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Clinical applications of next
generation sequencing in cancer:
from panels, to exomes, to genomes

Tony Shen 1, 2, Stefan Hans Pajaro-Van de Stadt 1, Nai Chien Yeat 1, 2 and Jimmy C.-H. Lin 1*

1 Rare Genomics Institute, Bethesda, MD, USA, 2 School of Medicine, Washington University, Saint Louis, MO, USA

This article will review recent impact of massively parallel next-generation sequencing

(NGS) in our understanding and treatment of cancer. While whole exome sequencing

(WES) remains popular and effective as a method of genetically profiling different cancers,

advances in sequencing technology has enabled an increasing number of whole-genome

based studies. Clinically, NGS has been used or is being developed for genetic screening,

diagnostics, and clinical assessment. Though challenges remain, clinicians are in the

early stages of using genetic data to make treatment decisions for cancer patients. As

the integration of NGS in the study and treatment of cancer continues to mature, we

believe that the field of cancer genomics will need to move toward more complete 100%

genome sequencing. Current technologies and methods are largely limited to coding

regions of the genome. A number of recent studies have demonstrated that mutations

in non-coding regions may have direct tumorigenic effects or lead to genetic instability.

Non-coding regions represent an important frontier in cancer genomics.

Keywords: next-generation sequencing (NGS), exome sequencing, cancer genomics, clinical genomics, non-

coding DNA

Introduction

Cancer, in its many forms, accounted for 8.2million deaths in 2012 (GLOBOCAN, 2012). The rapid
development of DNA sequencing technologies has driven a revolution in our understanding of this
highly complex and diverse group of diseases (Devita and Rosenberg, 2012). This review fulfills two
purposes. First, this article summarizes the history of massively parallel next-generation sequencing
(NGS) in the context of cancer genomics and reviews recent research and clinical applications.
Second, we highlight the importance and potential of complete or 100% genome sequencing, i.e.,
the ability to sequence highly repetitive non-coding sequences beyond the reach of current NGS
technologies.

Background and History

Sequencing the First Cancer Exomes and Genomes
The first cancer exomes were sequenced soon after the completion of the Human Genome Project
in 2001. Compared to whole genome sequencing (WGS), exome sequencing covers only the 1% of
the genome that is translated into protein, greatly reducing the technical burden of data collection
and analysis. Ley et al. piloted the use of NGS to study the exomes of 140 samples of human
acute myeloid leukemia (AML) cells in 2003, identifying 6 previously described and 7 undescribed
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mutations relevant for AMP pathogenesis. The investigation
searched for mutations capable of altering gene function and
identified the FLT3 gene as a distinguishing mutant in AML
patients (Ley et al., 2003).

The first solid tumor exomes to be investigated were from
11 breast and 11 colorectal cancer tissue samples. Sjoblom et al.
identified 189 frequently mutated genes associated with these
cancers, most of which were not previously known. Additionally,
the investigators found that the average tumor accumulates an
average of∼90 mutations over its course of development, though
only a subset of mutations contributes to the formation of
neoplasms (Sjöblom et al., 2006). A follow-up study revealed
varying mutation frequencies for individual genes with few
but commonly mutated gene “mountains” and numerous but
infrequently mutated gene “hills” (Wood et al., 2007). Despite
similarities in the number of mutations for each cancer, the types
and locations of thesemutations result in distinct cancer subtypes
(Wood et al., 2007).

Ley et al. performed the first whole-genome sequencing study
on AML cells collected from a single patient. The patient’s skin
cells were used as a control. The study identified 2 genes known
to contribute to tumor progression and 8 known to be present
in tumor cells but which have unknown functions. As a proof-
of-concept, the study demonstrated the feasibility of WGS as an
unbiased tool for the molecular profiling of individual cancers
(Ley et al., 2008).Table 1 provides a summary of cancers and gene
mutations.

Discoveries

Melanoma
Analyzing genomic data from melanoma samples is uniquely
challenging because of the high number of passenger mutations
caused by ultraviolet light exposure (Hodis et al., 2012). To
overcome this, Hodis et al. controlled for UV-inducedmutational
load by comparing mutated genes-of-interest against a baseline
level of intronic mutation. They identified six novel genes:
PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2. Of these
genes, PPP6C, RAC1, and STK19 are thought to be potentially
targetable. In a WES study of 147 melanomas, Krauthammer
et al. identified a P29S mutation RAC1 in 9.2% of sun-exposed
exposed melanomas. Mutations in the active site of PPP6C, a
serine/threonine phosphatase, were found in 12% of sun-exposed
melanomas that already possessed BRAF or NRAS mutations
(Krauthammer et al., 2012).

Mutations in BRAF, NRAS, and KIT are known to be involved
in the pathogenesis of metastatic melanoma. BRAF inhibitors are
a class of targeted therapeutics approved for treating metastatic
melanoma and have demonstrated significantly improved overall
survival (Kunz et al., 2013).

Breast Cancer
The Cancer Genome Atlas network sequenced 510 breast cancers
exomes, identifying 4 distinct subtypes: luminal A (ER+ and/or
PR+, HER2−), luminal B (ER+ and/or PR+, HER2+), HER2-
enriched (ER−, PR−, HER2+), and basal-like (ER−, PR−,
HER2−). 40% of luminal A tumors possessed a mutated PIK3CA

gene. TP53 and PIK3CA were mutated in 29% of luminal B
tumors. Compared to luminal A or luminal B subtypes, the
basal subtype exhibited a more consistent pattern of mutation,
with TP53mutated in 80% of cases. The HER2-enriched subtype
is characterized by HER2 amplification, found in 80% of these
tumors (Koboldt et al., 2012). Basal type tumors are characterized
by the highest amount of mutations, while luminal A types
generally contain the lowest frequencies of mutations (Wang
et al., 2014b). Another study investigated CAG repeat lengths
of breast cancer tumor samples to determine the significance of
intratumor genetic heterogeneity (ITGH) (Gottlieb et al., 2013).
The findings between differing repeat lengths showed that shorter
CAG repeats may play protective roles against breast cancer, as
opposed to longer repeat lengths, whichmay contribute to cancer
development (Gottlieb et al., 2013). The study demonstrates
that merely identifying genetic variations does not provide
sufficient understanding of cancer etiology; rather it is necessary
to determine frequency and distribution of mutations between
cancerous and normal tissues (Gottlieb et al., 2013; Riahi et al.,
2014).

Clinical Utility

The information generated by next generation sequencing (NGS)
technologies enables clinicians to make improved diagnostic
and treatment decisions. For example, breast cancers have
traditionally been diagnosed by mammogram, physical exam,
and histology. The discovery of BRCA1, BRCA2, and other
biomarkers introduced genetics as an important consideration
(Van De Vijver et al., 2002; Van’t Veer et al., 2002).
Today, commercially available micro-array-based tests such
as OncoType DX and MammaPrint allow more accurate
profiling of breast cancers based on genetic biomarkers such
as HER2, ER, and PR, each with their own treatment
protocols. In parallel with improved diagnostics, identification
of cancer-associated genes has led to the development of
molecularly targeted therapies such as trastuzumab, which
was among the first therapies specifically targeted to HER2+
breast cancers. Moreover, sequencing of hundreds of breast
tumors has also revealed significant intratumor heterogeneity,
reflecting an additional level of complexity for the development
of new treatments (Desmedt et al., 2012; Shah et al.,
2012).

Genetic Screening
As the cost of NGS continues to approach the $1000
threshold, population-wide genomic screening becomes more
likely (Brunicardi et al., 2011). Already, NGS may improve
genetic testing in families with histories of high penetrance
cancer genes such as BRCA1, BRCA2, APC, and TP53 (Meldrum
et al., 2011). Several investigators have tested the Illumina HiSeq
platform in detecting BRCA1, BRCA2, and TP53 from a tumor
cell line (Morgan et al., 2010; Schroeder et al., 2010). In these
studies, NGS analysis identified all known variants in the tumor
cell line with sensitivity and specificity greater than traditional
diagnostic methods, demonstrating the effectiveness of NGS as
a diagnostic tool. More important than the improvement in
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TABLE 1 | Summary of genetic mutations associated with selected cancers.

Cancer type Somatic mutations Structural

rearrangements

Insertions/Deletions Hereditary mutations References

Melanoma HRAS, BRAF, RAS,

CTNNB1, GNA11, GNAQ,

KIT, MEK1, NRAS, MMAC1,

PTEN, GRIN2A, PREX2,

RAC1, PPP6C, STK19,

SNX31, TACC1, ARID2,

CDK4, MITF

CDKN2, HMGI-C,

RAF

MMAC1, PTEN,

BRAF

MAP2K1, MAP2K2, CDK4 Brose et al., 2002;

Vogelstein and Kinzler,

2004; Garraway et al.,

2005; Wei et al., 2011;

Hodis et al., 2012;

Vogelstein et al., 2013

Lung Cancer TP53, KRAS, STK11,

EGFR, ALK, BRAF, RAS,

AKT1, DDR2, HER2, MEK1,

NRAS, PIK3CA, PTEN

RET, ROS1, ALK,

EML4, NTRK1

EGFR, FHIT, FRA3B,

FGFR1, HER2

EGFR, BRAF, RAS, KRAS, TP53 Brose et al., 2002;

Kosaka et al., 2004;

Vogelstein and Kinzler,

2004; Soda et al.,

2007; Lipson et al.,

2012; Vogelstein et al.,

2013

Liver Cancer CTNNB1, GNMT, p57, IN1 GNMT E1B, GNMT, p57 ARID1A, ARID1B, ARID2, MLL,

MLL3, TP53, CTNNB1, EGFR,

GNMT, IN1

Biegel et al., 1999;

Tseng et al., 2003;

Vogelstein and Kinzler,

2004; Vogelstein et al.,

2013

Breast Cancer FBXW7, AKT2, PI3KCA,

CCND1, ERBB2, NTRK1,

SMAD2, MAP2K4, AKT1,

ESR1, FGFR1, FGFR2,

HER2, PIK3CA, PTEN

BRCA1, BRCA2,

TP53, PIK3CA,

CHEK2

BRCA1 TP53, BRCA1, BRCA2, PTEN,

AKT1, TP43, TBX3, RUNX1,

CBFB

Vogelstein and Kinzler,

2004; Walsh et al.,

2006; Stephens et al.,

2009; Vogelstein et al.,

2013

Colorectal Cancer CTNNB1, BAX, FBXW7,

PI3KCA, FES, KRAS,

NRAS, SMAD2, SMAD4,

TGFBR1, TGFBR2,

MAP2K4, PTNP1, AKT1,

PTEN, BRAF, PIK3CA

ALK APC-L1 FAP, AXIN2, MSH2, MLH1,

MSH6, PMS2, HNPCC,

MUTYH, PIK3CA, IRS2, IRS4,

PTEN, RHEB

Miki et al., 1992;

Vogelstein and Kinzler,

2004; Wood et al.,

2007; Lipson et al.,

2012; Vogelstein et al.,

2013

Ovarian FBXW7, AKT2, ERBB2,

TGFBR1, TGFBR2, BRAF,

KRAS, PIK3CA, PTEN

ARID1A, BRCA1 MMP-1, BRCA1,

BRCA2, MLPA,

MAPH

STK11, BRCA1, BRCA2 Kanamori et al., 1999;

Sellner and Taylor,

2004; Vogelstein and

Kinzler, 2004; Jones

et al., 2008; Vogelstein

et al., 2013

Pancreatic KRAS2, N-RAS, MAP2K4,

CDKN2A, TP53, SMAD4,

BRCA2

TP53, SMAD4,

INK4A

CDKN2A, TP53 STK11, CDKN2A Bardeesy and Depinho,

2002; Montagna et al.,

2003; Vogelstein and

Kinzler, 2004;

Vogelstein et al., 2013

Thyroid NTRK1, BRAF, KRAS, RET RET/PTC, ELE1,

AKAP9, PTEN,

BRAF, TRK

PTEN RET, NTRK1, BRAF Fugazzola et al., 1996;

Dahia et al., 1997;

Cheung et al., 2001;

Vogelstein and Kinzler,

2004; Vogelstein et al.,

2013

sensitivity/specificity, the data generated by NGS allows for more
sophisticated analysis of gene interactions.

Economical NGS screening will also benefit patients with
de novo mutations who would not otherwise undergo genetic
screening based on family history. In the case of BRCAmutations,

family history only accounts for 30–50% of mutations (Moller
et al., 2007). Additionally, NGS testing allows for testing of
genes with a wide range in frequency (Meldrum et al., 2011).
Several companies and institutions offer cancer gene panels
that screen for over 70 genes (Washington University in St.
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Louis, University of Washington, Baylor College of Medicine,
Ambrygen, Genewiz). While NGS remains too costly for routine
sequencing of all individuals, we expect the prevalence of
screening to continue increasing as prices decrease.

Diagnostics and Assessment
Currently, NGS-based gene panels are regularly used for cancer
diagnostics. For example, the 2015 National Comprehensive
Cancer Network guidelines recommend NGS gene panels for
patients with hereditary and ovarian cancer who have tested
negative for high-penetrance genes (Park et al., 2014). In a study
of 141 patients who tested negative for BRCA1/2, evaluation
by an NGS panel of 40 genes identified 16 patients who have
pathogenic variants in 9 non-BRCA genes (Kurian et al., 2014).
The use of NGS in clinical diagnostics may be separated into
three approaches: gene panels, whole exome sequencing (WES),
and whole genome sequencing. Among these, gene panels have
been in use for the longest period, with more than 16 laboratories
in the United States panels for hereditary cancer (Wang et al.,
2014a). The diagnostic yields of these panels range from 20 to
51%, which is comparable to that of exome or genome-based
methods (Wang et al., 2014a). Recent exome-based diagnostics
for mitochondrial respiratory disease and intellectual disability
demonstrated diagnostic yields of 60 and 16%, respectively (De
Ligt et al., 2012; Taylor et al., 2014). Other evaluations of exome-
based diagnostics demonstrated diagnostic yields between 25
and 30% (Yang et al., 2013, 2014; Lee et al., 2014). Genome-
based diagnostics are comparatively newer and there are fewer
studies that evaluate their use. Studies that evaluated the use of
genome sequencing to diagnose intellectual disability and early-
onset epilepsy demonstrated a diagnostic yield of 50 and 24%,
respectively (Gilissen et al., 2014; Martin et al., 2014). As our
understanding of the genome grows, in-depth genome-based
diagnostics will have higher diagnostic yield.

Clinical Decision-making and Treatment
NGS has enabled investigators to discover and elucidate
hundreds of genes involved in cancer, advances that will
inevitably reveal novel therapeutic targets. Targeted therapies,
a growing group of therapeutic agents with molecular-level
specificity have greatly changed the treatment and management
for many cancers. Notable examples include imatinib (BCR-ABL)
and trastuzumab (HER2). Targeted therapies have the potential to
be more effective and less toxic than traditional chemotherapies
for patients suffering from cancer (Tsimberidou et al., 2014).
Treatments like EGFR-targeted plasmonic magnetic particles
have been shown to be more effective in suppressing lung
cancer development and tumor growth by abrogating the G2/M
cell cycle phase and inducing apoptosis (Kuroda et al., 2014).
Another promising development in targeted cancer therapy is
signaling-directed androgen receptor treatment for castration-
resistant prostate cancer, which deactivates tumor proliferation
pathways and inhibits cancer progression (Bastos et al., 2014).
Currently, discoveries on the diagnostics and assessment outpace
the development of targeted therapies. As NGS technology
matures, the selection of targeted therapies stands to expand
greatly as more targets become known.

Due to the easy accessibility of circulating tumor DNA
(ctDNA), sequencing ctDNA is another attractive method for
analyzing tumor load and treatment effectiveness (Wang and
Wheeler, 2014). The mechanism by which ctDNA enters the
bloodstream is not well understood, though Gormally et al.
propose two mechanisms: release of whole cells followed by lysis
and apoptosis (Gormally et al., 2007). Diehl et al. demonstrated
that ctDNA measurements in 18 patients with colorectal cancer
were a reliable indicator of tumor dynamics (Diehl et al., 2007).
In 2014, Lohr et al. developed computational methods to isolate
ctDNA sequences from serum. A comparison of their ctDNA
sequences to previously sequenced tumor samples revealed 90%
of early trunk mutations and 73% of metastatic trunk mutations
in the tumor were also found in ctDNA (Lohr et al., 2014).
In another study by Murtaza et al. sequencing of ctDNA
from patients with breast, lung, and ovarian cancers allowed
investigators to track mutations in the tumor genome in a non-
invasive manner (Murtaza et al., 2013). Additionally, Dawson
et al. demonstrated that the sensitivity of ctDNA surpassed that of
other circulating biomarkers (Dawson et al., 2013). These studies
suggest that NGS analysis of ctDNA holds great potential for
screening, diagnosis, and clinical decision-making.

There remain many challenges for investigators and
clinicians. With massive amounts of data generated, healthcare
infrastructure needs new strategies for data curation.
Additionally, the economic implications of widespread
sequencing are not yet known given the complex interplay
between healthcare providers, the biomedical industry, insurance
companies, and academic research (Buchanan et al., 2013).

Commercialization

Today, patients may choose between many services and
technologies offered by gene sequencing companies for
assistance in patient diagnosis and treatment decision processes.
Some companies, such as Foundation Medicine and Personal
Genome Diagnostics, offer clinical tests like FoundationOne
and CancerComplete to help identify the genetic variants in
a patient’s DNA sample that may be contributing to cancer
development.

A number of companies and institutions provide individual
gene panel tests for different types of cancers. Cancer-specific
kits such as AmbryGen’s OvaNext and ColoNext selectively
enrich genes-of-interest for ovarian and colorectal cancers,
respectively. Other companies and institutions offer similar
cancer-specific testing, such as Neogenomics Laboratories,
GPS@WUSTL, Emory Genetics Laboratory, ARUP Laboratories,
Myriad Genetics, and GeneDx. WES-based tests such as the
FoundationOne or FoundationOne-Heme have been developed
to be highly sensitive and specific (Frampton et al., 2013). Table 2
provides a summary of commercial services using NGS.

Future Directions

Single Molecule Sequencing
While NGS has undoubtedly driven a revolution in genetics,
current technologies face certain limitations. First, the
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TABLE 2 | Summary and comparison of NGS diagnostic services.

Company Product Disease Scope of

coverage

No. of Genes analyzed Investigates

Foundation

Medicine

Foundation One Cancer Panel 236 genes, 47 introns from 19

genes associated with

rearrangement

Solid tumors–gene alterations,

alteration frequency

Foundation

Medicine

Foundation One Heme Cancer Panel 405 genes from DNA including

31 introns associated with

rearrangement, 265 genes

from RNA, fusion genes

Hematologic tumors–gene alteration,

alteration frequency, fusion genes

Personal Genome

Diagnostics

(PGDX)

Cancer Complete Cancer Full exome ∼20,000 Gene point mutations, copy number

alterations (indels), rearrangements

PGDX Cancer Select cancer 120 cancer

gene panel

120 Point mutations, copy number

alterations, rearrangements

Ambry Genetics Exome Next Cancer Exome ∼20,000 Mitochondrial genome mutations,

sequence variants

Ambry Genetics BRCA1 and BRCA2

gene sequencing

Breast Cancer BRCA1 and

BRCA2

2 Gene sequencing, deletion and

duplication, large rearrangements

GeneDx XomeDx Cancer Full exome ∼20,000 Exon analysis

GeneDx XomeDx Plus Cancer Exome 20,000 plus mitochondrial

sequencing

Combined test, mitochondrial genome

sequencing and deletions

GeneDx XomeDx Slice Cancer Exome targeted test Targets regions of the exome or specific

genes–variant search

GeneDx Comprehensive cancer

panel

Cancer Panel 29 Gene sequence, deletions/duplications,

gene mutations, nucleotide

substitutions

NeoGenomics

Laboratories

EGFR Mutation Analysis NSCLC EGFR exons

18-21

1 Mutations on target exons,

duplications/deletions

NeoGenomics

Laboratories

NeoSITE Melanoma Cancer Panel 5 Copy number variants,

duplications/deletions

NeoGenomics

Laboratories

FISH for non-small cell

lung cancer

NSCLC Panel 2 Rearrangements, fusions

NeoGenomics

Laboratories

Colorectal Cancer panel Colorectal Cancer Panel 2 KRAS and BRAF mutations, mismatch

repair defects, microsatellite instability

at 5 target loci

Caris MI Profile Cancer Panel 47 Somatic mutations in solid tumors

Myriad Genetics BRCA Analysis Breast and Ovarian Cancer BRCA1,

BRCA2

2 Gene mutations

Quest

Diagnostics

OncoVantage Solid tumors Panel 34 Point mutations, indels

GPS@WUSTL Comprehensive Cancer

Gene Set Analysis

Cancer Panel 42 Point mutations, indels

Arup Laboratories Gastrointestinal

hereditary cancer panel

Gastrointestinal cancer Panel 15 Targeted capture of coding exons and

intron/exon junctions–sequenced for

mutation detection, deletion/duplication

analysis

Frontiers in Genetics | www.frontiersin.org 5 June 2015 | Volume 6 | Article 215

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Shen et al. Panels, to exomes, to genomes

amplification of DNA libraries may result in differential
expansion of certain regions of the genome. This introduces the
problem of biased reads. Second, epigenetic modifications are
lost during amplification. Third, the short read lengths generated
from current NGS platforms requires a reliance on a reference
genome and robust alignment algorithms to produce sequences
from raw NGS data (Mardis, 2013). Lastly, the entire sequencing
process from sample preparation to computational construction
of the sequence takes days to weeks (Liu et al., 2012).

Single molecule or third generation sequencing systems
address shortcomings present in current NGS platforms. Single-
molecule real-time sequencing (SMRT, Pacific Biosciences)
and nanopore sequencing (Oxford Nanopore) are perhaps the
most well-known. Conceptually, both of these systems detect
nucleotide incorporation onto a single DNA strand in real time.
SMRT uses a system of fluorescent signals to monitor nucleotide
incorporation while nanopore detects voltage across a lipid
bilayer as as DNA is ratcheted across an α-hemolysin nanopore
(Eid et al., 2009; Liu et al., 2012). Sequencing a single strand
eliminates the need for amplification, reducing sequencing bias
present in NGS platforms. Monitoring systems can also be tuned
to detect epigenetic changes. Read lengths are also significantly
longer compared to current NGS systems, with SMRT reads in
the range of ∼5000–6000 bp (English et al., 2012; Chin et al.,
2013). Long read lengths allow for rapid de novo sequencing of
organisms without reference genomes as well as the sequencing
of highly repetitive regions. Additionally, simplified preparation
and sequencing in real time with nucleotide incorporation
significantly shortens run times. SMRT runs can be completed
in just 1 day (Liu et al., 2012).

Single molecule sequencing systems are beginning to make
an impact in cancer genomics and are poised to play a larger
role moving forward. While SMRT has been available since 2011,
nanopore sequencing has yet to see widespread use. SMRT has
been used to resequence AML patients to identify a marker
(FLT3 with internal tandem duplication) associated with poor
prognosis (Smith et al., 2012). Kleinman et al. used SMRT to
elucidate a distinct DNA methylation pattern and epigenetic
alteration program in embryonal brain tumors (Kleinman et al.,
2014). In addition to the ability to study genetic and epigenetic
changes undetectable by NGS, single molecule sequencing also
holds great potential for sensitive diagnostics. Sequencing results
comparable to NGS reads may be obtained from as little as 500
pg of starting DNA (Raley et al., 2014). In late 2013, Pacific
Biosciences announced a large-scale collaboration with Roche to
produce diagnostics tools based on SMRT (Pacific Biosciences
Investor Relations, 2013).

Diagnostic Yield
As the field moves forward to understand a wider range of
genetic abnormalities, there must be a concurrent shift toward
100% genome sequencing for diagnostics. However, current
genome-based diagnostics still face several challenges. Dewey
et al. analyzed 12 healthy genomes for 56 clinically significant
genes and found that the best platform (Illumina) was only
able to sequence 51 out of 56 genes with adequate coverage
(Dewey et al., 2014). This is a technical hurdle that we hope

will be overcomewith improved technologies and bioinformatics.
Genome-based diagnostics are also inherently limited by the
inability to sequence the whole genome, with approximately
8% of the genome not sequenced. This challenge may only be
overcome with 100% genome sequencing. Improvement in the
diagnostic yield of genetic testing can only occur given a solid
foundation of complete gene coverage. Given that the relatively
low diagnostic yields of current strategies, we submit that the goal
of 100% genome sequencing will be clinically significant.

100% Genome Sequencing
Current findings suggest that a variety of defects in non-coding
regions can contribute to neoplastic pathogenesis (Chmielecki
and Meyerson, 2014). Huang et al. identified a pattern
of mutations in the promoter region of telomerase reverse
transcriptase, demonstrating that somatic mutations in non-
coding regions can have a direct tumorigenic effect (Huang
et al., 2013). Zhu et al. demonstrated that genomic instability
following the loss of Brca1 in mice may be due to de-repression
of satellite DNA transcription. The authors propose that tumor
suppressor functions of BRCA1 primarily stem from its role
as a regulator of heterochromatin (Zhu et al., 2011). Ting
et al. identified a pattern of satellite transcript overexpression
in epithelial cancers of the lung, kidney, ovary, colon, and
prostate, proposing that heterochromatic alterationsmay serve as
a biomarker for cancer (Ting et al., 2011). These findings suggest
that non-coding regions may be a rich source of new insights into
tumorigenesis.

Complete genomic sequencing may also reveal epigenetic
changes in cancer that were previously inaccessible due to
limitations in the coverage and resolution of last-generation
technologies The epigenetics of nucleosomes for example, have
eluded investigation in the past, but new protocols utilizing NGS
which enable genome-wide studies of nucleosome positioning at
high sensitivity might allow networks of chromatin modulation
to finally be probed (Wei et al., 2012). Using NGS, Kim
et al. characterized the instability of microsatellite regions in
colorectal and endometrial cancers, showing that this genetic
instability affects nucleosome positioning (Kim et al., 2013).
Studies of the epigenetics of cancer have already produced
surprising findings, such as the discovery that regions of
DNA hypomethylation in breast cancer cells are paradoxically,
silenced by the formation of repressive chromatin domains
(Hon et al., 2012), and the discovery that histone modifications
drive pediatric glioblastoma (Rheinbay et al., 2012). Still more
protocols that utilize NGS for studying epigenetic changes are in
the pipeline: A recently published method of deciphering histone
post-translational modifications (PTMs) using DNA-barcoded
nucleosome libraries, is enabled in large part by the speed
and low-cost of high throughput DNA sequencing (Nguyen
et al., 2014). A thorough understanding of chromatin regulation
however, will require not just knowledge of DNA base sequences,
but also an understanding of how DNA segments interact with
histones and their regulatory elements. To this end, biophysical
models, such as a recently published model by Chertsvy and Teif
on the electrostatics of histone-DNA interactions (Cherstvy and
Teif, 2014), are essential. In another modeling study, Beshnova
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et al. demonstrate that although major satellite repeats in mice
encode preferences for nucleosome positioning, nucleosome
positioning is not rigid, and can alternate between two separate
types of positioning (Beshnova et al., 2014).

Final Comments

In this article, we discussed the past, present, and future of DNA
sequencing in cancer genomics. As advancements in sequencing
technology enabled investigators to study cancer genomes

in greater breadth and depth, the field has produced novel
insights into tumor pathogenesis, identified clinically useful
biomarkers, and developed increasingly precise diagnostics and
targeted therapeutics. However, it is important to note that
our understanding of the genome is limited, with <5000 of
23,000 known (Park et al., 2014). The clinical usefulness of
genomic sequencing requires advancement in our knowledge of
the genome and bioinformatic systems to process genetic data—
advancements that would be built on a foundation of 100%
genome sequencing.
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