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Inclusion Biogenesis and Reactivation of Persistent
Chlamydia trachomatis Requires Host Cell Sphingolipid
Biosynthesis
D. Kesley Robertson, Ling Gu, Regina K. Rowe, Wandy L. Beatty*

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic
constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes,
implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin
occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through
endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of
Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study
identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of
sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first
enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with
subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature
redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under
conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane
stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the
Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential
for normal inclusion development and reactivation of persistent C. trachomatis infection.
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Introduction

The genus Chlamydia is composed of obligate intracellular

prokaryotic pathogens that cause a range of clinical sequelae in

humans encompassing ocular, genital, and respiratory tract

infections. Consequences of subsequent chronic disease include

blindness, infertility, arthritis, and possible coronary heart disease

[1,2]. Despite their notoriety clinically, the molecular interactions

between Chlamydia and its host cell that allow for propagation,

persistence, and subsequent pathology, remain elusive. The

defining biological characteristic of these successful pathogens is

a unique process of intracellular development, with an infectious

elementary body (EB) initiating uptake into a target host cell. The

chlamydial EB subsequently differentiates to the noninfectious,

metabolically active reticulate body (RB) within the confines of a

membrane-bound vacuole termed an inclusion. Successive growth

and replication, giving rise to a large inclusion body containing a

multitude of infectious EBs, is contingent upon the acquisition of

biosynthetic constituents from the nutrient-rich host cell cytosol. In

response to nutrient or immunological stress [3], Chlamydiae can

also enter into a persistent phase of development characterized by

morphologically altered RBs that can be maintained intracellularly

for extended periods of time. Alternating infectious and persistent

phases of chlamydial growth correlate with acute and chronic

infections in vivo [4]. The cellular biosynthetic constituents that

sustain persistent chlamydiae, and allow for emergence from a

persistent state, are poorly understood.

The intricacies of this host-pathogen interaction, which allow

for acquisition of biosynthetic precursors from the host cell, remain

largely undefined. Vacuole-bound chlamydiae attain nucleotides,

amino acids, and lipids from the host cell [5]. Eukaryotic-derived

phospholipids, sphingomyelin, and cholesterol are found within

purified chlamydiae, suggesting that these host-derived constitu-

ents traverse the inclusion membrane with subsequent incorpora-

tion into the bacterium [6,7]. Translocation of lipid droplets to the

chlamydial inclusion lumen represents one potential source of

neutral lipids [8,9]. Host cell sphingolipids are required for the

intracellular growth of C. trachomatis [10], with sphingomyelin

attained via the intersection of the chlamydial inclusion with

Golgi-derived exocytic vesicles destined for the plasma membrane

[11–13]. Multivesicular bodies (MVBs), late endocytic organelles

abundant in sphingolipids and central to intracellular lipid

segregation, also serve as a source for host-derived lipids and a

potential intermediate in Golgi to inclusion transport [14,15]. To

further delineate lipid acquisition pathways pirated by the

chlamydial inclusion, specific inhibitors of host cell lipid

biosynthesis and/or trafficking were evaluated for their effects

on chlamydial growth and inclusion development. The present
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study focuses on sphingomyelin biosynthesis, a host cell pathway

validated as essential for growth and replication of chlamydiae by

Engel and colleagues [10]. Our studies indicate that sphingomy-

elin biosynthesis is requisite to inclusion membrane biogenesis and

stability, and demonstrate that MVBs are a major source for this

essential lipid.

Results

Inhibition of host cell sphingomyelin biosynthesis results
in loss of inclusion membrane integrity

Specific inhibitors of sphingomyelin biosynthesis and trafficking

were evaluated for effects on chlamydial growth and inclusion

development. Treatment of infected cells with 25 mM myriocin, a

potent inhibitor of serine palmitoyltransferase (SPT), the initial

enzyme in the biosynthesis of sphingomyelin (Figure 1) [16],

revealed striking morphological alterations in inclusion matura-

tion. Confocal analysis of untreated Chlamydia-infected cells

revealed normal inclusion development with the vacuole expand-

ing in size from 24 to 36 hr postinfection (pi) (Figure 2). Infected

cells cultured in the presence of myriocin, revealed a marked loss

of inclusion membrane integrity with disruption of the inclusion

and release of intracellular bacteria, initially evident at 24 hr pi

(22% of infected cells with disrupted inclusions) and most notable

at 30 hr pi (61%) (Figure 2). At 36 hr pi, myriocin-treated cells

contained small multiple inclusions of heterogeneous size, rather

than the large single inclusion typical of untreated cells (Figure 2).

The concentration of myriocin used in these studies had no effect

on host cell viability.

The CHO-K1 mutant cell line, LY-B [17], which contains a

mutation in the LCB1 gene and therefore does not express SPT,

was used to independently test the role of sphingomyelin. C.

trachomatis inclusions in LY-B cells showed a collapse of membrane

integrity, similar to myriocin treatment (Figure 2). In addition, at

36 hr pi, LY-B-infected cells contained small multiple inclusions

comparable to those observed in myriocin-treated HEp-2 cells.

The complemented cell line, LY-B/LCB1, supported normal

inclusion development comparable to that observed in both CHO-

K1 and HEp-2 cells (data not shown), confirming that mainte-

nance of inclusion membrane integrity was dependent on host cell

SPT activity.

To confirm that the loss of inclusion membrane integrity was a

consequence of a deficiency in host cell sphingomyelin rather than

an indirect effect of depleted SPT activity, cells were cultured in

the presence of 5 mM dihydroceramide or 5 mM sphingosine prior

to infection. Dihydroceramide and sphingosine are precursors of

sphingomyelin, positioned downstream of SPT, allowing for the

restoration of sphingomyelin synthesis under conditions of SPT

inactivity (Figure 1) [10,18]. These sphingomyelin precursors

reversed the detrimental effects of SPT-deficiency in LY-B cells or

myriocin-treated HEp-2 cells, with growth and expansion of intact

inclusions morphologically comparable to those present in

untreated control cells at 24 to 36 hr pi (Figure 2) (data for

sphingosine not shown).

Inhibition of host cell sphingomyelin biosynthesis results
in early redifferentiation and premature release of
infectious chlamydiae

The intracellular developmental cycle of C. trachomatis E requires

approximately 72 hr to complete, with redifferentiation of RBs to

infectious EBs occurring prior to release of infectious progeny. At

24 to 36 hr pi, the expanding inclusion contains predominantly

noninfectious RBs that, if released indiscriminately from the

infected cell, are incapable of initiating an infectious cycle. The

presence of multiple small inclusions at 36 hr pi, under conditions

of disrupted host cell sphingomyelin biosynthesis, suggested

premature release of infectious progeny and subsequent reinfec-

tion. To analyze possible early emergence of infectious EBs, the

expression of OmcB, an EB-specific protein detectable late in the

developmental cycle, was analyzed. In untreated cells, low levels of

OmcB were evident at 30 to 36 hr pi (Figure 3), with peak levels

emerging at 48 to 72 hr as inclusions reached maximal size and

approached lysis (not shown). Myriocin treatment resulted in

expression of OmcB as early as 24 hr pi with EBs being dispersed

upon premature loss of both inclusion and host cell membrane

integrity (Figure 3). Infected SPT-deficient LY-B cells also

displayed early emergence of OmcB-positive EBs, temporally

Author Summary

The genus Chlamydia is composed of a group of obligate
intracellular bacterial pathogens that cause several human
diseases of medical significance. C. trachomatis is the most
commonly encountered sexually transmitted pathogen, as
well as the leading cause of preventable blindness
worldwide. The prevalence of chlamydial infections, and
the extraordinary morbidity and health care costs associ-
ated with chronic persisting disease, justifies the research
efforts in this area of microbial pathogenesis. Despite their
clinical importance, the mechanisms by which these
intracellular bacteria obtain nutrients essential to their
growth remain enigmatic. Acquisition of sphingolipids,
from the cells that chlamydiae infect, is essential for
bacterial propagation. This study identifies a requirement
for the lipid sphingomyelin from the infected host cell for
bacterial replication during infection, and for long-term
subsistence in persistent chlamydial infection. Blockage of
sphingomyelin acquisition results in premature release of
bacteria, a reduced bacterial number, and failure of the
bacteria to cause a persisting infection. In this study, we
have identified and subsequently disrupted specific
sphingomyelin transport pathways, providing important
implications on therapeutic intervention targeting this
successful microbial pathogen.

Figure 1. The sphingomyelin biosynthetic pathway. The precursors of sphingomyelin are synthesized in the endoplasmic reticulum with
subsequent transfer of ceramide to the Golgi apparatus, the site of the final step in sphingomyelin biosynthesis. The targets for the sphingomyelin
inhibitors myriocin and fumonsin B1 are indicated, as well as, the site of enzymatic deficiency of LY-B cells.
doi:10.1371/journal.ppat.1000664.g001

Role of Sphingomyelin in Propagation of Chlamydia
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similar to those observed under conditions of myriocin treatment

(not shown). Western blot analysis confirmed the higher levels of

OmcB at 27–36 hr pi in infected cells treated with myriocin as

compared to control cells (Figure 3). In addition, higher levels of

infectious progeny were released from myriocin-treated cells versus

control cells at early times post infection (Figure 3). Collectively,

these results indicate that the absence of sphingomyelin results in

loss of inclusion membrane integrity, early redifferentiation, and

premature release of infectious chlamydiae.

Host cell-derived sphingomyelin is required for
homotypic fusion of inclusions

A distinguishing trait of prototypic C. trachomatis strains is

homotypic fusion of inclusions [19]. Infecting a single cell with

multiple EBs of a defined serovar, results in multiple bacterial-

containing vacuoles that fuse early in the developmental cycle to

form a single inclusion. The presence of multiple inclusions at

36 hr pi in sphingomyelin-depleted cells, suggests reinfection with

subsequent disruption of homotypic fusion. To analyze the effect

of sphingomyelin deficiency on homotypic fusion, cells were

infected with a high MOI of five bacteria per cell and inclusion

numbers were determined at 16 hr pi (Figure 4). HEp-2 and

CHO-K1 cells generally contained a single inclusion per infected

cell as shown in the histogram inserts. HEp-2 cells cultured in the

presence of 25 mM myriocin or 5 mg/ml fumonisin B1 (a potent

inhibitor of sphingonine and sphinosine N-acetyltransferase,

Figure 1), or the SPT-deficient LY-B cells, revealed multiple

inclusions per cell. Complementation of the LY-B cells with the

LCB1 gene, resulted in the restoration of host cell sphingomyelin

biosynthesis, and the recovery of the inclusion fusion phenotype as

shown by a single inclusion per infected cell (Figure 4). To confirm

that lack of inclusion fusion was a consequence of a deficiency in

host cell sphingomyelin rather than an indirect effect of depleted

SPT activity, cells were cultured in the presence of dihydrocer-

amide and sphingosine prior to infection. These sphingomyelin

precursors restored the fusion capability to infected cells cultured

under conditions of SPT-deficiency with a majority of cells

containing a single inclusion (Figure 4). Collectively, these findings

indicate that host cell sphingomyelin biosynthesis is required for

homotypic fusion of chlamydia inclusions within a single infected

cell.

Host cell-derived sphingomyelin is required for
reactivation of persistent chlamydial infection

Persistence is a hallmark of natural chlamydial diseases, and is

characterized by the retention of nonreplicating, aberrant

reticulate bodies within the host cell for extended periods of time

[3]. Host cell sphingomyelin biosynthesis is essential for mainte-

nance of inclusion integrity during normal chlamydial develop-

ment, and is likely essential during reactivation of persistent

infection, a process concurrent with inclusion membrane expan-

sion. The role of host cell sphingomyelin was tested in a model

system of IFN-c-induced persistence [20]. HEp-2 cells were

infected with C. trachomatis B, a strain sensitive to IFN-c-mediated

alterations in intracellular growth [21]. Untreated Chlamydia-

infected cells revealed normal inclusion development with large

inclusions at 48 hr pi, while IFN-c-treated cells harbored smaller

inclusions containing enlarged RBs as confirmed by fluorescence

and electron microscopy (Figure 5). The persistent state was

reversible as shown by the expansion of the inclusion and

Figure 2. Inhibition in sphingomyelin biosynthesis results in the disruption of inclusion stability. HEp-2 or LY-B cells were infected with
C. trachomatis E (MOI 0.2) and treated with 25 mM myriocin at 1 hr pi where indicated. Infected cells were fixed at 24, 27, 30, and 36 hr pi and
subsequently immunolabeled with anti-incG antibody (anti-rabbit Alexa Fluor 488) and anti-MOMP antibody (anti-mouse Alexa Fluor 568) to precisely
identify the boundary of the chlamydial inclusion and the intrainclusion bacteria, respectively. TOPRO-3 labeling was used to identify both
intracellular bacteria and the host cell nuclei. Analysis of 0.5 mm confocal optical sections of infected cells revealed disruption of inclusion integrity in
HEp-2 cells treated with myriocin, or in SPT-deficient LY-B cells (indicated by white arrows). Disruption of inclusions resulted in early lysis of infected
cells and reinfection evident at 36 hr pi (indicated by white arrowheads identifying multiple inclusions). Lower right panels: Supplementing the
culture medium with 5 mM dihydroceramide for 48 hr prior to infection of HEp-2 or LY-B cells reversed the inhibitory effect of SPT inactivity. Scale
bar = 20 mm. Upper right table: The percent of disrupted inclusions was quantitated for the cells and treatment conditions indicated.
doi:10.1371/journal.ppat.1000664.g002

Role of Sphingomyelin in Propagation of Chlamydia
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reactivation of infectious EBs following removal of IFN at 48 hr pi

and culturing in fresh medium for an additional 48 hr (Figure 5).

In contrast, culturing in the presence of myriocin during the

recovery phase resulted in disruption in inclusion membrane

integrity and failure of persistent forms to completely reactivate to

infectious EBs (Figure 5). These results were confirmed in an

alternate in vitro model system of penicillin-induced persistence

[22,23]. In C. trachomatis serovar B- and servovar E-infected cells

treated with penicillin to induce aberrant, persistent chlamydial

development, the presence of myriocin during the recovery phase

prevented the recovery of infectious EBs (not shown). These

studies implicate host cell-derived sphingomyelin as an essential

Figure 3. Inhibition in sphingomyelin biosynthesis results in the early redifferentiation of RBs to infectious EBs. HEp-2 were infected
with C. trachomatis E (MOI 0.2) and treated with 25 mM myriocin at 1 hr pi where indicated. Infected cells were fixed at 24, 27, 30, and 36 hr pi and
subsequently immunolabeled with anti-OmcB antibody (anti-rabbit Alexa Fluor 488) and anti-MOMP antibody (anti-mouse Alexa Fluor 568). TOPRO-3
labeling was used to identify both intracellular bacteria and the host cell nuclei. Analysis of 0.5 mm confocal optical sections of infected cells revealed
early redifferentiation from RBs to EBs as indicated by the presence of OmcB specific for EBs in myriocin-treated cells (indicated by white arrows).
Disruption of inclusions resulted in early lysis of infected cells and reinfection evident at 36 hr pi (indicated by white arrowheads identifying multiple
inclusions). Scale bar = 20 mm. Upper right panel: Western blot analysis of OmcB levels in untreated control and myriocin-treated cells revealed the
early emergence of OmcB in myriocin-treated cells (indicated by asterisks). Analysis of actin levels served as a loading control. Lower right panel:
Recovery of infectious Chlamydia from untreated control and myriocin-treated cells. Data are presented as mean infectious forming units of triplicate
cultures+/2s.e.m.
doi:10.1371/journal.ppat.1000664.g003

Figure 4. Host cell sphingomyelin-deficiency results in the inhibition of homotypic fusion of inclusions. HEp-2, CHO-K1, LY-B, and LY-B/
LCB1 cells were infected with C. trachomatis E (MOI 5) and treated with 25 mM myriocin or 5 mg/ml fumonisin B1 at 1 hr pi where indicated. Infected
cells were fixed at 16 hr pi and subsequently immunolabeled with anti-incG antibody (anti-rabbit Alexa Fluor 488) and anti-MOMP antibody (anti-
mouse Alexa Fluor 568) to precisely identify the boundary of the chlamydial inclusion and the intrainclusion bacteria, respectively. TOPRO-3 labeling
was used to identify both intracellular bacteria and the host cell nuclei. Analysis of 0.5 mm confocal optical sections of infected cells revealed the
inhibition of fusion of multiple inclusions to a single inclusion in HEp-2 cells treated with myriocin or fumonisin B1, or in SPT-deficient LY-B cells
(indicated by white arrowheads). Right panels: Supplementing the culture medium with 5 mM dihydroceramide or 5 mM sphingosine for 48 hr prior to
infection of HEp-2 or LY-B cells reversed the inhibitor effect of SPT inactivity. The relative number of inclusions per infected cell is shown in graph
inserts. Scale bar = 20 mm.
doi:10.1371/journal.ppat.1000664.g004

Role of Sphingomyelin in Propagation of Chlamydia

PLoS Pathogens | www.plospathogens.org 4 November 2009 | Volume 5 | Issue 11 | e1000664



component for maintenance of inclusion membrane integrity

during reactivation of persistent chlamydial infection.

Trafficking of host cell sphingomyelin from the Golgi or
MVBs is required for homotypic fusion and normal
inclusion development

The precursors of sphingomyelin are synthesized in the

endoplasmic reticulum with subsequent transfer of ceramide to

the Golgi apparatus, the site of the final step in sphingomyelin

biosynthesis (Figure 1). Hackstadt and colleagues have demon-

strated the transport of sphingomyelin from the Golgi to the

chlamydial inclusion, with incorporation of the sphingolipid into

the inclusion membrane and the cell wall of chlamydiae [12,13].

MVBs, late endocytic organelles abundant in sphingomyelin, have

been proposed to provide essential lipids to the chlamydial

inclusion and may be an intermediate in Golgi to inclusion

transport [14,15]. To decipher the source of Chlamydia-acquired

sphingomyelin, the phenotypic effects of inhibitors of Golgi and

MVB transport on inclusion maturation were compared to

inclusion development under conditions of sphingomyelin defi-

ciency. The inhibitors were used at concentrations that disrupt

transport of ceramide-derived sphingomyelin from the Golgi

apparatus to the chlamydial inclusion, but have no effect on host

cell viability [13,14]. HEp-2 cells were infected with a high MOI

of five bacteria per cell and treated with the indicated inhibitors at

1 hr pi, then analyzed for homotypic fusion at 16 hr pi (Figure 6).

Control cells generally contained a single inclusion per infected

cell as shown in the histogram inserts. HEp-2 cells were cultured in

the presence of golgicide A (GCA), a potent, highly specific

inhibitor of GBR1 (Golgi BFA resistence factor 1) that disrupts

both anterograde and retrograde transport through the Golgi [24].

GCA-treatment revealed a slight disruption in vacuole fusion with

a mean of 2.6 inclusions per infected cell (Figure 6), with a similar

result observed upon treatment with 1 mg/ml brefeldin A (BFA)

another inhibitor of Golgi function [25] (not shown). HEp-2 cells

Figure 5. Host cell sphingomyelin-deficiency results in inhibition of reactivation of persistent chlamydial infection. HEp-2 cells were
treated with 1 ng/ml IFN-c where indicated, for 48 hr prior to and 1 hr after infecting with C. trachomatis B (MOI 0.2). At 48 hr pi, the IFN-c was
removed and replaced with fresh culture medium with or without myriocin (25 mM) or U18666A (10 mM), and cultured until 96 hr pi. At the indicated
times pi, infected cells were immunolabeled with anti-hsp60 antibody (anti-rabbit Alexa Fluor 488) and anti-LPS antibody (anti-mouse Alexa Fluor
568). TOPRO-3 labeling was used to identify both intracellular bacteria and the host cell nuclei. Upper left panels: Analysis of 0.5 mm confocal optical
sections and electron micrographs of infected cells revealed aberrant, persistent chlamydial development when cultured in the presence of IFN-c
(indicated by arrowheads). Upper right and center panels: Analysis by confocal microscopy revealed inclusion expansion with normal inclusion
development when cultured in the absence of myriocin but disruption of inclusion integrity when cultured in the presence of myriocin (indicated by
white arrows). Lower right panels: Culturing IFN-c-induced persistent chlamydiae in the presence of U18666A revealed a lack of inclusion expansion
and loss of inclusion membrane integrity (indicated by white arrows). Scale bar of fluorescent images = 20 mm. Scale bar of electron
micrographs = 0.5 mm. Lower left panel: The effect of indicated culture conditions on the recovery of infectious organisms. Data are presented as
mean infectious forming units of triplicate cultures+/2s.e.m.
doi:10.1371/journal.ppat.1000664.g005
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cultured in the presence of 10 mM U18666A, a pharmacological

agent that disrupts trafficking from MVBs [26–28], revealed

multiple inclusions per infected cell (Figure 6), similar to the

conditions of sphingomyelin deficiency (Figure 4). Therefore,

interruption of sphingomyelin trafficking from the Golgi delayed

inclusion fusion, while a block in MVB trafficking completely

impeded fusion, implicating MVBs, an organelle abundant in

sphingolipids, as a principle source of chlamydiae-acquired

sphingomyelin.

To analyze the effect of inhibitors on inclusion maturation,

HEp-2 cells were infected with a low MOI of C. trachomatis E,

treated with the indicated inhibitors at 1 hr pi and analyzed at

36 hr pi. Confocal analysis of GCA-treated Chlamydia-infected cells

revealed a slight delay in inclusion maturation with smaller

inclusions compared to those in untreated control cells (Figure 6).

There was no evidence of inclusion membrane instability as

observed under conditions of sphingomyelin deficiency (Figure 2),

indicating that sphingolipids may be acquired from an alternate

source such as MVBs. Infected cells cultured in the presence of the

MVB inhibitor U18666A, revealed a dramatic interruption in

inclusion development with significantly smaller inclusions

(Figure 6). There was no evidence of inclusion membrane

instability as observed under conditions of sphingomyelin

deficiency (Figure 2). However, the complete interruption in RB

division and subsequent inclusion expansion, implicates additional

MVB-derived constituents necessary for normal chlamydial

inclusion expansion and development.

Trafficking of host cell sphingomyelin from MVBs is
required for reactivation of persistent chlamydial
infection

Host cell sphingomyelin biosynthesis is essential for mainte-

nance of membrane integrity during expansion of the inclusion

following reactivation of persistent infection (Figure 5). Because

trafficking from MVBs was essential to sphingomyelin-dependent

inclusion expansion, the potential significance of these sphingo-

lipid-rich organelles in reactivation of persistent infection was

analyzed. Following induction of the persistent state by IFN-c
treatment for 48 hr, removal of IFN and subsequent culturing in

the presence of the MVB inhibitor U18666A for an additional

48 hr, resulted in a lack of inclusion expansion, disruption in

inclusion membrane integrity, and complete failure of aberrant

persistent forms to reactivate to infectious EBs (Figure 5). These

studies implicate MVB-derived sphingomyelin, and potentially

other MVB constituents, requisite to inclusion membrane integrity

during reactivation of persistent chlamydial infection.

Discussion

The present studies were initiated to identify lipid biosynthetic

and transport pathways essential to the intracellular propagation

of chlamydiae. These studies revealed novel effects on the

intracellular development of chlamydiae under conditions that

inhibit sphingomyelin biosynthesis. As demonstrated in classic

studies by Hackstadt and colleagues, sphingomyelin synthesized in

the Golgi apparatus is transported from the trans-Golgi to the

chlamydial inclusion with successive incorporation into the

bacterial cell wall [12,13]. In subsequent studies by Engel and

colleagues, host cell-derived sphingomyelin was shown to be

essential for intracellular development of C. trachomatis and optimal

production of infectious progeny [10]. In the present study, we

further explore this requirement and demonstrate that sphingo-

myelin biosynthesis is necessary for stability and expansion of the

inclusion membrane during both normal intracellular develop-

ment and reactivation of persistent infection. Blockage of this

pathway results in premature egress, reduced bacterial output, and

failure to emerge from a persistent state. Hence, disruption of lipid

trafficking may provide a novel means to thwart intracellular

pathogens.

Chlamydiae undergo their entire intracellular developmental

cycle within an inclusion that is bound by a membrane, providing

a protected intracellular environment for bacterial replication.

Treatment of infected cells with myriocin interrupted inclusion

membrane functionality, with complete disruption of membrane

integrity resulting in premature dispersal of intracellular bacteria

from their protected niche (Figure 2). Myriocin is a potent

inhibitor of SPT, the initial enzyme in sphingomyelin biosynthesis

(Figure 1) [16]. Analysis of inclusion development in SPT-deficient

LY-B cells, and under conditions of concurrent pretreatment with

precursors of sphingomyelin, revealed that the compromise in

inclusion membrane integrity was a direct result of host cell

sphingomyelin deficiency (Figure 2). Actin and intermediate

filaments have been shown to stabilize the chlamydial inclusion,

with disruption of these host cytoskeletal structures resulting in loss

of inclusion membrane integrity and release of bacteria into the

host cell cytosol [29]. In the present studies, immunofluorescence

analyses of actin and intermediate filaments of both uninfected

and chlamydiae-infected cells revealed no obvious morphological

alterations in the cytoskeletal structure upon inhibition of

sphingomyelin biosynthesis (data not shown).

The disruption of inclusion membrane integrity under condi-

tions of sphingomyelin deficiency occurred concomitantly with the

early redifferentiation of noninfectious RBs to infectious EBs

(Figure 3). This implies that the procurement of host cell

sphingomyelin may be required for inclusion membrane expan-

sion and stability, and programmed conversion to infectious forms.

The signals that trigger the replicative RBs to convert to infectious

EBs remain elusive. However, it is clear that this developmental

Figure 6. Inhibition of Golgi or MVB transport interrupts
homotypic fusion and normal inclusion development. HEp-2
cells were infected with C. trachomatis E (MOI 0.2 or 5) and treated with
GCA (10 mM) or U18666A (10 mM) at 1 hr pi where indicated. Infected
cells were fixed at 16 or 36 hr pi and subsequently immunolabeled with
anti-incG antibody (anti-rabbit Alexa Fluor 488) and anti-MOMP
antibody (anti-mouse Alexa Fluor 568) to precisely identify the
boundary of the chlamydial inclusion and the intrainclusion bacteria,
respectively. TOPRO-3 labeling was used to identify both intracellular
bacteria and the host cell nuclei. Analysis of 0.5 mm confocal optical
sections of infected cells revealed the effects of inhibitors on homotypic
inclusion fusion (upper panels) or normal inclusion development (lower
panels). The relative number of inclusions per infected cell is shown in
graph inserts (upper panels). Scale bar = 20 mm.
doi:10.1371/journal.ppat.1000664.g006
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transformation coincides with a contact-dependent interaction of

the type III secretion (TTS) system with the inclusion membrane.

RBs amass at the periphery of the inclusion, with projections of the

TTS system mediating intimate contact between the bacteria and

the inner face of the inclusion membrane [30,31]. The proposed

chlamydial injectisome acts as a molecular syringe, translocating

effector proteins directly from the intrainclusion chlamydiae to the

host cell cytosol [32]. This association may be requisite to RB

replication and potentially inclusion expansion allowing for

nutrient acquisition from the host cell cytosol [33]. The physical

detachment of RBs from the inclusion membrane, coupled to

inactivation of TTS, signals the initation of late redifferentiation

[32]. In the present studies, lipid deprivation may signal the loss of

TTS intimate contact and RB detachment leading to premature

conversion of RBs to infectious EBs. Host cell-derived sphingo-

myelin associates transiently with the chlamydial inclusion

membrane and incorporates into the bacterial cell wall [12].

Failure of this sphingolipid to incorporate into the inclusion

membrane may cause the normally contiguously intact membrane

to become indiscriminately permeable to environmental changes

that potentially signal RB to EB conversion. Alternately,

incorporation of sphingomyelin into the chlamydial cell wall

may be essential to RB division and proliferation, with lack of

available sphingomyelin being a potential cue for premature

redifferentiation.

A secondary function of the inclusion membrane of C.

trachomatis, distinct from inclusion membrane integrity, is homo-

typic fusion of multiple inclusions to a single vacuole in multiply-

infected cells. The resulting multiple inclusions with greater

surface area would require more lipid incorporation into the

chlamydial inclusion membrane, indicating that early in infection

other host cell lipids are available for incorporation into the

expanding inclusion under conditions of sphingomyelin deficiency.

Fusion of inclusions is a temperature-dependent process that

requires export of the chlamydial incA protein to the inclusion

membrane [34,35]. Characteristic homotypic fusion of inclusions

was interrupted when multiply-infected cells were cultured in the

presence of myriocin (Figure 4). Analysis of the fusion of multiple

inclusions in SPT-deficient LY-B cells, and under conditions of

concurrent pretreatment with precursors of sphingomyelin,

revealed that the disruption in homotypic fusion was a direct

result of host cell sphingomyelin deficiency (Figure 4). These

studies did not reveal an alteration in IncA incorporation into the

inclusion membrane under conditions of sphingomyelin deficien-

cy, implicating a role for host cell sphingolipids in homotypic

fusion independent of incA. Culturing C. trachomatis-infected cells

under conditions of sphingomyelin deficiency has two distinct

phenotypic effects on chlamydial inclusion biogenesis. Interruption

in homotypic fusion is observed early in chlamydial inclusion

development, while a compromise in inclusion membrane

integrity occurs later. These distinct anomalies may result from

the failure of sphingomyelin incorporation into the inclusion

membrane, implicating a direct role for host cell lipid in

maintaining normal inclusion functionality. However, the effect

of sphingomyelin deficiency on other lipid biosynthetic or signaling

pathways that indirectly alter inclusion biogenesis cannot be

disregarded.

Further studies determined the source of sphingomyelin

essential to inclusion biogenesis, which includes membrane

stability and the capacity for homotypic fusion. As described

previously, inhibition of sphingomyelin transport from the Golgi

apparatus using the inhibitor BFA, results in smaller, compact

inclusions that retain a burst size comparable to untreated controls

[12]. In the present studies, this observation was reproduced using

both BFA and GCA. In addition, treatment of infected cells with

concentrations of BFA or GCA that prevent the incorporation of

newly synthesized Golgi-derived sphingomyelin into the chlamyd-

ial inclusion, failed to completely disrupt inclusion fusion or

inclusion membrane integrity (Figure 6). This implicates another

source of sphingomyelin available to the chlamydial inclusion

under conditions of disrupted Golgi transport. These studies

identify MVBs, late endocytic organelles abundant in sphingolip-

ids and pivotal for intracellular distribution, as a potential source

of sphingomyelin essential to homotypic fusion and maintenance

of inclusion membrane integrity. U18666A treatment of infected

cells, utilizing concentrations that block MVB transport and

prevent the incorporation of newly synthesized Golgi-derived

sphingomyelin into the chlamydial inclusion [14,15], revealed

complete inhibition of homotypic fusion of inclusions (Figure 6).

These findings were identical to the disruption of inclusion fusion

observed under conditions of sphingomyelin deficiency (Figure 4).

However, inhibition of MVB transport had much more profound

effects on RB division and normal inclusion development than

what was observed under conditions of sphingomyelin deficiency.

A deficit in host cell sphingomyelin resulted in RB division and the

expansion of the chlamydial inclusion to a moderate size with

subsequent loss of inclusion membrane integrity at 24 to 36 hr pi

(Figure 2). In contrast, interruption in MVB transport impeded

early RB division and inclusion membrane expansion at a stage in

development prior to imposing stress on inclusion membrane

integrity. Collectively these studies implicate sphingomyelin, and

potentially additional constituents derived from MVBs, essential

for inclusion expansion during normal development and the

reactivation of persistent C. trachomatis infection. However, a

pleiotropic effect of inhibitors of MVB transport, on cellular

function or potential acquisition of sphingomyelin from alternate

sources, cannot be disregarded.

Within the confines of a protected intracellular environment,

chlamydiae coordinate the expansion of the inclusion and

acquisition of biosynthetic constituents from the host cell cytosol.

In the presence of eukaryotic protein synthesis inhibitors,

intracellular development proceeds normally, indicating that

inclusion expansion may be linked to host cell lipid biosynthesis.

These studies identify host cell sphingomyelin biosynthesis as a

requisite to C. trachomatis inclusion membrane biogenesis and

functionality. This encompasses inclusion membrane expansion,

homotypic fusion, and stability during normal inclusion develop-

ment and reactivation of a persistent chlamydial infection. In

addition, identification of potential sphingomyelin transport

pathways may have important implications when deciphering this

unique host-pathogen interaction.

Materials and Methods

Antibodies and reagents
Rabbit anti-incG was kindly provided by Dr. Ted Hackstadt

(Rocky Mountain Laboratories, NIH, NIAID, Hamilton, MT).

Rabbit anti-outer membrane complex protein B (OmcB) was

generously provided by Dr. Thomas Hatch (University of

Tennessee Health Science Center, Memphis, TN). Monoclonal

antibody (mAb) L2I-10 to the major outer membrane protein

(MOMP) of C. trachomatis, was kindly provided by Dr. Harlan

Caldwell (Rocky Mountain Laboratories, NIH, NIAID, Hamilton,

MT). MAb A57B9 against the chlamydial heat shock protein-60

(hsp60), was generously provided by Dr. Richard Morrison

(University of Arkansas for Medical Sciences, Little Rock, AK).

Antibodies to chlamydial LPS and eukaryotic actin (clone C4)

were obtained from Chemicon International (Billerica, MA).
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TOPRO-3 (monomeric cyanine nucleic acid stain), and secondary

antibodies conjugated to Alexa Fluor 488 and Alexa Fluor

568 were obtained from Invitrogen (Eugene, OR). Myriocin,

fumonisin B1, dihydroceramide, sphingosine, 3-b-(2-diethylami-

noethoxy)-androstenone HCl (U18666A), and brefeldin A were

obtained from BioMol International (Plymouth Meeting, PA).

Recombinant human IFN-c was purchased from BD Biosciences

(San Jose, CA). Golgicide A was kindly provided by Dr. David

Haslam (Washington University School of Medicine, St. Louis,

MO).

Cell culture and propagation of chlamydiae
C. trachomatis serovar E (provided by Dr. Harlan Caldwell) and C.

trachomatis serovar B (provided by Dr. Ted Hackstadt) were

propagated in HEp-2 cells (ATCC, Manassas, VA) and elementary

bodies (EBs) were purified by Renografin gradient centrifugation as

previously described [36]. HEp-2 cells were maintained in Iscove’s

DME medium supplemented with 12.5 mM HEPES, 10% (vol/vol)

FBS, and 10 mg/ml gentamicin, and grown at 37uC with 5.5%

CO2. CHO-K1, LY-B, and LY-B/LCB1 cells, obtained from Dr.

Kentaro Hanada (National Institute of Infectious Disease, Tokyo,

Japan), were maintained in Ham’s F12 medium supplemented with

10% (vol/vol) FBS, and 10 mg/ml gentamicin at 37uC with 5.5%

CO2. Cells were infected by incubating monolayers with Chlamydia

EBs at a multiplicity of infection (MOI) of 0.2 or 5 for 1 hr at 37uC,

washed and incubated in fresh culture medium for the times

indicated.

Confocal microscopy
For immunofluorescence analyses, infected cells were fixed and

permeabilized for 1 min with cold methanol. Cells were then

incubated with the indicated primary and fluorophore-conjugated

secondary antibodies, labeled with the nucleic acid stain TOPRO-

3, and mounted in ProLong Anti-Fade (Invitrogen), as previously

described [14]. Images were acquired using a Zeiss LSM510 Meta

laser scanning confocal microscope (Carl Zeiss Inc., Thornwood,

NY) equipped with a 63X, 1.4 numerical aperature Zeiss Plan

Apochromat oil objective. Confocal Z slices of 0.5 mm were

obtained using the Zeiss LSM510 software.

Analysis of inhibitors
One hour post infection (pi), infected HEp-2 cells were

incubated with medium containing inhibitors and the effects on

inclusion development were determined by immunofluorescence,

Western blot analysis, and infectivity assays, when indicated. To

quantify the disruption of inclusions, one hundred infected cells

were scored by fluorescence microscopy as indicated. Data are

presented as the mean percent of disrupted inclusions. To quantify

the number of inclusions per cell, one hundred infected cells were

scored by fluorescence microscopy at 16 hr pi and presented as the

mean number of inclusions per infected cell.

Infectivity assays
Infected monolayers cultured in the presence of myriocin or

IFN-c were scraped from culture dishes, and supernatant and cells

were analyzed to determine the number of infectious forming units

(IFU) per ml (per 7.56105 infected cells). Data are presented as the

mean+/2standard error of mean (s.e.m.) from one of three

representative experiments.

SDS-PAGE and immunoblotting
At the times indicated, infected monolayers were dissolved in

Laemmli buffer and equivalent protein concentrations were

analyzed by 10% SDS-PAGE. Western blots were probed with

antibody to chlamydial OmcB, and antibody to host cell actin,

which served as a loading control.

Induction of persistence
HEp-2 cells were pretreated with 1 ng/ml IFN-c for 48 hr prior

to infecting with C. trachomatis B. Infected cells were then cultured

in the presence of 1 ng/ml IFN for 48 hr, IFN was subsequently

removed, and cells were incubated for an additional 48 hr with

fresh culture medium with or without 25 mg/ml myriocin or

10 mM U18666A. At the indicated time points, inclusion

development and infectivity were analyzed by immunofluores-

cence analysis and infectivity assays, respectively.

Transmission electron microscopy
For ultrastructural analysis, infected HEp-2 cells were fixed in

2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc.,

Warrington, PA) in 100 mM phosphate buffer, and processed as

described previously [14].
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