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[1] Virtual bond representation and loop entropy calculation

Due to the rotameric nature of RNA backbone torsional angles, the original six-bond nucleotide can be reduced
to a two-bond system, where each bond is a virtual bond (Fig.1). In the Vfold model we compute the conformational
entropy by enumerating the virtual bond conformations (Fig. 1). In the current version of the Vfold model, the virtual
bonds are configured on a diamond lattice with three equiprobable torsional angles (60◦, 180◦, 300◦) and fixed bond
length of 3.9Å and bond angle of 109.47o.

An advantage of the model for the loop entropy calculation isthe ability to account for chain connectivity, excluded
volume effect and completeness of the conformational ensemble. With the Vfold model, we have computed the
entropy parameters for several RNA motifs, such as hairpin loops, internal loops, bulge loops, H-type pseudoknots
and hairpin-hairpin kissing motifs:

1. Hairpin, internal and bulge loops, in Ref [1];

2. Pseudoknots without inter-helix junction, in Ref [2];

3. Pseudoknots with inter-helix junction, in Ref [3];

4. Hairpin-hairpin kissing, in Ref [4].

[2] Partition function

Based on a recursive algorithm1−4, we compute the partition function for all the possible secondary and pseudo-
knotted structures from the sequence. For each given structure, the helix free energy is computed from the empirical
thermodynamic parameters of the base stacks (Turner rules)and the loop free energies are calculated from the Vfold
model.

For the loop treatment, the Vfold model distinguishes itself from other models by accounting for the intraloop
mismatched base stacking interactions. The formation of intraloop stacks can cause significant constraint in loop
conformation and a resultant reduction of conformational entropy. For given intraloop stacks, We use the Turner
rules to determine the free energy of the mismatched base stacks and use the Vfold model to compute the loop en-
tropy. Depending on the loop sequence, such Vfold-predicted loop entropy parameters could be different from the
experimentally measured loop entropy parameters, which isthe Boltzmann average over all the possible intraloop
base stacks. The partition function of a loop (see Fig. S1) iscalculated as the sum over all the possible intra-loop
mismatched base stacks. Such Vfold-predicted loop free energy can be temperature and sequence dependent.

From the partition functionQ(T ), we can calculate the heat capacity C(T) melting curves:C(T ) = ∂
∂T

[kBT
2 ∂
∂T

lnQ(T )].
Furthermore, from the conditional partition functionQ(i, j, T ) for the ensemble of conformations with base pair(i, j),
we compute the probability Pij(T ) for the formation of the(i, j) pair: Pij(T ) = Q(i, j, T )/Q(T ). From the distribu-
tion of the base-pairing probability, we can deduce the stable structures at temperature T.
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The computational time scales with the chain lengthN asO(N6) and the memory scales asO(N2).
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Figure S1:In the Vfold model, we enumerate all the possible structures(see the left panel) that contain secondary/pseudoknot
structures using a recursive algorithm. Helix free energies are calculated from the Turner’s thermodynamic parameters and loop
free energies are computed from the partition function overall the possible arrangements of the intra-loop mismatchedbase
stacks for a given loop sequence. Here, we show an example of ahairpin of size 9 nts closed by a A-U base pair. The ensemble
of the loop conformations contains 5 different arrangements of mismatched base stacks within the loop, as shown in the right
panel.
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[3] Additional experimental tests for the Vfold model

We calculated the stabilities for three small RNA systems[5] using the Vfold model and compare the results with
the experimental data as well as the RNAfold predictions. The stacking energy parameters used in Vfold is from the
Turner rule with 1M NaCl, while the experimental data is for the 150 mM NaCl and 10 mM Na2HPO4. Another
possible source for the inaccuracy of the models may come from the intraloop noncanonical interactions (beyond
mismatched base stacks). A more accurate model should consider these effects.

Overall, RNAfold and Vfold give close results for the stabilities of the bistable RNAs. For sequence 4, the energy
difference between the two (bistable) states is 1.73 kBT (from the experimental result and from the RNAfold), while
Vfold predicts 0.41 kBT. The slight difference between Vfold and RNAfold for the three RNAs may come from the
different energy parameters for the loops.

Table S1: Comparison of the stabilities predicted by the Vfold with the experimental results and the RNAfold results
for three bistable RNAs [5].Sequence 3, 4 and 5 denote the RNAs (no. 3, 4 and 5) studied in Ref [5]. The ratios n:m
in the table are the relative populations of the bistable states as determined from the experiment, the RNAfold model
and the Vfold model, respectively.

Sequence Exp. ratio RNAfold Vfold

3 50:50 8:92 22:78

4 85:15 85:15 60:40

5 45:55 21:79 21:79

Table S2: The size-dependent (sequence-independent)entropy parameters (∆S/kB , which is dimensionless) for
hairpin, bulge and internal loops derived from the Vfold model.

Size Hairpin Bulge Internal

1 - -5.87 -

2 - -6.64 -8.74

3 -7.28 -7.47 -9.19

4 -7.35 -7.81 -9.14

5 -7.90 -8.25 -9.27

6 -8.09 -8.51 -9.34

7 -8.41 -8.78 -9.45

8 -8.61 -9.01 -9.55

9 -8.82 -9.21 -9.66
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Table S3: Using bulge loop as a simple test for the approximation that we have used in the entropy calculation for
a multi-branched kissing loop: replacing the helix terminal base pair in the loop with a single nucleotide. With this
approximation, ann-nt bulge loop turns into an(n+ 1)-nt hairpin loop. In the table,∆∆S/kB denotes the difference
between the entropies of the bulge and of the hairpin loops.|∆∆S/∆Sbulge| is the relative error. In our calculation,
we use the approximation only for multibranched kissing loops, for which the approximation is necessary for the
entropy calculation.. For simple hairpin, bulge and internal loops, we use the rigorous entropy values without using
the approximation.

Bulge Hairpin |∆∆S/kB | |∆∆S/∆Sbulge|

2 3 0.64 0.096

3 4 0.12 0.016

4 5 0.09 0.011

5 6 0.16 0.019

6 7 0.10 0.011

7 8 0.17 0.019

8 9 0.19 0.021

Table S4: A simple test similar to the one shown in Table S3. Here we use internal loop instead of bulge loop as the
test case. With the appoximation, an internal loop of size n is converted into a hairpin loop of size of n+1.

Internal Hairpin |∆∆S/kB| |∆∆S/∆Sinternal|

2 3 1.46 0.167

3 4 1.84 0.200

4 5 1.24 0.135

5 6 1.18 0.127

6 7 0.93 0.099

7 8 0.84 0.088

8 9 0.73 0.076
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Table S5: A simple test for the effect of helix migration on loop entropy. The entropy difference∆∆S/kB between
a bulge loop and an internal loops of the same size. The entropy parameters∆S/kB are from Table S2. The third
column shows the relative error.

Size |∆∆S/kB | |∆∆S/∆Sinternal|

2 2.10 0.240

3 1.72 0.187

4 1.33 0.145

5 1.02 0.110

6 0.83 0.088

7 0.67 0.070

8 0.54 0.056

Table S6: A simple test for the effect of helix migration on loop entropy, specifically, for the effect of relative position
(l1, l2) between the helices in an internal loop with sizel1 + l2 = 6. ∆∆S/kB is the entropy difference between the
(l1, l2) internal loop and the entropy parameter (in Table S2) for a 6-nt internal loop averaged over all the possible (l1,
l2) values.

l1 l2 ∆S/kB |∆∆S/kB | |∆∆S/∆Saverage|

1 5 -9.51 0.17 0.018

2 4 -9.33 0.01 0.001

3 3 -9.24 0.10 0.011

4 2 -9.21 0.13 0.014

5 1 -9.39 0.05 0.005

Average -9.34 0.09 0.010
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Figure S2:A schematic diagram for an internal loop of size (l1+l2).
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Figure S3:The predicted fractional population of the RNA/RNA complexat the different temperatures. (a), (b) and (c) are the
results for the IIa/IIa-14t complex and (d), (e) and (f) are for the fhlA/OxyS complex. The RNA strand concentration ranges from
1 nM to 1000 nM in the calculation.
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Figure S4: The probability distribution of the 52 binding modes identified by the model for the IIa/IIa-14t complex. The
figure shows that there exists a single overwhelmingly dominant binding mode (binding site). This allows us to use the two-
step process for structure prediction, namely, to identifythe most probable binding site first, then predict the structure of the
RNA-RNA complex with the dominant binding site.
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