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Abstract

Background: Difficulty understanding in background noise is a common complaint of cochlear implant
(CI) recipients. Programming options are available to improve speech recognition in noise for CI users

including automatic dynamic range optimization (ADRO), autosensitivity control (ASC), and a two-stage
adaptive beamforming algorithm (BEAM). However, the processing option that results in the best speech

recognition in noise is unknown. In addition, laboratory measures of these processing options often show
greater degrees of improvement than reported by participants in everyday listening situations. To

address this issue, Compton-Conley and colleagues developed a test system to replicate a restaurant
environment. The R-SPACE™ consists of eight loudspeakers positioned in a 360 degree arc and utilizes

a recording made at a restaurant of background noise.

Purpose: The present studymeasured speech recognition in the R-SPACEwith four processing options:

standard dual-port directional (STD), ADRO, ASC, and BEAM.

Research Design: A repeated-measures, within-subject design was used to evaluate the four different

processing options at two noise levels.

Study Sample: Twenty-seven unilateral and three bilateral adult Nucleus Freedom CI recipients.

Intervention: The participants’ everyday program (with no additional processing) was used as the STD pro-
gram. ADRO, ASC, andBEAMwere added individually to the STD program to create a total of four programs.

Data Collection and Analysis: Participants repeated Hearing in Noise Test sentences presented at 0

degrees azimuth with R-SPACE restaurant noise at two noise levels, 60 and 70 dB SPL. The reception

threshold for sentences (RTS) was obtained for each processing condition and noise level.

Results: In 60 dB SPL noise, BEAM processing resulted in the best RTS, with a significant improvement

over STD and ADRO processing. In 70 dB SPL noise, ASC and BEAM processing had significantly bet-
ter mean RTSs compared to STD and ADRO processing. Comparison of noise levels showed that STD

and BEAMprocessing resulted in significantly poorer RTSs in 70 dBSPL noise compared to the perform-
ance with these processing conditions in 60 dB SPL noise. Bilateral participants demonstrated a bilateral

improvement compared to the better monaural condition for both noise levels and all processing con-
ditions, except ASC in 60 dB SPL noise.

Conclusions: The results of this study suggest that the use of processing options that utilize noise reduc-
tion, like those available in ASC and BEAM, improve a CI recipient’s ability to understand speech in noise

in listening situations similar to those experienced in the real world. The choice of the best processing
option is dependent on the noise level, with BEAM best at moderate noise levels and ASC best at loud
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noise levels for unilateral CI recipients. Therefore, multiple noise programs or a combination of process-

ing options may be necessary to provide CI users with the best performance in a variety of listening
situations.

Key Words: Binaural hearing, cochlear implants, directional microphone, noise reduction, speech

perception

Abbreviations: ACE 5 Advanced Combination Encoder; ADRO 5 adaptive dynamic range

optimization; AGC 5 automatic gain control; ASC 5 autosensitivity control; BEAM 5 two-stage
adaptive beamforming algorithm; CI 5 cochlear implant; CIS 5 Continuous Interleaved Sampling;

CNC 5 consonant–nucleus–consonant; FIR 5 finite impulse response; HINT 5 Hearing in Noise
Test; HRPO 5 Human Research Protection Office; RTS 5 reception threshold for sentences; SNR 5

signal-to-noise ratio; SPEAK 5 Spectral Peak; STD 5 standard dual-port directional

INTRODUCTION

T
he ability of cochlear implants (CIs) to improve an

individual’s speech recognition has beenwell docu-

mented (Tyler and Moore, 1992; Skinner et al,

1997; Fetterman and Domico, 2002; Firszt et al, 2004;

Spahr and Dorman, 2004). There has been a dramatic

improvement in speech recognition as CI equipment

and speech processing strategies have advanced over
the years (Skinner et al, 1994; Rubinstein et al, 1998).

Despite the notable increase in performance with the

advancement of CI systems, difficulty understanding in

background noise continues to be a common complaint

among CI recipients. Research has shown that the unfav-

orable effects of noise on speech recognition are prominent.

Spahr and Dorman (2004) reported that the average

CI user scored 70% on sentence-recognition tasks using
conversational speech in quiet, which decreased to 42%

when the sentences were presented at a 110 signal-to-

noise ratio (SNR) and to 27% at a 15 SNR. Firszt et al

(2004) had similar findings, with CI users scoring from

57 to 73% on sentence-recognition tasks at a variety of

intensity levels. When the sentences were presented in

noise (18 SNR), the average score dropped to 48%. The

noise condition represented the most difficult listening
condition for the participants.

Cochlear implants have incorporated several speech

processing options designed to improve speech recogni-

tion in noise while providing listening comfort. Speech

processing options available in the Nucleus Freedom

processor, and later model processors manufactured

by Cochlear Americas, include adaptive dynamic range

optimization (ADRO), autosensitivity control (ASC),
and a two-stage adaptive beamforming algorithm

(BEAM). In addition, a traditional dual-port directional

microphone has been integrated into the speech pro-

cessor for many years (Patrick et al, 2006).

Dual-Port Directional Microphone

In a dual-port directional microphone arrangement,

sound from behind reaches the rear port before the front

port, creating an external time delay. The external time

delay depends on the distance between the two micro-

phone ports, which is 7 mm in the Nucleus Freedom de-
vice. The rear port uses an acoustic damper to create a

low-pass filter. Sound entering the rear port is pro-

cessed through the low-pass filter, producing an inter-

nal time delay. If the internal and external time delays

are equal, sound from the rear will reach both sides of

the microphone diaphragm at the same time, generat-

ing no net force and suppressing sounds from the rear

direction. The direction of maximum suppression varies
with the difference between the internal and external

time delays (Dillon, 2001; Thompson, 2002).

Automatic Dynamic Range Optimization

ADRO is a preprocessing strategy that alters the gain

of the input signal to place the signal in the CI user’s

dynamic range. Gain is adjusted individually in each

frequency channel according to a specific set of rules,

which keeps the output level between a comfort target

and an audibility target (James et al, 2002; Dawson
et al, 2004). Gain is increased if a sound falls below

the audibility target or decreased if a sound rises above

the comfort target. When the sound is within the audi-

ble and comfortable range, the gain operates in a linear

fashion (Blamey, 2005). However, gain cannot exceed a

specified maximum amount. This maximum gain rule

works to limit the amplification of low-level background

noise (James et al, 2002; Dawson et al, 2004).
ADROwas incorporated into theNucleus CI system in

2002 as an input signal processing option (Patrick et al,

2006). Two studies have examined the functional benefit

of ADRO for CI recipients. James and colleagues (2002)

presented sentences at 70 dBSPL in the presence ofmul-

titalker babble at 110 and 115 dB SNRs to adult CI

recipients using ADRO and a standard speech process-

ing program. ADRO demonstrated significantly better
speech recognition scores in quiet for soft and average

presentation levels, but there was no significant differ-

ence in speech recognition in noise between ADRO

and the standard program. Dawson and colleagues

(2004) presented sentences at 65 dB SPL in the presence

of multitalker babble to pediatric CI recipients using

ADRO and a standard program. The SNRs were selected

individually, ranging from 0 to 115 dB, to avoid ceiling
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effects. ADRO showed a significant improvement in

speech recognition in quiet and in noise. From these

studies, it appears that the gain adjustments of ADRO

lead to improved speech recognition at low and medium
presentation levels; however, the ability of ADRO to

improve speech recognition in noise is unclear.

Autosensitivity Control

The development of the ASC processing option was led

byCIusers’ reports of reducing themanual sensitivity con-

trol in noisy environments. The reduction of the sensitivity
resulted in a decrease of the amplification for low-level

background noise by changing the automatic gain control

(AGC) kneepoint. The AGC kneepoint is the input level at

which compression begins. Below the kneepoint, amplifi-

cation is typically linear (Dillon, 2001; Agnew, 2002b).

When the sensitivity of the speech processor is reduced,

the AGC kneepoint increases, and when the sensitivity

is increased, the AGC kneepoint decreases. Therefore,
higher sensitivity (lower kneepoint) leads to more gain

for soft sounds and greater audibility (Patrick et al, 2006).

ASC is an optional processing scheme that automati-

cally adjusts the sensitivity according to the noise floor,

or the intensity level of sound during breaks in speech.

When the noise floor reaches the autosensitivity break-

point, sensitivity is automatically decreased (kneepoint

increased) to provide less low-level gain.When the noise
floor falls below the breakpoint, sensitivity is automati-

cally increased (kneepoint decreased) to provide more

gain for soft sounds. At default settings, the autosensi-

tivity breakpoint is 57 dB SPL, and ASC aims to keep

the noise floor at least 15 dB below the AGC kneepoint.

The breakpoint can be changed in the software to make

ASC more or less responsive to background noise. With

ASC active, CI users typically perceive a decrease in the
loudness of background noise (Patrick et al, 2006).

Wolfe et al (2009) explored the effect of ASC on speech

recognition in quiet and in noise with 10 Nucleus Free-

dom users. Sentences were presented from a loudspeaker

at 0 degrees azimuth and noise from loudspeakers in the

four corners of the room. Sentences were presented at

60 dBA in quiet, 65 dBA with a 110 dB SNR, 70 dBA

with a17 dB SNR, and 74 dBA with a 14 dB SNR. Sen-
tence recognition was not significantly different with

ASC on or off in the quiet and 110 dB SNR conditions.

However, participants performed significantly better in

the 17 and 14 dB SNR conditions with ASC on. These

results suggest that ASC significantly improves speech

recognition in the presence of high noise levels.

BEAM

A new input signal processing scheme, BEAM, was

introduced in the Nucleus Freedom speech processor

in 2005. BEAM is a two-stage adaptive beamformer.

The first stage utilizes spatial preprocessing through

a single-channel, adaptive dual-microphone system that

combines the front directional microphone and rear

omnidirectional microphone to separate speech from
noise. The output from the rear omnidirectional micro-

phone is filtered through a fixed finite impulse response

(FIR) filter, a type of digital filtering characterized by

a linear phase response (Agnew, 2002a). The output

of the FIR filter is subtracted from an electronically

delayed version of the output from the front, directional

microphone to create the noise reference (Vanden Berghe

and Wouters, 1998; Wouters and Vanden Berghe, 2001;
Wouters et al, 2002; Spriet et al, 2007). The filtered signal

from the omnidirectionalmicrophone is then added to the

delayed signal from the directional microphone to cre-

ate the speech reference. This spatial preprocessing in-

creases sensitivity for sounds arriving from the front

while suppressing sounds that arrive between 90 and

270 degree azimuths. BEAM polar plots adapt among

cardioid, hypercardioid, and bidirectional patterns as
the noise sourcemoves to adjust the null points formax-

imum noise suppression (Patrick et al, 2006). The sec-

ond stage of BEAM utilizes adaptive noise cancellation

to reduce the remaining noise in the speech reference.

The filter coefficients used in the adaptive noise cancel-

lation can only be adjusted during breaks in speech,

requiring a voice activity detector. These coefficients

are then used to filter out the remaining noise in the
speech reference (Wouters et al, 2002).

Wouters and Vanden Berghe (2001) investigated the

speech recognition of four CI users utilizing a two-stage

adaptive beamformer algorithm identical to the one used

in BEAM processing. Participants repeated monosyl-

labic words and numbers presented at 0 degrees azimuth

at 55, 60, and 65 dB SPL with 60 dB SPL speech-

weighted noise presented at 90 degrees azimuth on
the side with the implant with the beamformer active

and inactive. Word recognition was significantly better

for all presentation levels with the beamformer active,

showing an average SNR improvement of more than

10 dB. Number recognition was also significantly better

with the beamformer active, demonstrating an average

SNR improvement of 7.2 dB. The authors concluded that

the two-stage adaptive beamformer leads to significant
improvement in speech recognition in noise for CI users.

Spriet and colleagues (2007) investigated the per-

formance of the BEAM processing strategy in the

Nucleus Freedom speech processor with five CI users.

Participants repeated sentences in the presence of dif-

ferent types, levels, and locations of background noise

using the standard directional microphone and BEAM.

Speech-weighted noise and multitalker babble were
presented at constant levels of 55 and 65 dB SPL either

from one source located at 90 degrees azimuth or from

three sources located at 90, 180, and 270 degree azi-

muths. BEAM improved the average SNR in all

Evaluation of CI Processing Using the R-Space/Brockmeyer and Potts
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conditions when compared to the standard directional

microphone. Improvement ranged from 1.5 dB with

55 dB SPL speech-weighted noise presented from three

locations to 15.9 dB with 65 dB SPL multitalker bab-
ble presented from one location. Spriet and colleagues

(2007), similar to Wouters and Vanden Berghe (2001),

concluded that BEAM improves speech recognition in

background noise.

Studies by Chung and colleagues also investigated

the potential for directional microphones, similar to

BEAM, to improve speech recognition in noise for CI

recipients. Chung et al (2004) recorded monosyllabic
words processed through a hearing aid using the omni-

directional microphone setting, the directional micro-

phone setting, and the directional microphone setting

with noise-reduction technology active. For the record-

ing, thewordswere presented at 0 degrees azimuth at1

3 dB SNR, while speech spectrum noise was presented

from seven locations around the recording microphone.

The recordingwas thenpresented toCIusers. Participants
performed significantly better with the two directional

microphone settings compared to the omnidirectional set-

ting. The directional microphone resulted in an averaged

improvement of 11.7 percentage points.

Chung and Zeng (2009) recorded sentences processed

through a hearing aid using the omnidirectional, fixed

directional, and adaptive directional setting. These

recordings were then presented to CI users through
direct audio input. Results showed significantly better

speech recognition in noise with the adaptive direc-

tional setting.

R-SPACETM

CI users are not alone in their reports of difficulty

understanding in background noise, as hearing aid
users also report increased difficulty in noise (Kochkin,

2005). There has been a notable amount of research on

hearing aid users’ performance in background noise

with different processing strategies, some of which

are similar to those found in the Freedom device,

including traditional directional microphones and adap-

tive beamformers. The effectiveness has been demonstra-

ted in research studies (Soede et al, 1993; Saunders and
Kates, 1997; Ricketts and Mueller, 1999; Wouters et al,

1999; Pumford et al, 2000; Valente et al, 2000; Amlani,

2001; Blamey et al, 2006). However, it has been noted

that the improvement measured in the laboratory is

often better than what users (both CI and hearing

aid) report in their real-world situations. The difficulty

of effectively evaluating an individual’s performance

in a way that reflects real-world listening is an often
recognized concern in hearing research (Walden et al,

1984; Cox and Alexander, 1991; Cox et al, 1991; Revit

et al, 2002; Saunders and Forsline, 2006). To address

this issue, Compton-Conley and colleagues (2004) de-

veloped an eight-loudspeaker test system to replicate

a restaurant environment, the R-SPACETM.

A studywas conducted by the developers to assess the

validity of the R-SPACE and other typical measures of
directionality. Three methods of simulating restaurant

noise were employed: noise from a single source behind

the individual, noise from a single source above the

individual, and the R-SPACE, with noise from eight

loudspeakers surrounding the individual. Participants

repeated sentences presented from 0 degrees azimuth

and a reception threshold for sentences (RTS) was cal-

culated. RTS is the SNRneeded to obtain 50% correct on
the sentence-recognition task. These simulations were

then compared to measurements taken at an actual res-

taurant, referred to as the live condition. When noise

was presented behind or above the individual, perform-

ance varied significantly from the live condition. Differ-

ences in the RTS ranged from 1.6 dB to 2.4 dB when

comparing the noise behind condition to the live condi-

tion and from0.4 dB to 9.1 dBwhen comparing the noise
above condition to the live condition. Variation in scores

was dependent upon the microphone configuration

tested. The R-SPACE simulation, however, was not

significantly different from performance in the live con-

dition, with differences in RTS varying from 0.3 dB to

0.5 dB (Compton-Conley et al, 2004).

In addition to how the sound is processed, another

factor that typically contributes to CI recipients’ diffi-
culty in background noise is that they are unilaterally

stimulated. It has been shown for many years that bin-

aural hearing improves speech recognition in noise

(Levitt and Rabiner, 1967; MacKeith and Coles, 1971;

Duquesnoy, 1983; Bronkhorst and Plomp, 1989, 1992;

Hawley et al, 2004; Dubno et al, 2008). Binaural benefit

is thought to emerge from the combination of the acous-

tic head-shadow effect, binaural squelch, and binaural
redundancy. The head-shadow effect occurs when the

head physically blocks some of the noise from reaching

the far ear, while binaural squelch and binaural redun-

dancy are central auditory processing phenomena that

allow the listener to effectively separate speech and

noise. These binaural advantages are comprehensively

discussed elsewhere (Dillon, 2001; Tyler et al, 2002;

Tyler et al, 2003; Brown and Balkany, 2007; Ching
et al, 2007).

Recent research has focused on measuring the effects

of the head-shadow effect, binaural squelch, and binau-

ral redundancy in bilateral CI recipients. Research sug-

gests that CI recipients receive the largest bilateral

benefit from the head-shadow effect (Gantz et al,

2002; Müller et al, 2002; Tyler et al, 2002; van Hoesel

et al, 2002; van Hoesel and Tyler, 2003; Litovsky et al,
2006; Basura et al, 2009; Laske et al, 2009). The mag-

nitude of the benefit received from the head-shadow

effect varies between studies but is typically estimated

to be between 4 and 7 dB (van Hoesel and Tyler, 2003;
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Litovsky et al, 2006; Basura et al, 2009). The benefit

received from binaural squelch and redundancy is not

as clear. Several studies showed about half of the par-

ticipants demonstrating significant binaural squelch
and/or binaural redundancy (Gantz et al, 2002; Tyler

et al, 2002; Litovsky et al, 2006), while other studies

observed no significant effect of binaural squelch or

redundancy (van Hoesel and Tyler, 2003; Laske et al,

2009). Other recent studies suggest that the benefit

of binaural squelch appears after extended bilateral

CI use. Buss et al (2008) showed no significant binau-

ral squelch effect after 3 mo of bilateral CI use, but a
squelch effect did emerge between 6 mo and 1 yr after

bilateral implantation. Meanwhile, Eapen et al (2009)

demonstrated continued growth of binaural squelch

for 4 yr after bilateral implantation.

METHOD

Whether the recipient has unilateral or bilateral
CIs, understanding speech in the presence of

background noise is one of the most challenging tasks.

The goal of the present study was to measure speech rec-

ognition of unilateral and bilateral CI recipients in back-

ground noise with the R-SPACE. Four signal processing

options, including standard dual-port directional (STD),

ADRO, ASC, andBEAM,weremeasured at two different

noise levels, a moderate-intensity level of 60 dB SPL and
a loud-intensity level of 70 dB SPL. This study may help

determine the speech processing option that yields the

best speech recognition in background noise for CI recip-

ients, which could result in improved programming and

increased patient benefit and satisfaction.

Participants

Thirty participants, 27 unilateral and three bilateral

CI recipients, with a mean age of 60.0 yr (range of 25–

82 yr) took part in this study. Table 1 reports individual

demographic and hearing history information for uni-

lateral subjects. Information was obtained from past

audiograms and patient reports. The mean years of

hearing loss and years of severe to profound hearing

loss prior to implantation were 30.7 (range of 1–
54 yr) and 13.8 (range of 1–45 yr), respectively. The

mean years of hearing aid use prior to implantation

in this sample was 20.3 (range of 0 [no experience] to

47 yr). For the bilateral participants, the data from

one ear were randomly selected and included in the uni-

lateral data analysis. All participants were implanted

with the Nucleus 24 Contour or Contour Advance inter-

nal array and were programmed following a clinical
protocol developed at Washington University School

of Medicine (Skinner, 2003). Specific programming in-

formation is reported in Table 2. The mean years of

implant use was 3.4 (range of 0.5–7.9 yr). Twenty-seven

of the 30 participants used the Advanced Combina-

tion Encoder (ACE) strategy. The remaining three par-

ticipants used Spectral Peak (SPEAK), Continuous

Interleaved Sampling (CIS), and MP3000 (a research
strategy previously studied at Washington Univer-

sity). All participants had open-set speech recognition.

Consonant–nucleus–consonant (CNC) word scores with

the CI alone ranged from 17 to 86%, with a mean score

of 56.8%. Table 3 reports the programming information

and CI use of the bilateral participants. Bilateral par-

ticipants (participants #2, #8, and #9) had a mean of

3.3 yr (range of 2–4.5 yr) between the first and second
implant and a mean of 2.7 yr (range 1.7–3.4 yr) of bi-

lateral use at the time of testing.

Approval for this study (#08-1038) was obtained from

the Washington University School of Medicine Human

Research Protection Office (HRPO) prior to data collec-

tion. Participants signed an informed consent docu-

ment approved by the HRPO committee. Participants

were reimbursed for their time and travel.

Equipment/Test Environment

The Nucleus 24 Contour and Contour Advance inter-

nal arrays used in this study consist of a receiver/

stimulator with 24 electrodes, 22 intracochlear electro-

des, and two extracochlear electrodes (Parkinson et al,

2002). The Nucleus Freedom processor houses the
microphones and the main computer, which processes

the incoming sound. Custom Sound version 2.0 devel-

oped by Cochlear Americas was used to program the

speech processor. The speech processor was hardwired

to a programming interface (Cochlear Ltd. Program-

ming Pod) connected to a personal Dell computer.

The speech processing strategies implemented by this

system include SPEAK, ACE, and CIS (Skinner et al,
2002). All participants were tested using a loaner pro-

cessor to ensure that the equipment was performing

optimally.

For speech testing, eight loudspeakers were posi-

tioned in a 360 degree arc, with loudspeakers spaced

in increments of 45 degrees. The participant was seated

in the center of the arc, 24 inches from each loudspeaker

(see Figure 1). Each loudspeaker was at a height of 44
inches, to be ear level for a seated average-height adult.

All testing was completed in a double-walled sound-

treated booth (8’3” 3 8’11”), which met the appropriate

standard set forth by the American National Standards

Institute (1999) for permissible ambient noise levels

(S3.1-1999, R 2008).

An Apple iMac 17 personal computer with a 2 GHz

Intel Core 2 Duo Processor andMacOSX operating sys-
tem was used to operate the R-SPACE. The R-SPACE

configuration was implemented via professional audio

mixing software (MOTU Digital Performer 5) and an

audio interface (MOTU 828mkII, 96 kHz firewire

Evaluation of CI Processing Using the R-Space/Brockmeyer and Potts
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interface). The output of the audio interface was sent to
four amplifiers (ART SLA-1, two-channel stereo linear

power amp with 100 W per channel) and then to eight

loudspeakers (Boston Acoustic CR67) positioned in a

360 degree array.

For soundfield threshold testing, the participant was

seated in a double-walled sound-treated booth at 0 de-

grees azimuth, 1 m from the loudspeaker (Urei Model

809). A Dell personal computer with a sound card, a
power amplifier (Crown, Model D-150), and a custom-

designed mixing and amplifying network (Tucker-Davis

Technologies) was utilized for presenting warble tones.

Test Materials

Frequency-modulated tones (centered at 250, 500,

1000, 2000, 3000, 4000, and 6000 Hz), sinusoidal car-
riersmodulatedwith a triangular function over standard

bandwidths recommended for use in the sound field by

Walker et al (1984), were used to obtain aided soundfield

thresholds prior to speech recognition testing. For speech

testing, the Hearing in Noise Test (HINT sentences) and
R-SPACE noise were used. The HINT sentences consist

of 25 recorded, phonetically balanced lists of 10 senten-

ces each. The lists were recorded by a male speaker of

American English and were designed for adaptive meas-

urement of the RTS (Nilsson et al, 1994).

The R-SPACE noise recording was made inside a busy

neighborhood restaurant and consists of uncorrelated

noise, including sounds of dishes clanking, people talking,
and background music (Compton-Conley et al, 2004). It

was recorded using the Knowles Electronic Manikin for

Acoustic Research, equipped with a circular, horizontal

array of eight interference-tube microphones placed in

equal 45 degree increments around the head.

Calibration

For calibration of HINT sentences and the R-SPACE

noise, a sound-level meter (Bruel & Kjaer, Model 2230)

was placed with the microphone (Bruel & Kjaer, Model

4155) at 90 degrees azimuth to the stimulus in the

Table 1. Unilateral Participants’ Demographic and Hearing History Information

Participant Gender Age Implanted Ear

Years of

Hearing Loss

Years of Severe to

Profound Hearing Loss

Years of

Hearing Aid Use Etiology

1 M 32 L 31 31 28 Unknown

2 F 50 R 40 20 29 Genetic

3 F 45 R 18 14 14 Unknown

4 M 37 R 36 36 33 Maternal rubella

5 M 58 L 9 2 7 Unknown

6 M 48 L 39 35 39 Genetic

7 M 67 L 35 3 10 Noise exposure

8 M 65 R 54 2 24 Measles

9 M 50 L 47 43 47 Unknown

10 F 75 R 30 4 30 Unknown

11 F 40 R 32 3 0 Unknown

12 F 80 L 20 15 10 Unknown

13 M 75 L 44 14 38 Otosclerosis

14 F 68 R 30 5 20 Measles

15 F 46 R 37 35 37 Measles

16 F 77 R 11 1 7 Unknown

17 M 82 L 40 25 20 Ototoxicity

18 M 71 L 40 5 35 Otosclerosis

19 F 25 L 6 3 3 Ménière’s disease

20 M 50 R 48 8 37 Maternal rubella

21 M 68 L 49 15 30 Noise exposure

22 F 78 R 1 1 1 Unknown

23 M 58 R 21 3 19 Unknown

24 F 70 L 15 6 0 Ménière’s disease

25 F 60 L 45 10 15 Otosclerosis

26 M 49 R 45 45 39 Meningitis

27 M 78 R 25 4 4 Unknown

28 F 57 L 30 5 14 Genetic

29 M 70 L 22 20 1 Ototoxicity

30 M 61 L 22 1 17 Unknown

Mean 60 30.7 13.8 20.3

SD 15.2 13.9 13.8 14.2

Note: For bilateral participants, the ear randomly chosen to be included in the unilateral analysis is listed. Bilateral participants are denoted in bold.
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center of the R-SPACE loudspeaker array parallel to
the center of the loudspeakers. Measurements were

made with 0 dB attenuation using a linear-shaped dB

SPL scale. For the HINT sentences, the overall SPL

of all lists was taken as the average of the peaks on

the slow, root-mean-square , linear scale through the

front loudspeaker. The maximum output was recorded

as 83.7 dB SPL. For the R-SPACE noise, an equivalent

continuous SPL measure was obtained for 5 min with
the sound-level meter set using equivalent continuous

noise level (dB Leq). The maximum output was 73.9 dB

SPL. The magnitude of attenuation was chosen based

on the measured maximum output and the desired

intensity level of the signal.

Test Procedures

Aided Soundfield Thresholds

Frequency-modulated tone soundfield thresholds

were obtained at 250, 500, 1000, 2000, 3000, 4000, and

6000 Hz in a modified Hughson-Westlake procedure

(Carhart and Jerger, 1959) with a 12 and –4 dB HL
step size. Soundfield thresholds were measured in

the STD program to verify audibility. Mean sound-

field thresholds are shown in Figure 2.

Reception Threshold for Sentences

Two lists of 10 HINT sentences, or 20 sentences total,

were presented from the loudspeaker located at 0 de-

grees azimuth with the R-SPACE noise presented from

all eight loudspeakers (0, 45, 90, 135, 180, 225, 270, and
315 degree azimuths). The noise was presented at two

different intensity levels, amoderate level of 60 dB SPL

and a loud level of 70 dB SPL (Pearson et al, 1977). An

RTS was obtained using an adaptive procedure. The

level of sentence presentation was adjusted based on

correct or incorrect response. If a correct response

was obtained, the presentation level of the next sen-

tence was decreased. If an incorrect response was
obtained, the presentation level of the next sentence

was increased. The presentation level for the first four

sentences was adjusted in 4 dB steps. Presentation

Table 2. Unilateral Participants’ Programming Information and Variables Related to CI Use and Performance

Participant Strategy Rate (Hz) Maxima Years of Implant Use CNC Score (%)

1 ACE 2400 6 1.3 19

2 ACE 1800 8 5.4 58

3 ACE 900 8 3 57

4 ACE 500 10 1 25

5 ACE 1200 10 3.4 69

6 ACE 500 10 3.2 36

7 ACE 1800 8 5.1 74

8 ACE 900 12 6.2 82

9 ACE 1800 8 3 55

10 ACE 900 8 0.5 41

11 ACE 1800 10 3.3 86

12 ACE 1200 10 5.9 63

13 ACE 1800 8 5.2 80

14 ACE 1800 10 3.6 52

15 ACE 1800 8 4.7 46

16 ACE 1200 10 5.1 72

17 ACE 2400 10 2.2 17

18 ACE 1800 8 4.5 50

19 ACE 1800 8 0.5 52

20 ACE 2400 10 2.9 75

21 CIS 900 10 0.5 24

22 ACE 1800 8 7.9 48

23 SPEAK 250 8 4.1 82

24 ACE 1200 8 2.2 57

25 ACE 900 12 6.3 78

26 ACE 1200 8 3.8 60

27 ACE 2400 10 2.3 46

28 MP3000 500 6 1.5 52

29 ACE 1200 10 0.8 58

30 ACE 1800 8 1.6 85

Mean 3.4 56.8

SD 2.0 0.2

Note: Bilateral participants are denoted in bold.
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levels for sentences 5 to 20 were adjusted in 2 dB step

sizes. A presentation level for a 21st sentence was cal-

culated dependent upon whether the 20th sentence was

repeated correctly or incorrectly. RTSwas calculated by
averaging across sentences 5 to 21 and subtracting the

noise level. One practice list was presented to familiar-

ize the participants with the tasks. The lists were ran-

domly assigned between conditions.

The participant’s preferred everyday program with

no additional processing was used for the STD condi-

tion. Each processing option was added individually

to the STD program to create three additional pro-
grams. The participant’s everyday volume (range 7–

9) and sensitivity settings (range 9–14) were used for

all conditions. The nontest ear was plugged when at

least one unaided hearing threshold was at 60 dB HL

or better. The four processing options and two noise lev-

els were counterbalanced for testing.

For unilateral CI participants, all testing was per-

formed in one session. Bilateral CI participants

attended two sessions, one for each ear, with the bilat-

eral condition tested at 60 dB SPL in the first session
and 70 dB SPL in the second.

Statistical Analysis

Unpaired t-tests were performed to compare RTSs

within processing options and noise levels, and a mixed-

model repeated-measures analysis of variance

(ANOVA) was used to analyze RTSs across all combi-
nations of processing options and noise levels. An

unstructured covariance structure was designated

within the mixed model to account for the completely

within-participant crossed study design with a focus

on the noise level3 processing option interaction. This

interaction tested the hypotheses regarding the equal-

ity of changes across noise levels and processing

options. Tukey-adjusted P values within the ANOVA
model were used to determine significance (p # .05)

for pairwise comparisons.

Demographic and audiologic variables were investi-

gated to determine if any impacted the interaction be-

tween noise level and processing options. The variables

of interest included the implanted ear, participant age

at testing, years of hearing loss, years of severe to pro-

found hearing loss, and years of hearing aid use prior to

Table 3. Hearing History and Programming Information of Bilateral Participants

Participant Years Between First and Second CI Years of Bilateral CI Use CNC Score (%) Ear Strategy Rate (Hz) Maxima

2 2 3.4 58 R ACE 1800 8

62 L ACE 1800 8

8 4.5 1.7 82 R ACE 900 8

85 L ACE 1800 8

9 3.5 3 52 R ACE 1800 8

55 L ACE 1800 8

Mean 3.3 2.7 66

SD 1.3 0.9 14

Note: First implanted ear is shown in bold.

Figure 1. A schematic diagram of the R-SPACE array showing
the eight loudspeakers in a 360 degree arc, 24 inches from the lis-
tener. Figure taken from Compton-Conley et al (2004) and used
with permission from the author.

Figure 2. Mean soundfield thresholds (dBHL) and61 SD for the
CI with STD processing at user settings.
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implantation. Two variables related to the CI were also

analyzed. These were years of CI experience and the

recipient’s most recent CNC word score. The three-

way interaction among potential moderating variables,
processing options, and noise levels could not be

explored due to sample size limitations. As a result,

the potential moderating variables were divided into

groups. The continuous variables were divided by the

median, with ear of implantation, the only noncontinu-

ous variable, divided categorically. Unpaired t-tests

were used to compare data between potential moderat-

ing variable groups within noise levels and processing
options, and amixed-model ANOVAwas used to explore

the noise level3 processing interactionwithin potential

moderating variable groups. If no significant interac-

tion was found, the interaction was dropped from the

mixed model and the main effects of processing option

and noise level were investigated. All data analysis was

produced using SAS software, version 9.2 of the SAS

System for Linux (SAS Institute Inc., Cary, N.C.).

RESULTS

Unilateral Participants

Statistical analyses identified both noise level (F[1,29]5

29.8, p , .0001) and processing option (F[3,29]522.3,

p , .0001) as significant main effects. A significant
(F[3,29]55.18, p5 .006) noise level 3 processing op-

tion interaction was also identified, indicating that

processing is differentially affected by noise level.

The four processing options investigated showed dif-

ferent patterns of change with increasing noise level.

Due to the significant interaction, the effect of noise

level and processing option independent of each other

was not meaningful.
The results in 60 dB SPL noise for each of the four

processing options can be seen in Figure 3. A smaller

RTS (shorter bar) indicates better speech recognition

in noise. STD processing resulted in a mean RTS of

10.8 dB. The poorest performance was with ADRO pro-

cessing, with a mean RTS of 12.8 dB. ASC and BEAM

processing showed an improvement in RTS relative to

STD and ADRO processing, with means of 9.5 and 8.3
dB, respectively. BEAM was the only processing option

that resulted in a statistically significant improvement,

with it being better than STD (t[29]5–3.82, p # .05)

and ADRO processing (t[29]55.13, p # .05). The mean

RTSs for STD, ADRO, and ASC were not statistically

different from each other, although ASC performed

better than STD and ADRO processing. There was

also no statistical difference between ASC and BEAM
processing.

The results in 70 dB SPL noise for each of the four

processing options can be seen in Figure 4. STD and

ADRO processing showed similar performance, with

mean RTSs of 15.6 and 15.0 dB, respectively. ASC pro-

cessing had significantly better mean RTSs compared

to STD (t[29]5–6.87, p # .05) and ADRO processing

(t[29]56.36, p # .05). BEAM processing also exhibited

significantly better RTSs than STD (t[29]5–5.29, p #

.05) and ADRO (t[29]54.87, p # .05) processing. No sig-

nificant differences were observed between STD and

ADRO or between ASC and BEAM. ASC processing
had the best mean RTS of the four conditions (9.7 dB), fol-

lowed by BEAM processing with a mean RTS of 11.4 dB.

The difference in performance between 60 and 70 dB

SPL noise across the four processing options can be seen

in Figure 5. The participants’ performance was poorer

for all processing conditions at 70 dB SPL. The amount

of decrease varied among the four processing options.

The detrimental effect of the noise increased as the level
of the noise increased. The smallest decrementwas seen

with ASC processing, whose performance was essen-

tially the samewith a difference of only 0.2 dB. STDpro-

cessing had the largest change, with a decrease in

performance of 4.8 dB. ADRO exhibited a decrease in

performance of 2.2 dB, and BEAM showed a decrease

Figure 3. Mean RTSs for unilateral participants in 60 dB SPL
noisewith STD, ADRO, ASC, andBEAMprocessing options. Error
bars represent11 SD. The asterisks represent a significant differ-
ence between processing options (p # .05).

Figure 4. Mean RTSs for unilateral participants in 70 dB SPL
noisewith STD, ADRO, ASC, andBEAMprocessing options. Error
bars represent11 SD. The asterisks represent a significant differ-
ence between processing options (p # .05).
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of 3.1 dB with increased noise. STD (t[29]5–3.94, p #

.05) and BEAM (t[29]5–5.16, p # .05) processing

resulted in significantly poorer RTSs in 70 dB SPL noise

compared to the performancewith these processing con-
ditions at 60 dB SPL. There was no statistical difference

between noise levels for ADRO and ASC processing.

Large standard deviations were evident throughout

the analysis of the results. The standard deviations

ranged from 4.87 with STD processing in 70 dB SPL

noise to 7.41 with ADRO processing in 60 dB SPL noise.

The large standard deviations are most likely due to the

significant differences in speech-recognition ability of
the participants, who were recruited from a large clin-

ical population. To participate in the current study, any

level of measurable open-set speech recognition was

acceptable. CNC scores in quiet ranged from 17 to 86%.

Moderating Variables

Demographic and audiologic variables were investi-
gated to determine if any had an impact on the interac-

tion between noise level and processing options. If no

significant interaction was found, the main effects of

noise level and processing option were examined. The

variables explored were implanted ear, age at testing,

years of hearing loss, years of severe to profound hear-

ing loss, and years of hearing aid use prior to implanta-

tion. Years of hearing loss, years of severe to profound
hearing loss, and years of hearing aid use were highly

correlated; consequently, only years of hearing loss

prior to implantation is further discussed. Implanted

ear, age at testing, and years of hearing loss were found

to be significant moderators for the noise level 3 pro-

cessing option interaction. The right ear CI group

(F[3,13]53.82, p5 .04), younger participants (F[3,14]5

4.24, p5 .03), and participants with more years of hear-

ing loss (F[3,15]56.24, p5 .006) exhibited a significant

noise level 3 processing interaction. This means that

the processing options revealed different patterns of

change when the noise level increased from 60 to 70
dB SPL. The processing condition was differentially

affected by noise level. This can be seen in the decrease

in performance of younger participants as the noise

level increased with STD, ADRO, and BEAM, while

their performance with ASC improved by 0.4 dB with

increased noise.

The other groups (left ear CI, older participants, and

participants with fewer years of hearing loss) revealed
significant main effects of noise level and processing

option but had no significant interaction. This means

that performance varied between processing options

and noise level independent of each other. Older sub-

jects, for example, demonstrated a significant main

effect for both noise level (F[1,14]525.4, p5 .0002)

and processing condition (F[3,14]519.9, p , .0001).

The older subjects performed poorer at 70 than at 60
dB SPL for all processing options.

Additional variables related to CI history and per-

formance were also analyzed. Years of CI use and

CNC speech-recognition word scores in quiet were

found to be significant moderators for the noise level 3

processing option interaction. Participants with more

years of CI experience (F[3,14]58.99, p5 .001) and

higher CNC scores (F[3,15]54.11, p5 .03) showed a
noise level 3 processing interaction, indicating that

processing conditions were differentially affected by

noise level. For example, performance with ASC for

these participants either stayed the same or improved

as the noise level increased, while performance with

STD, ADRO, and BEAM worsened with increasing

noise. Also, for these participants, BEAM showed best

performance in 60 dB SPL noise, and ASC showed best
performance in 70 dB SPL noise.

Participants with less CI experience (F[3,14]510.9,

p5 .0006) and lower CNC scores (F[3,13]57.33,

p5 .004) showed a significant main effect of processing

condition. Performance for these participants was

better with ASC and BEAM than STD and ADRO

regardless of the noise level, with ASC showing best

performance in both noise levels. In addition, speech
recognition in quiet was the only moderating variable

predictive of speech recognition in noise. CI partici-

pants with higher speech recognition scores in quiet

performed better in noise across all processing options

and noise levels (P values range from .06 to .0003).

Bilateral Participants

Due to the small sample size, no statistical analyses

could be performed on the bilateral data, but perform-

ance for the three bilateral CI participants (#2, 8, and 9)

is described below. See Table 2 for individual ear and

Figure 5. MeanRTS differences between noise levels (60 and 70
dB SPL) for unilateral participants (RTS at 70 dB SPL – RTS at
60 dB SPL) with STD, ADRO, ASC, and BEAM processing
options. Error bars represent 11 SD. The asterisks represent
a significant difference between noise levels within processing
options (p # .05).
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Table 3 for bilateral information for these participants.

Figure 6 shows the mean RTSs for the right ear, left ear,

and bilateral conditions with the four processing options

in 60 dB SPL noise. Bilateral improvement was evident
for STD, ADRO, and BEAM processing options. When

comparing the bilateral condition to the better monaural

ear condition, STD processing revealed a mean improve-

ment of 1.4 dB. ADRO processing had a mean bilateral

improvement of 1.3 dB, and BEAM processing had a

mean improvement of 3.0 dB. ASC processing was the

only option inwhich the bilateral condition did not result

in the most favorable RTS. Best performance with ASC
processing was seen for the left ear alone condition. This

result was influenced by one participant’s very low RTS

in the left ear with ASC processing. Overall, the best

bilateral performance was with BEAM processing, with

a mean RTS of 1.6 dB. Table 4 shows the three bilateral

participants’ individual RTSs for the four processing

options in 60 dB SPL noise.

The mean RTSs for the right ear, left ear, and bilat-
eral conditions can be seen in Figure 7 for 70 dB SPL

noise with the four processing options.When comparing

the bilateral condition to the better unilateral ear con-

dition, STD processing resulted in amean improvement

of 2.5 dB. ADRO processing revealed a mean RTS

improvement of 7.2 dB, and ASC processing improved

4.7 dB. BEAM processing had the largest improvement

(9.7 dB) between the unilateral and bilateral conditions
among the four processing options. As seen in 60 dB

SPL noise, BEAM processing also had the best overall

bilateral performance in 70 dB SPL noise, with a mean

RTS of 0.4 dB. Table 5 shows the three bilateral partic-

ipants’ individual RTSs for the four processing options

in 70 dB SPL noise.

Unilateral performance for the bilateral participants

typically followed the trend of the other unilateral par-
ticipants, showing poorer performance when noise level

increased from 60 to 70 dB SPL. This trend did not occur

when the participants were tested bilaterally. Three of

the processing options (ADRO, ASC, and BEAM) were
actually better with 70 dB SPL noise than with 60 dB

SPL noise. By comparing the individuals’ data in Tables

4 and 5, it is evident that when the three processing

options were active, the bilateral RTSs decreased

(improved) for all bilateral participants as the noise

level increased. The only exception is for participant

#9 with BEAM processing. When the decrease in unilat-

eral participants’ performance was combined with the
improvement in bilateral participants’ performance from

60 to 70 dB SPL, there was a difference of 5.5 dB for

ADRO processing, 3.0 for ASC processing, and 4.3 dB

for BEAM processing. These are very large differences

and suggest a large bilateral benefit, especially as the lis-

tening situation becomes more challenging.

DISCUSSION

The results of this study show that CI recipients can

have improved speech recognition in noise with

processing options available clinically. ADRO process-

ing demonstrated results similar to STD processing

Figure 6. Mean RTSs of bilateral participants in 60 dB SPL
noisewith STD, ADRO,ASC, andBEAMprocessing options.Mean
RTSs are shown for unilateral right ear, unilateral left ear, and
bilateral conditions.

Table 4. Individual RTSs for the Three Bilateral
Participants with the Four Processing Options
at 60 dB SPL

Participant Test Condition

Processing Option

STD ADRO ASC BEAM

2 Right 12.2 18.2 11.6 4.8

Left 12.4 7.6 5.6 7.1

Bilateral 7.2 11.8 5.4 7.8

8 Right 3.5 0.2 3.5 3.5

Left 0.8 –0.4 –1.3 0.1

Bilateral –1.9 2.0 1.1 –4.4

9 Right 16 19.6 13.6 10.8

Left 4.2 21.2 3.8 6.6

Bilateral 7.8 10.8 7.9 1.5

Figure 7. Mean RTSs of bilateral participants in 70 dB SPL
noisewith STD, ADRO,ASC, andBEAMprocessing options.Mean
RTSs are shown for unilateral right ear, unilateral left ear, and
bilateral conditions.
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(i.e., no additional processing). This finding agrees with

James et al (2002), who found no difference between

these processing options in noise for adult CI recipients.

Dawson et al (2004), however, did find a difference

between ADRO and standard processing in noise with

pediatric CI recipients. The difference between these

studies may be due to the participants tested, as the

Dawson study used pediatric CI recipients and the
James study used adult CI recipients. ADRO perform-

ance also remained relatively stable when the noise

level was increased. This stability across noise levels

can most likely be explained by the maximum gain rule

of ADRO processing, which does not allow the gain to

exceed a specified maximum amount. At the moderate

noise level used in this study, the amplification of back-

ground noise had already met the maximum amount of
allowable gain, and therefore, no additional amplifica-

tion was provided when the noise level was increased.

This study found that BEAM processing resulted in

significantly better performance than STD and ADRO

processing at both noise levels. The ability of BEAM

to improve speech recognition in noise for CI recipients

has been demonstrated in previous research. Wouters

and Vanden Berghe (2001) and Spriet et al (2007) found
larger improvements in SNRs than the current study.

However, these models used different noise stimuli

(speech-weighted noise and multitalker babble), which

were presented from one to three noise sources. The cur-

rent study used R-SPACE (live restaurant) noise pre-

sented from a diffuse field. The R-SPACE noise has

been previously found to result in a poorer RTS than

other noise. Valente and colleagues (2006) tested bilat-
eral hearing aid users in the R-SPACE and found that

the RTS was 1.3 dB poorer for R-SPACE noise than for

HINT noise, which is filtered tomatch the average long-

term spectrum of HINT sentences. Therefore, speech-

recognition tasks may be more difficult when the

R-SPACE noise is used compared to other continuous

noise types.

The difference in the R-SPACE configuration may

also explain the difference between the current findings

and previous research. The R-SPACE configuration

presents noise from all eight loudspeakers. Therefore,
the front speaker presents both speech and noise.

BEAM utilizes directionality to divide speech from spa-

tially separated noise. When the speech and noise are

presented together from the front speaker, BEAM relies

on the adaptive noise cancellation stage to reduce the

noise. BEAMmay bemore effective at improving speech

recognition in noise when the noise source is spatially

separated from the speech signal. Since typical real-
world listening situations often include combined

speech and noise, previous studies may have overesti-

mated the absolute performance of BEAM, and current

results may better predict the performance of BEAM

processing in real-world situations similar to that repli-

cated by the R-SPACE.

BEAM processing showed a significant decrease in

performance with the increase in noise level. This
reduction in performance is probably due to the second

stage of BEAM, which utilizes adaptive noise cancella-

tion. This may affect the clarity of the speech reference

by filtering out portions of the speech signal along with

the noise.

ASC processing resulted in the best performance at

the loud noise level and was almost as good as BEAM

at the moderate noise level. This result agrees with
the findings of Wolfe et al (2009), where ASC improved

speech recognition in the presence of loud noise levels.

ASC processing also maintained performance across

noise levels, having almost equivalent performance at

60 and 70 dB SPL. The benefit of ASC processing at a

louder noise level was not necessarily expected in the

R-SPACE, as ASC processing limits background noise

by increasing the AGC kneepoint. This results in reduc-
tion in amplification for distant, softer sounds and

increased amplification of closer, louder sounds. One

would postulate that in the diffuse noise environment

of the R-SPACE, where the noise and speech sources

are at the same distance, ASC processing would not sig-

nificantly benefit speech recognition. The noise sources

were not equidistant from the listener in the Wolfe

et al (2009) study. The rear noise sources were farther
from the listener than the front noise sources, and the

speech signal was closer to the listener than all noise

sources. It is possible that in the current study the reg-

ular directional microphone increased the sensitivity of

sounds arriving from the front and the ASC processing

maximized suppression of background noise. These two

features working in conjunction may be responsible for

the performance in a diffuse noise field. Regardless of
the mechanisms at work, the findings suggest that

ASC processing is a good option to limit amplification

of background noise at moderate and loud levels while

maintaining speech intelligibility.

Table 5. Individual RTSs for the Three Bilateral
Participants with the Four Processing Options
at 70 dB SPL

Participant Test Condition

Processing Option

STD ADRO ASC BEAM

2 Right 18.0 18.0 9.4 10.4

Left 13.8 15.9 9.5 15.1

Bilateral 9.1 5.3 3.9 2.0

8 Right 16.7 8.6 1.9 3.3

Left –1.3 1.1 1.2 –0.8

Bilateral –0.1 –1.1 –2.0 –5.3

9 Right 19.8 19.6 13.4 18.7

Left 19.1 19.1 9.4 16.1

Bilateral 15.1 10.4 4.0 4.5
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It is also important to note the possible effect of infin-

ite compression on speech recognition in noise. The

Nucleus Freedom processor, at default settings, codes

inputs from 25 to 65 dB SPL into the electrical dynamic
range. The threshold (25 dB SPL) can be adjusted in the

programming software, but the upper limit (65 dB SPL)

is fixed (Wolfe et al, 2009). Therefore, any signal greater

than 65 dB SPL would be exposed to high levels of

compression.

The RTSs obtained in this study resulted in infinite

compression being activated for the majority of partic-

ipants across processing conditions and noise levels.
Five participants were not subject to infinite compres-

sion in the 60 dB SPL noise condition, as they obtained

RTSs below 15 dB across all processing conditions.

Seven participants had infinite compression in some

conditions and not in others, as they obtained RTSs

above and below 15 dB across processing conditions.

The remaining 18 participants were subject to infinite

compression across all processing conditions in both
noise levels. In addition, ASC changes the magnitude

of infinite compression, as ASC aims to keep the noise

floor at least 15 dB below the AGC kneepoint. Limiting

the background noise to below the point where speech is

compressed may be the reason ASC performed best at

the loud input level.

The three bilateral participants demonstrated a

bilateral benefit with almost all processing options at
both noise levels. This supports the findings of previous

bilateral CI studies that showed improved speech rec-

ognition in noise with binaural hearing. Several studies

attribute the majority of bilateral benefit to the head-

shadow effect (Gantz et al, 2002; Tyler et al, 2003;

van Hoesel and Tyler, 2003; Litovsky et al, 2006; Buss

et al, 2008; Basura et al, 2009). In the current study, the

noise source is diffuse. The exact SNR at each ear varies
as the R-SPACE noise changes in real time. The R-

SPACE noise is uncorrelated, so the exact level of noise

coming out of each loudspeaker may be higher or lower

than other loudspeakers at any moment in time. The

overall SNR at each ear should be similar when aver-

aged over time. It is possible that a rapid-changing

head-shadow effect may contribute to the observed

bilateral improvement.
The current results with the three bilateral partici-

pants showed a mean bilateral improvement as high

as 9 dB compared to unilateral performance. Previous

studies estimated the head-shadow effect to improve

the SNR between 4 and 7 dB (van Hoesel and Tyler,

2003; Litovsky et al, 2006; Basura et al, 2009). The

greater bilateral benefit observed in this study may

be attributed to the central phenomena of binaural
squelch and redundancy. The noise presented from

each speaker is not identical, allowing the brain to

use differences in the timing and spectrum of the input

signal to separate the speech and noise (Tyler et al,

2002; Tyler et al, 2003; Ching et al, 2007; Brown and

Balkany, 2007). Also, the speech presented from the

front loudspeaker is perceived by both ears, providing

redundant information to the brain. This redundancy
should allow the brain to develop a better representa-

tion of the message (Dillon, 2001; Ching et al, 2007).

The variation in results between the current study

and previous ones could also be ascribed to character-

istics of the individual participants. These three partic-

ipants were experienced listeners with their bilateral

CIs (mean bilateral experience of 2.7 yr). Some studies

havemeasured bilateral benefit shortly after the second
CI (Gantz et al, 2002; Tyler et al, 2002; Litovsky et al,

2006). Recent research has indicated that the effect of

binaural squelch increases over time (Buss et al, 2008;

Basura et al, 2009; Eapen et al, 2009; Litovsky et al,

2009). Eapen et al (2009) found that the squelch effect

significantly increased after the first year of bilateral

experience. All three of the participants in this study

had over 1 yr of bilateral experience, which may have
resulted in increased benefit from binaural squelch.

The bilateral participants demonstrated similar

speech understanding in quiet with each ear alone. This

equivalent performance between right and left ears

may allow better integration of the binaural signal in

noise. It is unclear how differences between the ears

may impact bilateral performance. Finally, the differ-

ence in noise types and arrays may also play a role in
the variation. The R-SPACE noise may better demon-

strate the brain’s ability to analyze the differences

and similarities between inputs from the two ears to

improve the internal representation of speech and

noise. However, the small sample size of the current

study makes it difficult to draw conclusions or compar-

isons to other studies.

In addition to the difference in performance between
unilateral and bilateral stimulation of these partici-

pants, the effect of the noise level is a fascinating find-

ing. These participants’ unilateral performance was

similar to themean unilateral performance of the group,

with poorer performance at the louder noise level. How-

ever, this was not true when they were stimulated bilat-

erally. Their bilateral RTSwas betterwhen the noise got

louder. This was true for all the bilateral participants
with three of the processing options (ADRO, ASC, and

BEAM). The bilateral improvement found at the higher

noise level suggests that bilateral benefitmay be greater

as the listening situation becomes more challenging. It

is feasible that many traditional clinical measures may

not provide adequate evaluation for bilateral stimula-

tion. It has been suggested that bilateral benefit meas-

ured in studies may underestimate the benefit received
by bilateral CI recipients. It is often the case that the

subjective reports of bilateral benefit exceed the meas-

ured benefit (Litovsky et al, 2006; Laske et al, 2009).

The large bilateral benefit seen in this study may better
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estimate CI recipients’ everyday performance. The

assessment of bilateral benefit, however, is difficult

and may vary between individuals and tasks. Although

the bilateral trend seen in this study is interesting,
results should be interpreted with caution due to the

small number of bilateral participants.

Although different processing options can improve

the speech recognition in noise for CI recipients, they

still perform notably poorer than normal-hearing indi-

viduals. In this study, the best speech recognition for

the unilateral participants was found with BEAM pro-

cessing in 60 dB SPL noise, which resulted in a mean
RTS of 8.3 dB. This is 11 dB poorer than that reported

by Nilsson et al (1992) for normal-hearing individuals

using HINT sentences in spectrally matched noise.

For bilateral participants, the best RTS of 0.4 dB was

found with BEAM processing in 70 dB SPL noise.

The performance of the bilateral participants is on aver-

age closer to that of normal-hearing individuals but is

still poorer. Valente et al (2006) evaluated 25 bilateral
hearing aid users with mild to moderately severe sen-

sorineural hearing loss using HINT sentences in the

R-SPACE. The average performance of the hearing aid

users showed an RTS of 2.0 dB and –0.3 dB with an om-

nidirectional and directional microphone, respectively.

The unilateral and bilateral CI participants in the cur-

rent study performed poorer than bilateral hearing aid

users. However, the average bilateral CI performance
was only 1.1 dB poorer than that of bilateral hearing

aid users. ASC and BEAM processing improve the abil-

ity of CI users to understand speech in background

noise, but performance with these strategies is still

poorer than that of bilateral hearing aid users and

far from that of normal-hearing individuals.

The results of this study suggest that type of pro-

cessing and noise level interact to produce different
degrees of speech recognition within the same individ-

ual. This has important clinical relevance for program-

ming of different processing options and counseling CI

recipients on the use of different processing strategies.

This finding supports CI recipients’ subjective reports

of preferences for different processing options in differ-

ent listening environments. Typically, patients are

given one program to use in noisy listening environ-
ments. However, this study supports providing the

patient with two separate noise programs, BEAM for

moderate levels of background noise and ASC for loud

levels.

CONCLUSIONS

These findings support the use of processing options
that utilize noise reduction to improve speech rec-

ognition in noise for unilateral and bilateral CI recipi-

ents. In addition, these options should be part of the

standard programming protocol to increase CI recipient

satisfaction and benefit. The choice of the best process-

ing option, however, is dependent on the noise level.

This finding may help explain the seemingly inconsis-

tent reports by CI recipients. When CI recipients’ are
asked to utilize different processing options (programs)

in different everyday listening situations, it often

appears that their reports are not consistent. For exam-

ple, it is not uncommon for recipients to report that

when they were out to dinner there was a noticeable dif-

ference between the ASC and the BEAM program. Yet,

when they return the next week, they report that when

they were out to dinner there was little difference
between the ASC and BEAM programs. This would

make it difficult to make appropriate programming

decisions. This comment taken in the context of the cur-

rent finding would suggest that the noise levels and

noise sources in the restaurants were different and this

resulted in a difference in performance. During the pro-

gramming process each CI recipient should not only be

given different processing options to try but also be
counseled on how to use them in different listening

situations to determine which one provides the best

speech recognition in that situation. Recipients should

be encouraged to keep a diary of situations and the pro-

grams they found to be most beneficial in the early

months with their CI. This can provide helpful informa-

tion to the individuals and their clinician to learn which

program performs best for them in their various listen-
ing environments.

The results for three bilateral CI participants show a

bilateral improvement in speech recognition in noise

when compared to the better ear alone. This benefit

can most likely be attributed to the effects of binaural

squelch and redundancy, as well as a rapid-changing

head-shadow effect. The most interesting finding was

that the bilateral improvement increased as the noise
level increased, suggesting a more significant bilateral

benefit in more challenging listening situations. Clini-

cally, it has been found that recipients’ subjective

reports of bilateral benefit are much higher than the

improvement measured in the clinic. It could, however,

be that the test measures are not challenging enough

and do not mimic real-world listening situations, creat-

ing a mismatch between subjective and objective
reports. The R-SPACE appears to be a more valid meas-

ure of bilateral benefit. No statistical analyses could be

performed on the bilateral data due to the small sample

size in this study. The current trend cannot be general-

ized to bilateral CI users until more bilateral CI users

are evaluated.

Continued research is needed with both unilateral

and bilateral CIs utilizing different test procedures at
a variety of input levels. Further research should also

investigate the performance of these CI processing

options with CI recipients who use a hearing aid in

the nonimplanted ear. This will help provide insight
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into the differences in hearing ability and how they

relate to binaural processing. This study’s findings sug-

gest the need for challenging tests to measure bilateral

benefit. Last, the Nucleus system now allows for pro-
gramming of multiple options together (i.e., ASC 1

ADRO, ASC 1 ADRO 1 BEAM). Additional research

needs to evaluate how these processing options interact

with each other and which processing option(s) performs

best in background noise at a variety of input levels.
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