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Abundant surface Leishmania phosphoglycans (PGs) containing [Gal(�1,4)Man(�1-PO4)]-derived repeat-
ing units are important at several points in the infectious cycle of this protozoan parasite. PG synthesis
requires transport of activated nucleotide-sugar precursors from the cytoplasm to the Golgi apparatus.
Correspondingly, null mutants of the L. major GDP-mannose transporter LPG2 lack PGs and are severely
compromised in macrophage survival and induction of acute pathology in susceptible mice, yet they are able
to persist indefinitely and induce protective immunity. However, lpg2� L. mexicana amastigotes similarly
lacking PGs but otherwise normal in known glycoconjugates remain able to induce acute pathology. To explore
this further, we tested the infectivity of a new PG-null L. major mutant, which is inactivated in the two
UDP-galactose transporter genes LPG5A and LPG5B. Surprisingly this mutant did not recapitulate the
phenotype of L. major lpg2�, instead resembling the L. major lipophosphoglycan-deficient lpg1� mutant.
Metacyclic lpg5A�/lpg5B� promastigotes showed strong defects in the initial steps of macrophage infection and
survival. However, after a modest delay, the lpg5A�/lpg5B� mutant induced lesion pathology in infected mice,
which thereafter progressed normally. Amastigotes recovered from these lesions were fully infective in mice and
in macrophages despite the continued absence of PGs. This suggests that another LPG2-dependent metabolite
is responsible for the L. major amastigote virulence defect, although further studies ruled out cytoplasmic
mannans. These data thus resolve the distinct phenotypes seen among lpg2� Leishmania species by empha-
sizing the role of glycoconjugates other than PGs in amastigote virulence, while providing further support for
the role of PGs in metacyclic promastigote virulence.

Leishmaniasis is considered an emerging or uncontrolled
disease in many parts of the world, with more than 12 million
people infected (9, 35, 45). Depending on the particular spe-
cies, Leishmania-induced pathology ranges from self-healing
cutaneous lesions to fatal, visceral disease. Several treatment
regimens are available, until recently most commonly based on
the metal antimony, to which resistance is widespread in some
regions. As yet there are no safe vaccines available, leaving
drug treatments or insect vector control measures as the major
strategies for control. However, the introduction of miltefos-
ine, a safe, orally acting compound that is effective against
visceral species (35), and the ability to vaccinate effectively
under some circumstances suggests the potential for progress
on both chemo- and immunotherapeutic fronts in the future
(33). The Leishmania infectious cycle comprises two phases,
one extracellular within the digestive tract of the phlebotomine
sand fly and one intracellular within the phagolysosome of
vertebrate macrophages, both compartments where Leishma-
nia must overcome a variety of host defenses. Defining the
processes by which Leishmania survives these two hostile com-

partments could lead to new vaccine and drug targets, which
will prevent transmission and more effectively treat new or
recurrent infections arising from persistent asymptomatic par-
asites.

Leishmania synthesizes a variety of abundant glycoconjugates
implicated in various steps of the infectious cycle (17, 39). These
include lipophosphoglycan (LPG); glycosylphosphatidylinositol
(GPI)-anchored proteins, including proteophosphoglycan (PPG)
and glycoprotein 63 (gp63) (leishmanolysin); glycosylinositol-
phospholipids (GIPLs); and inositolphosphoceramide (21, 56, 63,
66). Notably these glycoconjugates share many structural motifs
or domains (Fig. 1A). For example, the GPI anchors are common
to LPG, proteins, and small surface glycolipids (Fig. 1A) (12).
Additionally, the phosphoglycan [Gal(�1,4)Man(�1-PO4)] disac-
charide-phosphate repeating units (PG repeats) modify a variety
of surface and secreted proteins and comprise the major portion
of LPG, which contains 15 to 30 PG repeats (21, 56, 60). Thus,
while studies carried out on purified PGs point to important roles
such as modulating host signal transduction, inhibiting phagoly-
sosomal fusion, and mediating oxidant resistance (reviewed by in
reference 8), the structural similarity among these complex mol-
ecules often leads to imprecision in our understanding of their
unique and/or overlapping roles in vivo.

To overcome this problem, we and others have pursued a
strategy of generating null mutants leading to deficiencies in

* Corresponding author. Mailing address: Department of Molecular
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747-2631. Fax: (314) 747-2634. E-mail: beverley@borcim.wustl.edu.

� Published ahead of print on 2 July 2007.

4629

 on M
arch 10, 2014 by W

ashington U
niversity in S

t. Louis
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/
http://iai.asm.org/


specific single glycoconjugate or a defined group of glycocon-
jugates. For example, the lpg1� mutant lacking the LPG core
galactofuranosyl transferase LPG1 is specifically deficient in
LPG synthesis (50). This mutant has enabled a rigorous defi-
nition of the role of intact LPG in parasite biology, where it is
important in the fly and initial mammalian stages but not
thereafter in amastigotes, where its expression is developmen-
tally extinguished (27, 50, 51). Similar gene ablation studies
have addressed the role(s) of the ether lipids within GPI an-
chors and sphingolipids (7, 64–67). Here we focus on the role

of PGs in Leishmania virulence, which are expressed across the
Leishmania life cycle in the form of LPG, PPG, and other
related molecules. The role of PGs was approached previously
through the study of the lpg2� mutant, which is deficient in the
Golgi nucleotide-sugar transporter (NST) responsible for
GDP-mannose (GDP-Man) uptake into the lumen, where PG
biosynthesis occurs (Fig. 1B) (1, 28, 29). Previous studies of
known glycoconjugates showed that L. major lpg2� was defi-
cient in PGs but otherwise wild type (WT) in GPI-anchored
protein and GIPL levels (52). Remarkably, this mutant lost the

FIG. 1. Leishmania glycoconjugates and relevant biosynthetic pathway steps. (A) Glycoconjugates. The detailed structures of L. major LPG,
GIPLs, and PPGs, including the glycan core, cap, linkages, and anomeric configurations, are reviewed elsewhere (21, 56). In L. major, “x” refers
to linear �-1,3-linked galactose residues that branch off the Gal-Man-P repeating units; these can be terminated in �-1,2-Ara residues in both LPG
and PPG, at greatly elevated levels in metacyclic promastigotes. In L. mexicana, the PG side chains consist of mono-�-1,3-glucose residues in LPG
and additional sugars in PPGs. (B) Condensed cellular biosynthetic pathway. The steps and/or enzymes responsible for the synthesis of
GDP-D-Arap and its presumptive precursor D-Ara are unknown in Leishmania or other organisms. In contrast, the metabolic sequence leading to
GDP-Man biosynthesis (Glc3Glc-6-P3Fru-6-P3Man-6-P3Man-1-P3GDP-Man) has been well characterized in Leishmania and other organ-
isms (14, 15). Both PI-anchored glycans and dolichol phosphate (Dol-P) glycans can participate in the synthesis of GPI-anchored and N-linked
glycoproteins (not depicted). In the Golgi apparatus, the PI-glycans can be further elaborated with additional sugars (requiring the provision of
their respective nucleotide-sugar donors) forming GIPLs or forming and anchoring PG chains in the assembly of LPG and PPG (reviewed in
reference 32). The LPG5A/LPG5B dependency of GIPL Galp addition (shown by a dashed line) is considered to be likely given that the
functionally similar LPG core Galf transferase LPG1 is localized in the Golgi apparatus (2, 18).
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ability to induce acute pathology in susceptible mice, although
it retained the ability to persist indefinitely and induce protec-
tive immunity (52, 59). Given these phenotypes and the pre-
sumption that all significant Leishmania glycoconjugates had
been cataloged, most investigators reasoned that the lack of
PGs was likely to be responsible for the LPG2-dependent
amastigote virulence defect of L. major.

However, studies of the lpg2� mutant of L. mexicana, which
is similarly deficient in PG synthesis but otherwise unaltered,
showed that it retained amastigote virulence and the ability to
induce acute pathology (22). The lpg2� L. mexicana phenotype
raised the possibility that Leishmania species differed in their
reliance upon PGs for virulence or that an LPG2-dependent
molecule other than PGs played a critical role in L. major but
not L. mexicana virulence (57). Studies of Man biosynthetic
enzymes pointed to a role of Man-containing glycoconjugates
in L. mexicana virulence, although the broad effects of these
mutants through LPG2-independent routes, including doli-
chol-mediated protein N glycosylation (Fig. 1B), made it prob-
lematic to attribute the effects to any specific “virulence” gly-
coconjugate (14, 54). However, recent data have more directly
implicated abundant cytoplasmic mannans, synthesized via glu-
coneogenesis, in Leishmania amastigote survival (38, 44). Due
to their cytoplasmic localization, mannans are unlikely to be
affected by the loss of L. major LPG2, a supposition confirmed
in this work.

Given the complexity and involvement of the Man synthetic
pathway in general glycoconjugate synthesis, we turned our
focus to galactose, the second monosaccharide within the basic
PG repeating unit (Fig. 1A). While in Leishmania galactose
(Gal) can be obtained by salvage or through the epimerization
of UDP-Glc in the glycosome (46, 58), our interest in the PG
assembly and secretion via the Golgi apparatus prompted a
strategy centered on this compartment. We recently described
the characterization of the family of 12 Leishmania NSTs and
functional studies of the LPG5A and LPG5B genes, which
encode UDP-Gal transporters whose functions partially over-
lap (3). Notably, an lpg5A�/lpg5B� double gene mutant com-
pletely abrogated UDP-Gal uptake into the Golgi apparatus,
as this mutant lacked LPG and protein-linked PGs. Thus, the
lpg5A�/lpg5B� mutant provides an independent perspective
from which to study the role of PGs in L. major (Fig. 1B). The
data presented here confirm a role for PGs in the initial es-
tablishment phase of infection of vertebrate macrophages,
probably reflecting the loss of LPG (50), but in neither amas-
tigote-mediated virulence nor acute pathology. These data
lend support to the existence of a vital LPG2-dependent mol-
ecule, unrelated to PGs, required for amastigote virulence in
L. major.

MATERIALS AND METHODS

Cell culture, reagents, and transfection. L. major strain LV39c5 (Rho/SU/
59/P) was grown at 26°C in M199 medium (U.S. Biologicals) containing 10%
fetal calf serum (24). The �lpg5A::HYG/�lpg5A::PAC (designated lpg5A�),
l̂pg5B::BSD/l̂pg5B::NEO (designated lpg5B�), �lpg5A::HYG/�lpg5A::PAC/
l̂pg5B::BSD/l̂pg5B::NEO (designated lpg5A�/lpg5B�), lpg5A�/lpg5B�

[pIR1SAT-LPG5B-LPG5A] (designated lpg5A�/lpg5B�/�LPG5B�LPG5A),
l̂pg1::HYG/l̂pg1/::PAC (designated lpg1�), �lpg2::HYG/�lpg2::HYG (desig-
nated (lpg2�), and lpg2�/Rev mutants were described previously (3, 50, 52,
53). A second “add-back” line was generated by transformation of the
lpg5A�/lpg5B� line with SwaI-digested pIR1-SAT-LPG5B-LPG5A (strain

B5081); this results in integration of the construct within the gene encoding
the rRNA small subunit, which confers stable, strong, and uniform expression. The
formal name of this line is lpg5A�/lpg5B�/SSU::IR1SAT-LPG5B-LPG5A. Prior to
study, all lines were passed through mice once by injecting hind footpads of
BALB/c mice (Charles River Laboratories, Wilmington, MA) with a large inoc-
ulum (1 � 107 to 5 � 107) of stationary-phase parasites and recovering parasites
by needle aspiration of the footpad regardless of pathology 4 to 6 weeks after-
wards. Cultures were identified by the number of times that they had been
inoculated into mice (M1, M2, etc.) and the number of times passed in vitro after
recovery from infected animals (P1, P2, etc.). As L. major may lose virulence
during in vitro culture, parasites were passed no more than six times prior to use.
(e.g., M1P6).

Dulbecco modified Eagle medium (DMEM) was purchased from Gibco BRL
(under Invitrogen, Carlsbad, CA). Anti-mouse immunoglobulin G (IgG):fluo-
rescein isothiocyanate (FITC) and anti-mouse IgM:Texas red antibodies were
from Jackson Immunoresearch (West Grove, PA). Hygromycin B was from
Calbiochem (San Diego, CA), puromycin was from Sigma (St. Louis, MO), G418
powder was from BioWhittaker (now under Cambrex Bio Science, Walkersville,
MD), phleomycin was from InvivoGen (San Diego, CA), and nourseothricin was
from Werner BioAgents (Jena, Germany). Hoechst 33342 nucleic acid dye was
purchased from Molecular Probes (now under Invitrogen, Carlsbad, CA). Other
reagents were purchased from Sigma or Fisher.

Mouse infections. Female BALB/c mice (6 to 10 weeks old) were purchased
from Charles River Laboratories (Wilmington, MA). In a typical experiment, five
mice per group were inoculated subcutaneously in the left hind footpad with 106

metacyclic or 105 amastigote stage parasites. Lesion thickness was measured
using a Vernier caliper (Mitutoyo) and defined as the average difference in
thickness between infected and uninfected hind footpads for each group of mice
(55). Metacyclic promastigotes were prepared using the Ficoll gradient enrich-
ment method (49), and lesion-derived amastigotes were recovered from infected
lesions (�2-mm thickness) as described previously (53). Limiting-dilution assays
were performed as described previously (26).

Macrophage infections. Starch-elicited peritoneal macrophages were recov-
ered from BALB/c mice and then plated on glass coverslips (43, 50). Metacyclic
parasites were opsonized with C5-deficient serum, resuspended in DMEM con-
taining 10% fetal calf serum, and infected at multiplicity of infection of 10.
Lesion-derived amastigotes were infected at a multiplicity of infection of 3 in
DMEM containing 10% fetal calf serum (53). After 2 hours, the cells were
washed extensively and overlaid with fresh medium, and thereafter medium was
changed daily. At 2 hours, 1 day, 2 days, and 5 days postinfection, cells were fixed
in 3.7% (vol/vol) formaldehyde in phosphate-buffered saline (PBS) and stained
in 2 to 2.5 �g/ml Hoechst 33342 (in PBS) prior to scoring for intracellular
parasites.

Western analysis. Western analysis was done as described previously (50).
Briefly, 1 � 106 cells (or serial twofold dilutions thereof) were subjected to
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (4% polyacrylamide
stacking gel and 12.5% resolving gel) and transferred to nitrocellulose mem-
branes. WIC79.3 antibody, which recognizes Gal-modified PG repeating units,
was used at a dilution of 1:500 (6). The anti-gp63 antibody 235 was used at a
1:1,000 dilution (5). A polyclonal gp46 antibody (a kind gift from D. McMahon-
Pratt) was used at a 1:20,000 dilution (31). Where necessary, blots were treated
with Western Re-Probe (Genotech, St. Louis, MO) and probed with a mono-
clonal antitubulin antibody (Sigma) at a dilution of 1:50,000. Anti-mouse IgG:
horseradish peroxidase and anti-rabbit IgG:horseradish peroxidase antibodies
were from Amersham (now part of GE Healthcare, Piscataway, NJ), and chemi-
luminescence reagents were from Perkin-Elmer (Wellesley, MA).

Indirect immunofluorescence assay. TAT-1 antibody, which recognizes try-
panosome tubulin, was a kind gift from K. Gull (61). Macrophages infected for
2 days with lesion-derived amastigotes were fixed for 1 minute in 3.7% formal-
dehyde in PBS, followed by permeabilization with ice-cold ethanol for 15 min on
ice. The cells were rehydrated for 10 min in PBS, followed by sequential incu-
bations with TAT-1 at a 1:2 dilution, anti-mouse IgG:TR at a 1:100 dilution,
WIC79.3 at a 1:500 dilution, and anti-mouse IgG:FITC at a 1:100 dilution. Cells
were washed with PBS between incubations. Cells were mounted in 50% (vol/
vol) glycerol in PBS, sealed, and visualized on an Olympus AX70 fluorescence
microscope.

Mannan extraction and analysis. Parasites were harvested at densities of 0.7 �
107 to 2.0 � 107 cells/ml and extracted for mannans as described elsewhere (44).
Briefly, cells (2 � 109 to 5 � 109) were extracted in chloroform-methanol-water
(1:2:0.8) for 2 h with sonication. The samples were centrifuged at 15,000 � g for 5
min, and the supernatant was collected, dried under a stream of nitrogen, and
partitioned with water-saturated 1-butanol. The water phase (containing the man-
nans) was desalted by passage through a 1-ml column of AG50-X12 (H�) layered
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over AG1-X8 (OH�). The desalted mannans were dried with a Speedvac drier and
then fluorophore labeled at the reducing ends with 8-aminonaphthalene-1,3,6-trisul-
fate and analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE)
according to manufacturer’s specifications (Glyko Inc., Novato, CA).

RESULTS

The lpg5A�/lpg5B� mutant shows a delayed lesion emer-
gence phenotype. Parasites lacking LPG5A, LPG5B, or both
genes, were tested for their ability to mount an infection in
susceptible mice. Cultured in vitro as promastigotes, these
mutant strains grow at similar rates and to similar densities as
the WT (3). BALB/c mice infected with purified metacyclic
promastigotes from either the lpg5A� or lpg5B� mutant devel-
oped lesions similarly to those infected with the WT (Fig. 2A).
In contrast, the lpg5A�/lpg5B� mutant showed a delay in the
emergence of lesions, of about 10 days when an inoculum of
106 metacyclic promastigotes was used (Fig. 2B and 3A) and of
about 30 days with an inoculum of 105 metacyclic promastig-
otes (not shown). Delays in lesion appearance were seen in all
five independent experiments (data not shown). Following the
appearance of overt pathology, the lesions grew in size at rates
similar to those caused by the WT (Fig. 2B).

Several essential controls behaved as anticipated. First, to
test if the lpg5A�/lpg5B� mutant parasites that emerged in
growing lesions differed from the inoculated parasites by
adaptation or reversion, cells were recovered from the in-
fected animal footpads and allowed to differentiate back to
promastigotes, and purified metacyclics were retested in
naı̈ve mice. As before, lesion emergence was delayed, argu-

ing against adaptation or reversion among the lpg5A�/
lpg5B� parasites in lesions (Fig. 2B). Second, to confirm that
the growth delay arose specifically from loss of LPG5A and
LPG5B, expression of both genes was restored simulta-
neously by transfection of lpg5A�/lpg5B� parasites with
plasmid pIR1SAT-LPG5B-LPG5A, which was shown previ-
ously to confer complete restoration of PG synthesis (3). As
expected, with the lpg5A�/lpg5B�/�LPG5B�LPG5A para-
sites the delay in lesion emergence in mice was alleviated,
with lesions appearing and progressing thereafter like those
caused by the WT (Fig. 3A).

Limiting-dilution assays were performed to assess whether
the initial delay in lesion pathology reflected decreased para-
site numbers (Fig. 4). These experiments showed that indeed
parasite numbers were much less than WT parasite numbers
for the lpg5A�/lpg5B� mutant, from 18- to 270-fold less when
measured after 10 or 28 days, respectively (Fig. 4).

lpg5A�/lpg5B� metacyclic promastigotes are defective in es-
tablishment of macrophage infections. The delayed-lesion phe-
notype observed in the lpg5A�/lpg5B� mutant was reminiscent
of that for the lpg1� mutant (when inoculated at comparable

FIG. 2. The lpg5A�/lpg5B� mutant shows a delayed emergence of
lesion pathology, while the single-gene mutants behave as the WT. The
left hind footpads of BALB/c mice (n � 5) were injected with 106

metacyclic parasites and monitored for lesion growth, defined as the
mean difference in thickness between the injected footpad and the
uninjected hind footpad. (A) Lesion assay comparing WT (F), lpg5A�

(f), and lpg5B� (‚) promastigotes. (B) Promastigotes that had been
differentiated from lpg5A�/lpg5B� lesion amastigotes (M2P4) (�)
were used to infect naı̈ve mice and compared to the WT (F) and the
lpg5A�/lpg5B� mutant (M1P3) (ƒ). Error bars indicate standard
deviations.

FIG. 3. Defects in promastigote infections with the lpg5A�/lpg5B�

mutant. (A) Lesion assay comparing WT (F), lpg5A�/lpg5B� (ƒ), and
lpg5A�/lpg5B�/pIR1-LPG5B-LPG5A strains. BALB/c mice were in-
jected in one hind footpad and monitored for lesion growth as de-
scribed in Materials and Methods. (B) Macrophage infection. Perito-
neal macrophages were infected with Ficoll-enriched metacyclic
parasites opsonized in C5-deficient serum and scored for intracellular
parasites after 5 days. Data are plotted as percent survival based on the
average number of parasites/macrophage relative to WT parasites (1.3/
macrophage). Error bars indicate standard deviations.
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numbers of infectious metacyclic promastigotes), which lacked
only LPG and was thus defective in the initial establishment
steps of intracellular infection (50, 51). In fact, the decreased
initial parasite levels seen in vivo for the lpg5A�/lpg5B� mutant
were very similar to those seen with the lpg1� mutant tested in
parallel in this experiment (Fig. 4). To pursue this, mouse
peritoneal macrophages were infected with lpg5A�/lpg5B� me-
tacyclic promastigotes and parasite survival scored (Fig. 3B).
Following an initial decrease in number, the WT and the single
lpg5A� or lpg5B� mutant L. major survived and replicated
thereafter (Fig. 3B and data not shown). In contrast, the
lpg5A�/lpg5B� mutant experienced a more drastic decline
within the first 1 to 2 days and did not increase thereafter
(Fig. 3B and data not shown). Restoration of LPG5A and
LPG5B expression in the lpg5A�/lpg5B� mutant (lpg5A�/lpg5B�/
�LPG5A�LPG5B) restored macrophage survival, albeit to lev-
els somewhat less than seen with the WT (Fig. 3B). In one ex-
periment we found that integration of the LPG5A and LPG5B
expression vector into the rRNA locus, which typically increases
transgene expression, restored lpg5A�/lpg5B� macrophage sur-
vival fully (data not shown).

lpg5A�/lpg5B� amastigotes are fully virulent. The ability of
the lpg5A�/lpg5B� parasites to induce pathology following an
initial delay could be explained by the need for these gene
products during the initial establishment of macrophages, such
as PGs (including LPG and/or PPGs), but not for survival as
amastigotes thereafter, as seen previously for LPG with the
lpg1� mutant (50). To test this idea, we purified lpg5A�/lpg5B�

amastigotes from visibly progressing lesions (such as those
shown in Fig. 2B or 3A) and used them directly in macrophage
or mouse infections (Fig. 4).

In macrophage infections, WT amastigotes entered and rep-
licated rapidly thereafter without any delay (Fig. 5A). Similar
results were obtained with lpg5A�/lpg5B� amastigotes and
with lpg1� amastigotes, used for comparison (Fig. 5A). In
mouse infections, the lpg5A�/lpg5B� amastigotes induced le-
sions which appeared and progressed at the same rate as those
induced by the WT (Fig. 5B). These data argued that like lpg1�

and unlike lpg2� L. major (50, 51), lpg5A�/lpg5B� amastigotes
are as virulent as WT amastigotes.

lpg5A�/lpg5B� amastigotes lack PGs. In the previous stud-
ies leading to the identification of the LPG5A and LPG5B
UDP-Gal NSTs, 10 additional NSTs were identified, includ-
ing several showing relationship to NSTs known in other
species to transport UDP-sugars including UDP-Gal (3).
This raised the possibility that one of these NSTs could
mediate UDP-Gal uptake in amastigotes, by either normal
developmental up-regulation or selection during the deriva-
tion of the lpg5A�/lpg5B�mutant. This could then lead to
PG expression in lpg5A�/lpg5B� amastigotes, and mitigation
of their phenotype, if PGs were the ultimate source of the
amastigote defect.

To test this, macrophages were infected with amastigotes
purified from lesions as described above and, after 2 days, were
examined by indirect immunofluorescence with anti-PG mono-
clonal antibodies. Macrophages and parasites were visualized
by phase microscopy and reactivity with an �-tubulin antiserum
(Fig. 6A to F). In macrophages infected by WT amastigotes,
PGs were readily detected, not only on the parasite itself but
also shed into the macrophage, as seen previously (Fig. 6G)
(19, 50). In contrast, lpg5A�/lpg5B� amastigotes were devoid
of anti-PG reactivity (Fig. 6H). As a control, we performed
parallel tests with amastigotes from the lpg2�/Rev mutant,
which similarly survives within macrophages despite the ab-
sence of PGs (Fig. 6I). Thus, the survival of the lpg5A�/lpg5B�

amastigotes cannot be explained by activation of an alternative
NST or other pathway leading to PG synthesis.

FIG. 4. Limiting-dilution assay of L. major mutant survival follow-
ing infection of BALB/c mice. Metacyclic WT, lpg1�, and lpg5A�/
lpg5B� parasites (105) were purified and inoculated into the hind
footpad of BALB/c mice as described in Materials and Methods (three
mice/group). With this number of parasites, WT infections showed
only small lesions by day 28 (0.04 	 0.04 mm). At the indicated times
the animals were sacrificed and the number of parasites per footpad
was assessed by limiting dilution.

FIG. 5. Amastigote survival, replication, and lesion induction are
not affected by loss of LPG5A and LPG5B. (A) Macrophage (M
)
infection showing amastigote survival. Peritoneal macrophages were
infected with three amastigotes/macrophage, and survival was moni-
tored over time as described in Materials and Methods. Symbols cor-
respond to WT (F), lpg1� (�), and lpg5A�/lpg5B� (�) strains.
(B) Footpad lesion assay. BALB/c mice were infected with 105 lesion
amastigotes per footpad and monitored for lesion growth as outlined
in Materials and Methods. Symbols correspond to WT (F) and lpg5A�/
lpg5B� (ƒ) strains. Error bars indicate standard deviations.
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The levels of two GPI-anchored proteins are minimally al-
tered in the lpg5A�/lpg5B� mutant. Another explanation for
the results above was a compensatory up-regulation of other
parasite membrane components. While neither Leishmania
protein GPI anchors nor N-linked glycans have been shown to
contain galactose (13, 40), current data are not sufficient to
rule out the occurrence at low levels, and both modifications
occur in trypanosomes, where they may be essential (47). We
thus examined the pattern and levels of gp63, encoding the
abundant surface protease leishmanolysin, and gp46/PSA-2.
Both of these proteins are encoded by large gene families and
show higher expression in the promastigote stage (34, 37).
Immunoblot analysis showed a modest change in their levels,
with a two- to fourfold decrease in gp63 expression (Fig. 7A),
versus a two- to fourfold increase of gp46 (Fig. 7B), compared
to the WT. We believe that these relatively modest differences
are unlikely to be significant and may reflect clonal variation
arising during the rounds of transfection and cloning on semi-
solid medium employed in our studies. Indeed, small variations
in gp63 expression and/or gene copy number in various clonal
variants have been reported by many laboratories, often with-
out strong correlation to virulence (11, 36).

Mannan levels in lpg2� L. major and L. mexicana are nor-
mal. Leishmania spp. synthesize an abundant cytoplasmic
�-1,2-mannan (25, 42), which is suggested to play an important
role during environmental stress and as an energy reservoir in
amastigote survival (44). In principle, the activity of the LPG2
Golgi GDP-Man transporter should have little or no effect on
cytoplasmic mannan synthesis (Fig. 1A), but given the results
obtained with the lpg5A�/lpg5B� mutant, this supposition war-
ranted testing.

Total cellular mannans were extracted from WT and lpg2�

L. major and L. mexicana, fluorophore derivatized, and ana-
lyzed by FACE analysis (Fig. 8). WT L. mexicana mannans
were highly polymerized, ranging upwards of 10 mannose res-
idues, and were absent in a null mutant (gdmp�) lacking cyto-
plasmic GDP-Man pyrophosphorylase (Fig. 8A) (44). Notably,
mannan levels were unaltered in the L. mexicana or L. major
lpg2� mutants relative to the WT (Fig. 8A and B). Similar
results were obtained with WT L. donovani and lpg2� mutants
(data not shown). Interestingly, the degree of mannan poly-
merization in L. major (�10) was less than that in L. mexicana

FIG. 6. lpg5A�/lpg5B� amastigotes lack PGs. Macrophages in-
fected with lesion-derived amastigotes were fixed and permeabilized
before probing for PGs using WIC79.3 and tubulin using an anti-
trypanosome tubulin antibody. (A to C) Phase-contrast image. (D to
F) Detection of parasite �-tubulin (Texas Red-conjugated secondary
antibody). (G to I) PGs detected with WIC79.3 antibody (FITC-con-
jugated secondary antibody). WT amastigotes (A, D, and G), lpg5A�/
lpg5B� amastigotes (B, E, and H), and lpg2�/Rev amastigotes (C, F,
and I) were used. Bar, 10 �m.

FIG. 7. Western analysis of GPI-anchored proteins in the WT ver-
sus the lpg5A�/lpg5B� mutant. (A and B) Serial twofold dilutions of
whole-cell extracts were subjected to Western blot analysis with anti-
serum to GPI-anchored protein gp63 (A) or gp46 (B). (C) The mem-
branes used for the experiments shown in panels A and B were
stripped and immunoblotted with antiserum to �-tubulin. (D) Total
protein (revealed by Ponceau S staining) bound to the membranes
used in panels A to C prior to immunoblotting.

FIG. 8. Mannan levels are unchanged in Leishmania lpg2� mu-
tants. Total cellular mannans were purified, labeled, and subjected to
FACE analysis as described in Materials and Methods. (A) Stationary-
phase WT, gdmp�, and lpg2� L. mexicana. (B) Stationary-phase WT
and lpg2� L. major. s1, 1 day in stationary phase; s5, 5 days in station-
ary phase.
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upon entry into stationary phase, and it declined further after
5 days in stationary phase (Fig. 7B). This would be consistent
with a role for mannan in energy metabolism in the metacyclic
as well as amastigote stage of Leishmania parasites (44). Re-
gardless, the equivalence of mannan levels in WT and lpg2�

comparisons within both Leishmania species makes it unlikely
that mannans contribute to LPG2-dependent virulence effects.

DISCUSSION

The results presented here show that metacyclic promasti-
gotes of the L. major PG-deficient lpg5A�/lpg5B� mutant are
attenuated in the early steps of infection of mammalian mac-
rophages but thereafter are able to survive, replicate, and
induce disease normally as amastigotes. In this regard the
phenotype of this mutant most closely resembles that of the
lpg1� mutant of L. major, which lacks LPG alone (50, 51).
However, the macrophage survival defect of the lpg5A�/
lpg5B� metacyclic promastigotes was more pronounced
(�1%) (Fig. 3) and was nearly as severe as that of the com-
pletely PG-deficient lpg2� L. major mutant (52). As expected,
restoration of LPG5A and LPG5B expression in the lpg5A�/
lpg5B� mutant restored promastigote virulence to levels iden-
tical or close to that of the WT (Fig. 3 and 5). In total, these
studies further support the importance of PGs, including LPG,
in the establishment of successful infections in host macro-
phages by L. major.

We ruled out the possibility that the amastigote virulence
phenotype arose through second-site alterations not involving
the LPG5A and LPG5B genes (Fig. 2B) or that the lpg5A�/
lpg5B� parasites possessed amastigote-specific UDP-Gal NSTs
or other alternate pathways leading to PG synthesis that could
potentially bypass the lpg5A�/lpg5B� mutant (Fig. 6) (3). Thus,
in contrast to the situation for promastigote virulence, we
conclude that PGs are not essential for amastigote virulence in
L. major, as suggested previously for L. mexicana (22).

Our findings were also consistent with previous work on a
second-site revertant of L. major lpg2�, lpg2�/Rev, which, like
the lpg5A�/lpg5B� mutant, lacked PGs and showed initial mac-
rophage establishment phase defects as promastigotes but oth-
erwise retained amastigote virulence in mouse infections (53).
As yet the nature of the second-site mutation in the lpg2�/Rev
mutant and its consequences for glycoconjugate synthesis (if
any) have not been determined.

These data suggest that there is a PG-independent, LPG2-
dependent pathway required for amastigote virulence specifi-
cally in L. major. Given the known role of LPG2 in Golgi
nucleotide sugar transport, it seems most likely that a defi-
ciency of some LPG2-dependent glycoconjugate underlies the
virulence phenotype. Since we have now ruled out all of the
known major glycoconjugate candidates of L. major, it seems
likely that an uncharacterized, and most likely nonabundant,
glycoconjugate is responsible. The intense study that the Man-
containing glycoconjugate pathway has received experimen-
tally could be viewed as arguing against the involvement of a
Man-containing glycoconjugate (14, 44). Nonetheless, when
new methods and approaches are applied, new glycoconjugates
may emerge, as exemplified by the recent discovery of the
abundant cytoplasmic mannan that may play an important role
in amastigote virulence (44). However, we have shown here

that mannan levels exhibit no LPG2-dependent changes in
either L. major or L. mexicana (Fig. 7), as anticipated, elimi-
nating this cytoplasmic molecule as a candidate (44). While
GDP-Man synthetic mutants of L. mexicana are avirulent,
their lack of general dolichol-mediated protein N glycosylation
(Fig. 1B) and structural abnormalities make it difficult to at-
tribute virulence defects to any specific glycoconjugate (14, 54).
Thus, the possibility that undiscovered, less-abundant LPG2-
dependent Man-containing glycoconjugates essential for L.
major amastigote virulence exist cannot be excluded.

LPG2 is a multispecific GDP-sugar transporter with speci-
ficities for both GDP-D-Arap and GDP-L-Fuc in addition to
GDP-Man (20, 28). Potentially the critical role of LPG2 in-
volves these sugars, most likely arabinose (Ara), since Fuc has
not been reported in L. major (48). In L. major, two D-Arap

transferases mediating terminal arabinosylation of Gal-modi-
fied PG repeats of metacyclic promastigotes have been iden-
tified, SCA1 and SCA2 (10). The terminal D-Arap substitutions
disrupt binding of LPG to the sand fly midgut lectin, allowing
detachment of L. major promastigotes and subsequent trans-
mission (23, 30, 41). We believe that the general lack of PG
dependency suggests that it is unlikely that Ara-containing or
other modifications of the PG repeating unit account for
LPG2-dependent amastigote virulence, although arabinosyla-
tion of other, as-yet-unknown glycoconjugates remains a pos-
sibility. Interestingly, Ara-containing glycolipids have been re-
ported previously in L. donovani (62); however, their role in
virulence has not been investigated.

In recent work we have shown that lpg2� L. donovani (16)
also shows decreased virulence in both mouse and hamster
infections (M. Wilson and S. M. Beverley, unpublished data).
These findings raise the important question as to why L. mexi-
cana does not show the same LPG2 dependency for amastigote
virulence as in L. major and L. donovani, despite the extensive
similarities in the structures of known LPG2-dependent glyco-
conjugates. Potentially L. mexicana may synthesize novel gly-
coconjugates and/or other molecules that fulfill this role in the
absence of LPG2. Alternatively, the molecules required for
amastigote virulence may differ between the species due to
differences in the parasite biology, with one example being the
natures of the parasitophorous vacuoles formed by L. mexi-
cana versus L. donovani and L. major (4). The availability of
well-characterized mutants of all three species should greatly
facilitate the resolution of this important question in the fu-
ture.

ACKNOWLEDGMENTS

We thank T. Ilg and J. Mottram for the L. mexicana lpg2� and
gdmp� mutants; K. Gull, R. McMaster, and D. McMahon Pratt for
antisera; M. Wilson for discussions and preliminary results for the L.
donovani lpg2� mutant; N. Novozhilova for discussions; and M. Man-
dell and K. Zhang for comments.

This work was supported by NIH grant AI 31078 to S.M.B. and
S.J.T.

REFERENCES

1. Bates, P. A., and D. M. Dwyer. 1987. Biosynthesis and secretion of acid
phosphatase by Leishmania donovani promastigotes. Mol. Biochem. Parasi-
tol. 26:289–296.

2. Capul, A. A. 2005. UDP-galactose transporters in Leishmania. Ph.D. thesis.
Washington University, St. Louis, MO.

3. Capul, A. A., T. Barron, D. E. Dobson, S. J. Turco, and S. M. Beverley. 2007.
Two functionally divergent UDP-GAL nucleotide-sugar transporters partic-

VOL. 75, 2007 PHOSPHOGLYCANS IN L. MAJOR AMASTIGOTE INFECTIVITY 4635

 on M
arch 10, 2014 by W

ashington U
niversity in S

t. Louis
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/
http://iai.asm.org/


ipate in phosphoglycan synthesis in Leishmania major. J. Biol. Chem. 282:
14006–14017.

4. Castro, R., K. Scott, T. Jordan, B. Evans, J. Craig, E. L. Peters, and K. Swier.
2006. The ultrastructure of the parasitophorous vacuole formed by Leish-
mania major. J. Parasitol. 92:1162–1170.

5. Connell, N. D., E. Medina-Acosta, W. R. McMaster, B. R. Bloom, and D. G.
Russell. 1993. Effective immunization against cutaneous leishmaniasis with
recombinant bacille Calmette-Guerin expressing the Leishmania surface
proteinase gp63. Proc. Natl. Acad. Sci. USA 90:11473–11477.

6. de Ibarra, A. A., J. G. Howard, and D. Snary. 1982. Monoclonal antibodies
to Leishmania tropica major: specificities and antigen location. Parasitology
85:523–531.

7. Denny, P. W., D. Goulding, M. A. Ferguson, and D. F. Smith. 2004. Sphin-
golipid-free Leishmania are defective in membrane trafficking, differentia-
tion and infectivity. Mol. Microbiol. 52:313–327.

8. Descoteaux, A., and S. J. Turco. 2002. Functional aspects of the Leishmania
donovani lipophosphoglycan during macrophage infection. Microbes Infect.
4:975–981.

9. Desjeux, P. 2004. Leishmaniasis: current situation and new perspectives.
Comp. Immunol. Microbiol. Infect. Dis. 27:305–318.

10. Dobson, D. E., B. J. Mengeling, S. Cilmi, S. Hickerson, S. J. Turco, and S. M.
Beverley. 2003. Identification of genes encoding arabinosyltransferases
(SCA) mediating developmental modifications of lipophosphoglycan re-
quired for sand fly transmission of Leishmania major. J. Biol. Chem. 278:
28840–28848.

11. Espinoza, J. R., A. C. Skinner, C. R. Davies, A. Llanos-Cuentas, J. Arevalo,
C. Dye, W. R. McMaster, J. W. Ajioka, and J. M. Blackwell. 1995. Extensive
polymorphism at the Gp63 locus in field isolates of Leishmania peruviana.
Mol. Biochem. Parasitol. 72:203–213.

12. Ferguson, M. A. 1999. The structure, biosynthesis and functions of glyco-
sylphosphatidylinositol anchors, and the contributions of trypanosome re-
search. J. Cell Sci. 112:2799–2809.

13. Ferguson, M. A. 1997. The surface glycoconjugates of trypanosomatid
parasites. Philos. Trans. R. Soc. London 352:1295–1302.

14. Garami, A., and T. Ilg. 2001. Disruption of mannose activation in Leishma-
nia mexicana: GDP-mannose pyrophosphorylase is required for virulence,
but not for viability. EMBO J. 20:3657–3666.

15. Garami, A., and T. Ilg. 2001. The role of phosphomannose isomerase in
Leishmania mexicana glycoconjugate synthesis and virulence. J. Biol. Chem.
276:6566–6575.

16. Goyard, S., H. Segawa, J. Gordon, M. Showalter, R. Duncan, S. J. Turco, and
S. M. Beverley. 2003. An in vitro system for developmental and genetic
studies of Leishmania donovani phosphoglycans. Mol. Biochem. Parasitol.
130:31–42.

17. Guha-Niyogi, A., D. R. Sullivan, and S. J. Turco. 2001. Glycoconjugate
structures of parasitic protozoa. Glycobiology 11:45R–59R.

18. Ha, D. S., J. K. Schwarz, S. J. Turco, and S. M. Beverley. 1996. Use of the
green fluorescent protein as a marker in transfected Leishmania. Mol. Bio-
chem. Parasitol. 77:57–64.

19. Handman, E. 1990. Study of Leishmania major-infected macrophages by use
of lipophosphoglycan-specific monoclonal antibodies. Infect. Immun. 58:
2297–2302.

20. Hong, K., D. Ma, S. M. Beverley, and S. J. Turco. 2000. The Leishmania
GDP-mannose transporter is an autonomous, multi-specific, hexameric com-
plex of LPG2 subunits. Biochemistry 39:2013–2022.

21. Ilg, T. 2000. Proteophosphoglycans of Leishmania. Parasitol. Today 16:489–
497.

22. Ilg, T., M. Demar, and D. Harbecke. 2001. Phosphoglycan repeat-deficient
Leishmania mexicana parasites remain infectious to macrophages and mice.
J. Biol. Chem. 276:4988–4997.

23. Kamhawi, S., M. Ramalho-Ortigao, V. M. Pham, S. Kumar, P. G. Lawyer,
S. J. Turco, C. Barillas-Mury, D. L. Sacks, and J. G. Valenzuela. 2004. A role
for insect galectins in parasite survival. Cell 119:329–341.

24. Kapler, G. M., C. M. Coburn, and S. M. Beverley. 1990. Stable transfection
of the human parasite Leishmania major delineates a 30-kilobase region
sufficient for extrachromosomal replication and expression. Mol. Cell. Biol.
10:1084–1094.

25. Keegan, F. P., and J. J. Blum. 1992. Utilization of a carbohydrate reserve
comprised primarily of mannose by Leishmania donovani. Mol. Biochem.
Parasitol. 53:193–200.

26. Lima, H. C., J. A. Bleyenberg, and R. G. Titus. 1997. A simple method for
quantifying Leishmania in tissues of infected animals. Parasitol. Today 13:
80–82.

27. Lodge, R., and A. Descoteaux. 2005. Modulation of phagolysosome biogen-
esis by the lipophosphoglycan of Leishmania. Clin. Immunol. 114:256–265.

28. Ma, D., D. G. Russell, S. M. Beverley, and S. J. Turco. 1997. Golgi GDP-
mannose uptake requires Leishmania LPG2. A member of a eukaryotic
family of putative nucleotide-sugar transporters. J. Biol. Chem. 272:3799–
3805.

29. McConville, M. J., K. A. Mullin, S. C. Ilgoutz, and R. D. Teasdale. 2002.
Secretory pathway of trypanosomatid parasites. Microbiol. Mol. Biol. Rev.
66:122–154.

30. McConville, M. J., S. J. Turco, M. A. Ferguson, and D. L. Sacks. 1992.
Developmental modification of lipophosphoglycan during the differentiation
of Leishmania major promastigotes to an infectious stage. EMBO J. 11:3593–
3600.

31. McMahon-Pratt, D., Y. Traub-Cseko, K. L. Lohman, D. D. Rogers, and S. M.
Beverley. 1992. Loss of the GP46/M-2 surface membrane glycoprotein gene
family in the Leishmania braziliensis complex. Mol. Biochem. Parasitol. 50:
151–160.

32. Mengeling, B. J., S. M. Beverley, and S. J. Turco. 1997. Designing glycocon-
jugate biosynthesis for an insidious intent: phosphoglycan assembly in Leish-
mania parasites. Glycobiology 7:873–880.

33. Modabber, F. 1995. Vaccines against leishmaniasis. Ann. Trop. Med. Para-
sitol. 89(Suppl. 1):83–88.

34. Montgomery, J., T. Ilg, J. K. Thompson, B. Kobe, and E. Handman. 2000.
Identification and predicted structure of a leucine-rich repeat motif shared
by Leishmania major proteophosphoglycan and parasite surface antigen 2.
Mol. Biochem. Parasitol. 107:289–295.

35. Murray, H. W., J. D. Berman, C. R. Davies, and N. G. Saravia. 2005.
Advances in leishmaniasis. Lancet 366:1561–1577.

36. Murray, P. J., E. Handman, T. A. Glaser, and T. W. Spithill. 1990. Leish-
mania major: expression and gene structure of the glycoprotein 63 molecule
in virulent and avirulent clones and strains. Exp. Parasitol. 71:294–304.

37. Myung, K. S., J. K. Beetham, M. E. Wilson, and J. E. Donelson. 2002.
Comparison of the post-transcriptional regulation of the mRNAs for the
surface proteins PSA (GP46) and MSP (GP63) of Leishmania chagasi.
J. Biol. Chem. 277:16489–16497.

38. Naderer, T., M. A. Ellis, M. F. Sernee, D. P. De Souza, J. Curtis, E. Handman,
and M. J. McConville. 2006. Virulence of Leishmania major in macrophages and
mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc.
Natl. Acad. Sci. USA 103:5502–5507.

39. Naderer, T., J. E. Vince, and M. J. McConville. 2004. Surface determinants
of Leishmania parasites and their role in infectivity in the mammalian host.
Curr. Mol. Med. 4:649–665.

40. Olafson, R. W., J. R. Thomas, M. A. Ferguson, R. A. Dwek, M. Chaudhuri,
K. P. Chang, and T. W. Rademacher. 1990. Structures of the N-linked
oligosaccharides of Gp63, the major surface glycoprotein, from Leishmania
mexicana amazonensis. J. Biol. Chem. 265:12240–12247.

41. Pimenta, P. F., S. J. Turco, M. J. McConville, P. G. Lawyer, P. V. Perkins,
and D. L. Sacks. 1992. Stage-specific adhesion of Leishmania promastigotes
to the sandfly midgut. Science 256:1812–1815.

42. Previato, J. O., M. T. Xavier, R. P. Brazil, P. A. Gorin, and L. Mendonca-
Previato. 1984. Formation of (1–2)-linked beta-D-mannopyranan by Leish-
mania mexicana amazonensis: relationship with certain Crithidia and Herpe-
tomonas species. J. Parasitol. 70:449–450.

43. Racoosin, E. L., and S. M. Beverley. 1997. Leishmania major: promastigotes
induce expression of a subset of chemokine genes in murine macrophages.
Exp. Parasitol. 85:283–295.

44. Ralton, J. E., T. Naderer, H. L. Piraino, T. A. Bashtannyk, J. M. Callaghan,
and M. J. McConville. 2003. Evidence that intracellular beta1-2 mannan is a
virulence factor in Leishmania parasites. J. Biol. Chem. 278:40757–40763.

45. Remme, J. H., E. Blas, L. Chitsulo, P. M. Desjeux, H. D. Engers, T. P.
Kanyok, J. F. Kayondo, D. W. Kioy, V. Kumaraswami, J. K. Lazdins, P. P.
Nunn, A. Oduola, R. G. Ridley, Y. T. Toure, F. Zicker, and C. M. Morel.
2002. Strategic emphases for tropical diseases research: a TDR perspective.
Trends Microbiol. 10:435–440.

46. Roper, J. R., M. L. Guther, J. I. Macrae, A. R. Prescott, I. Hallyburton, A.
Acosta-Serrano, and M. A. Ferguson. 2005. The suppression of galactose
metabolism in procyclic form Trypanosoma brucei causes cessation of cell
growth and alters procyclin glycoprotein structure and copy number. J. Biol.
Chem. 280:19728–19736.

47. Roper, J. R., M. L. Guther, K. G. Milne, and M. A. Ferguson. 2002. Galac-
tose metabolism is essential for the African sleeping sickness parasite
Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 99:5884–5889.

48. Schneider, P., M. J. McConville, and M. A. Ferguson. 1994. Characterization
of GDP-alpha-D-arabinopyranose, the precursor of D-Arap in Leishmania
major lipophosphoglycan. J. Biol. Chem. 269:18332–18337.

49. Spath, G. F., and S. M. Beverley. 2001. A lipophosphoglycan-independent
method for isolation of infective Leishmania metacyclic promastigotes by
density gradient centrifugation. Exp. Parasitol. 99:97–103.

50. Spath, G. F., L. Epstein, B. Leader, S. M. Singer, H. A. Avila, S. J. Turco, and
S. M. Beverley. 2000. Lipophosphoglycan is a virulence factor distinct from
related glycoconjugates in the protozoan parasite Leishmania major. Proc.
Natl. Acad. Sci. USA 97:9258–9263.

51. Spath, G. F., L. A. Garraway, S. J. Turco, and S. M. Beverley. 2003. The
role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania
major infections in mammalian hosts. Proc. Natl. Acad. Sci. USA 100:9536–
9541.

52. Spath, G. F., L. F. Lye, H. Segawa, D. L. Sacks, S. J. Turco, and S. M.
Beverley. 2003. Persistence without pathology in phosphoglycan-deficient
Leishmania major. Science 301:1241–1243.

53. Spath, G. F., L. F. Lye, H. Segawa, S. J. Turco, and S. M. Beverley. 2004.
Identification of a compensatory mutant (lpg2�Rev) of Leishmania major

4636 CAPUL ET AL. INFECT. IMMUN.

 on M
arch 10, 2014 by W

ashington U
niversity in S

t. Louis
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/
http://iai.asm.org/


able to survive as amastigotes within macrophages without LPG2-dependent
glycoconjugates and its significance to virulence and immunization strate-
gies. Infect. Immun. 72:3622–3627.

54. Stewart, J., J. Curtis, T. P. Spurck, T. Ilg, A. Garami, T. Baldwin, N. Courret,
G. I. McFadden, A. Davis, and E. Handman. 2005. Characterisation of a
Leishmania mexicana knockout lacking guanosine diphosphate-mannose py-
rophosphorylase. Int. J. Parasitol. 35:861–873.

55. Titus, R. G., I. Muller, P. Kimsey, A. Cerny, R. Behin, R. M. Zinkernagel,
and J. A. Louis. 1991. Exacerbation of experimental murine cutaneous leish-
maniasis with CD4� Leishmania major-specific T cell lines or clones which
secrete interferon-gamma and mediate parasite-specific delayed-type hyper-
sensitivity. Eur. J. Immunol. 21:559–567.

56. Turco, S. J., and A. Descoteaux. 1992. The lipophosphoglycan of Leishmania
parasites. Annu. Rev. Microbiol. 46:65–94.

57. Turco, S. J., G. F. Spath, and S. M. Beverley. 2001. Is lipophosphoglycan a
virulence factor? A surprising diversity between Leishmania species. Trends
Parasitol. 17:223–226.

58. Turco, S. J., M. A. Wilkerson, and D. R. Clawson. 1984. Expression of an
unusual acidic glycoconjugate in Leishmania donovani. J. Biol. Chem. 259:
3883–3889.

59. Uzonna, J. E., G. F. Spath, S. M. Beverley, and P. Scott. 2004. Vaccination
with phosphoglycan-deficient Leishmania major protects highly susceptible
mice from virulent challenge without inducing a strong Th1 response. J. Im-
munol. 172:3793–3797.

60. Wiese, M., T. Ilg, F. Lottspeich, and P. Overath. 1995. Ser/Thr-rich repetitive
motifs as targets for phosphoglycan modifications in Leishmania mexicana
secreted acid phosphatase. EMBO J. 14:1067–1074.

61. Woods, A., T. Sherwin, R. Sasse, T. H. MacRae, A. J. Baines, and K. Gull.
1989. Definition of individual components within the cytoskeleton of
Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93:
491–500.

62. Wyder, M. A., D. Sul, and E. S. Kaneshiro. 1999. The fatty acid and
monosaccharide compositions of three neutral and three phosphorylated
glycolipids isolated from Leishmania donovani promastigotes grown in a
chemically defined medium. J. Parasitol. 85:771–778.

63. Yao, C., J. E. Donelson, and M. E. Wilson. 2003. The major surface protease
(MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and
function. Mol. Biochem. Parasitol. 132:1–16.

64. Zhang, K., F. F. Hsu, D. A. Scott, R. Docampo, J. Turk, and S. M. Beverley.
2005. Leishmania salvage and remodelling of host sphingolipids in amasti-
gote survival and acidocalcisome biogenesis. Mol. Microbiol. 55:1566–1578.

65. Zhang, K., J. M. Pompey, F. F. Hsu, P. Key, P. Bandhuvula, J. D. Saba, J.
Turk, and S. M. Beverley. 2007. Redirection of sphingolipid metabolism
toward de novo synthesis of ethanolamine in Leishmania. EMBO J. 26:1094–
1104.

66. Zhang, K., M. Showalter, J. Revollo, F. F. Hsu, J. Turk, and S. M. Beverley.
2003. Sphingolipids are essential for differentiation but not growth in Leish-
mania. EMBO J. 22:6016–6026.

67. Zufferey, R., S. Allen, T. Barron, D. R. Sullivan, P. W. Denny, I. C. Almeida,
D. F. Smith, S. J. Turco, M. A. Ferguson, and S. M. Beverley. 2003. Ether
phospholipids and glycosylinositolphospholipids are not required for amas-
tigote virulence or for inhibition of macrophage activation by Leishmania
major. J. Biol. Chem. 278:44708–44718.

Editor: W. A. Petri, Jr.

VOL. 75, 2007 PHOSPHOGLYCANS IN L. MAJOR AMASTIGOTE INFECTIVITY 4637

 on M
arch 10, 2014 by W

ashington U
niversity in S

t. Louis
http://iai.asm

.org/
D

ow
nloaded from

 

http://iai.asm.org/
http://iai.asm.org/

	Washington University School of Medicine
	Digital Commons@Becker
	2007

	Comparisons of mutants lacking the golgi UDP-galactose or GDP-mannose transporters establish that phosphoglycans are important for promastigote but not amastigote virulence in Leishmania major
	Althea A. Capul
	Suzanne Hickerson
	Tamara Barron
	Salvatore J. Turco
	Stephen M. Beverley
	Recommended Citation


	tmp.1394496778.pdf.4IGBd

