracted using ProteomeDiscoverer v.1.4.0.288 (Thermo, Bremen, Germany) and
queried against the Uniprot complete Cryptococcus neoformans var. grubiiH99 proteome
(UP000010091) database concatenated with common known contaminants using MASCOT
v.2.3.02 (Matrixscience, London, UK). Peptides fulfilling a Percolator calculated 1% false dis-
covery rate (FDR) threshold were reported. The abundance of an identified protein was calcu-
lated based on the average area of its three most abundant peptides. For a protein to be
considered a Pfa4-specific substrate, it had to be at least five-fold more abundant in the wild-
type sample compared to the pfa4Δ sample as measured by protein abundance in both of the
two independent experiments and be identified with at least two unique peptides.

Supporting Information
S1 Fig. Effects of labeling method and cell viability on fungal uptake. (A and B) High phago-
cytosis of pfa4Δ cells is independent of labeling method. THP-1 uptake assays were performed
as in Fig 1, but the fungal cells were either stained for 30 min with 10 μMDFFDA-SE (a cell

Palmitoylation Mediates Cryptococcal Pathogenesis

PLOS Pathogens | DOI:10.1371/journal.ppat.1004908 May 13, 2015 22 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.ppat.1004908.s001


permeant, non-fluorescent compound that is retained only in live cells, where it becomes high-
ly fluorescent; Invitrogen) or were left unstained (B) for subsequent labeling with anti-capsule
antibody 3C2 (as in ref. [65]; antibody generously provided by Tom Kozel). �, P< 0.001
(MannWhitney t test) comparing mutants with respective parent strains. (C) THP-1 uptake
assays performed as in Fig 1, with live H99, or H99 killed by incubation at 70 or 100°C or with
ethanol or azide.
(TIF)

S2 Fig. Dynamics and intracellular location of fungal cells. (A) Fungal cell localization over
time, with cells classified as external to THP-1 cells (Adherent), internalized but with no mark-
er association (Unlabeled), or internalized and associated with either an early endosome mark-
er (EEA1+) or late endosome/lysosomal (LAMP-1+) markers. Average ± SEM from manual
counts of�100 cells from three independent studies are shown. �, P< 0.05 (Student’s t-test)
for mutant versus wild-type; color of � indicates category being compared. (B) Representative
images of THP-1 cells incubated with the indicated strains (stained with LY, green) for 1 hr,
washed to remove non-associated fungal cells, and labeled with Lysotracker Red (red) for an
additional hour prior to imaging. The DIC and merged images are displayed at right. Note that
fungi that were heat-killed (HK) prior to staining and assay appear as solidly stained shapes
rather than silhouettes. (C) Quantification of the staining pattern of the Cryptococcus-contain-
ing phagosomes (CCPs) from (B). Shown are the averages ± SD from two independent assays,
counting� 100 CCPs for each strain per experiment. Blue, unstained phagosomes; pink, pha-
gosomes with a rim of Lysotracker Red around the yeast (shown as yellow in merge at right),
suggesting viable fungi in an acidified compartment; green, phagosomes completely stained
with Lysotracker Red, suggesting dead fungi in an acidified compartment. Examples of each
category are shown at right.
(TIF)

S3 Fig. DIC images of unstained C. neoformans. Representative images of the indicated
strains grown at 30°C and visualized by DIC. Scale bars, 5 μm on main panels, 2 μm on magni-
fied regions. For the pfa4Δ cell panels, three images (corresponding to the expanded region)
taken 1 μm apart in a z-stack are shown, to better depict the surface topology.
(TIF)

S4 Fig. Images of C. neoformans stained for flow cytometry. Representative images of the in-
dicated strains grown at 30°C and stained with Lucifer Yellow (LY), pontamine (Pont), calco-
fluor white (CFW), eosin Y (EoY), and concanavalin A conjugated to FITC (ConA). Scale bar,
5 μm.
(TIF)

S5 Fig. Cell wall-related phenotypes of wild-type, pfa4Δ, and Pfa4 active site mutant strains.
(A) pfa4Δ cells grow slowly but maintain viability during growth in mammalian tissue culture
medium. Overnight cultures grown at 30°C in YPD were washed and diluted to 105 cells/mL in
prewarmed RPMI in tissue culture flasks. The flasks were incubated at 37°C with 5% CO2, and
aliquots were taken for cell counting and CFU determination. The graph is representative of
cell counts from three independent experiments. CFUs at all time points showed viable crypto-
cocci from all strains, although the viability of the pfa4Δ cells was typically 40–60% compared
to 70% or above for wild-type. (B) 5 μL of 10-fold serial dilutions were spotted on plates con-
taining the indicated stressors and incubated for 3–4 days. The pfa4Δmutant is sensitive to a
variety of cell stresses, but all phenotypes are rescued by complementation with PFA4. (C) Cell
lysis over time during treatment with lysing enzymes from Trichoderma harzianum, as de-
scribed in the Materials and Methods. (D) Alignment of the canonical consensus sequence of a
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DHHC-CRD domain [11] with the corresponding domain in Pfa4; underlined amino acids
(DHHC) are the catalytic residues and arrows indicate the mutations made to generate pfa4AS.
(E) 10-fold serial dilutions were spotted as in (B). The mutant pfa4AS construct and vector
alone do not complement the pfa4 deletion, although the wild-type PFA4 construct does.
(TIF)

S6 Fig. Hyphal filamentation in pfa4 strains set.Wild-type (KN99) and pfa4Δ cells of both
mating types were crossed in a 2 x 2 matrix on V8 mating media (see [29] for details). The
plates were incubated in the dark for 14 days. Lack of mating filaments in the pfa4Δ crosses
(lower right) indicates a defective mating pathway. The scale bars on each panel represent 100
pixels. All pictures were taken at the same magnification, but the scale is different for the wild-
type cross (top left; depicted by a white scale bar) to capture the more abundant and
longer filaments.
(TIF)

S1 Table. C. neoformansmutants showing altered interactions with macrophages.
(PDF)

S1 File. Pfa4-specific substrates (see text and Materials and Methods).
(XLSX)

S1 Video. Z-stack compiled into a video of THP-1 cells (blue) after 1 hr exposure to C. neo-
formans wild-type cells (shown in magenta) at an MOI of 5.
(AVI)

S2 Video. Z-stack compilled into a video of THP-1 cells (blue) after 1 hr exposure to C. neo-
formans pfa4Δ cells (shown in magenta) at an MOI of 5.
(AVI)
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