
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2002

Transcriptional induction of slit diaphragm genes
by Lmx1b is required in podocyte differentiation
Jeffrey H. Miner
Washington University School of Medicine in St. Louis

Roy Morello
Baylor College of Medicine

Kaya L. Andrews
Washington University School of Medicine in St. Louis

Cong Li
Washington University School of Medicine in St. Louis

Corinne Antignac
Institut National de la Sante et de la Recherche Medicale

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Miner, Jeffrey H.; Morello, Roy; Andrews, Kaya L.; Li, Cong; Antignac, Corinne; Shaw, Andrey S.; and Lee, Brendan, ,"Transcriptional
induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation." The Journal of Clinical Investigation.109,8.
1065-1072. (2002).
http://digitalcommons.wustl.edu/open_access_pubs/1431

http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors
Jeffrey H. Miner, Roy Morello, Kaya L. Andrews, Cong Li, Corinne Antignac, Andrey S. Shaw, and Brendan
Lee

This open access publication is available at Digital Commons@Becker: http://digitalcommons.wustl.edu/open_access_pubs/1431

http://digitalcommons.wustl.edu/open_access_pubs/1431?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages


Introduction
Podocytes are specialized cells of the renal glomerulus
with both epithelial and mesenchymal characteristics.
They lie atop the glomerular basement membrane
(GBM) in Bowman’s space and enwrap the glomerular
capillaries with long, interdigitated foot processes.
Podocytes are receiving increased attention and recog-
nition as critical components of the kidney’s ultrafil-
tration barrier (1, 2). They not only synthesize and
secrete GBM components but also assemble the
glomerular slit diaphragms, which are thought to be the
kidney’s ultimate size-selective filtration barrier (3, 4).

Several genes have recently been shown, through
either positional cloning or gene knockout approach-
es, to be involved in podocyte function. Most of these
genes encode structural proteins that are important in
formation, function, and/or maintenance of foot
process architecture and slit diaphragm integrity (2, 5,
6). However, two encode transcription factors presumed
to regulate expression of genes in podocytes. The first,
Pod1, encodes a basic-helix-loop-helix protein expressed
in podocytes and in other cell types in the kidney and

elsewhere (7). The phenotype of the Pod1–/– kidney is
complex, but it is clear that podocytes are developmen-
tally arrested (8). This suggests that Pod1 normally acti-
vates expression of genes important for podocyte mat-
uration, but specific downstream genes have not been
identified. The second transcription factor, Lmx1b,
encodes a LIM-homeodomain protein (9). Mutations in
LMX1B cause nail-patella syndrome (NPS) (10), an
autosomal dominant disorder characterized by skeletal
abnormalities, nail hypoplasia, and nephropathy. Con-
sistent with this, Lmx1b–/– mice exhibit kidney defects
as well as patterning defects in appendicular skeletal
structures and associated soft tissues, and they die
shortly after birth (11). Because Lmx1b is expressed in
the kidney primarily in podocytes, these data suggest
that Lmx1b regulates expression of genes required for
proper podocyte function.

Two genes that we previously showed to be regulated 
by Lmx1b in podocytes, Col4a3 and Col4a4, encode two 
of the three specialized type IV collagen chains found in
the GBM. Mutations in human COL4A3 and COL4A4
cause Alport syndrome, a hereditary nephritis leading to 
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LMX1B encodes a LIM-homeodomain transcription factor. Mutations in LMX1B cause nail-patella
syndrome (NPS), an autosomal dominant disease with skeletal abnormalities, nail hypoplasia, and
nephropathy. Expression of glomerular basement membrane (GBM) collagens is reduced in Lmx1b–/–

mice, suggesting one basis for NPS nephropathy. Here, we show that Lmx1b–/– podocytes have reduced
numbers of foot processes, are dysplastic, and lack typical slit diaphragms, indicating an arrest in
development. Using antibodies to podocyte proteins important for podocyte function, we found that
Lmx1b–/– podocytes express near-normal levels of nephrin, synaptopodin, ZO-1, α3 integrin, and GBM
laminins. However, mRNA and protein levels for CD2AP and podocin were greatly reduced, sug-
gesting a cooperative role for these molecules in foot process and slit diaphragm formation. We iden-
tified several LMX1B binding sites in the putative regulatory regions of both CD2AP and NPHS2
(podocin) and demonstrated that LMX1B binds to these sequences in vitro and can activate tran-
scription through them in cotransfection assays. Thus, LMX1B regulates the expression of multiple
podocyte genes critical for podocyte differentiation and function. Our results indicate that reduced
levels of proteins associated with foot processes and the glomerular slit diaphragm likely contribute,
along with reduced levels of GBM collagens, to the nephropathy associated with NPS.
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end-stage renal failure (12), so their importance for renal
function is well recognized. Levels of Col4a3 and Col4a4
RNA and protein are reduced in Lmx1b–/– glomeruli, and
LMX1B binds to a site in their common regulatory region
(13). Thus, reduced expression of COL4A3 and COL4A4
in NPS patients is a likely consequence of LMX1B hap-
loinsufficiency. This reduction would contribute to the
nephropathy which, like Alport syndrome, is character-
ized by the presence of distinct GBM abnormalities.

Here, we have characterized the Lmx1b–/– podocytes
in detail. We found significant morphological defects
as well as defects in podocyte gene expression, suggest-
ing that Lmx1b–/– podocytes do not differentiate prop-
erly. Our results indicate that reduced levels of proteins
associated with foot processes and the glomerular slit
diaphragm likely contribute, along with reduced levels
of GBM collagens, to the nephropathy associated with
LMX1B haploinsufficiency in NPS.

Methods
Electron microscopy. Kidneys from newborn control and
Lmx1b–/– mice were fixed in 2% paraformaldehyde/2%
glutaraldehyde in 0.15 M sodium cacodylate. They were
then rinsed in cacodylate buffer, stained with osmium
tetroxide and uranyl acetate, dehydrated, and embed-
ded in Poly/Bed 812. Ultrathin sections were stained
with uranyl acetate and lead citrate and viewed with an
electron microscope. Reagents were obtained from
Polysciences Inc. (Warrington, Pennsylvania, USA).

Immunohistochemistry. Kidneys were frozen in OCT
compound and sectioned at 7 µm. Sections were fixed
in 2% paraformaldehyde in PBS for 10 minutes and
rinsed in PBS. Primary antibodies were diluted in 1%
BSA in PBS and applied for 1 hour. After a PBS rinse,
fluorophore-conjugated secondary antibodies were
applied for 1 hour. Sections were rinsed in PBS, mount-
ed in 0.1× PBS/90% glycerol/1 mg/ml p-phenylenedi-
amine, and viewed with a fluorescence microscope.
Images were captured with a Spot 2 cooled color digi-
tal camera (Diagnostic Instruments Inc., Sterling
Heights, Michigan, USA).

Antibodies. Antibodies obtained from generous col-
leagues were: rabbit anti-human nephrin (14, 15)
from Karl Tryggvason (Karolinska Institute, Stock-
holm, Sweden); rabbit anti-chick integrin α3 (16)
from C. Michael Dipersio (Albany Medical College,
Albany, New York, USA); mouse anti-human synap-
topodin (17) from Peter Mundel (Albert Einstein Col-
lege of Medicine, Bronx, New York, USA); and rabbit
anti-human α-actinin-4 (18) from Alan Beggs (Chil-
dren’s Hospital, Boston, Massachusetts, USA). Rat
anti-mouse laminin γ1 (MAB1914) was purchased
from Chemicon International (Temecula, California,
USA). Rat anti-mouse ZO-1 (19) was purchased from
the Developmental Studies Hybridoma Bank (Iowa
City, Iowa, USA). Rabbit anti-mouse laminin α5 (20),
rabbit anti-mouse CD2AP (21), and rabbit anti-
human podocin (22) were generated as described.
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Figure 1
Ultrastructural analysis of podo-
cytes from control and Lmx1b–/–

newborn mice. Low- and high-
magnification micrographs from
control (a and b) and mutant (d
and e) show reduced foot process
formation in the mutant. Those
processes that do form have aber-
rant cell-cell junctions (f, arrows).
Normal and aberrant processes
and junctions have been schema-
tized for clarity (insets in b and f).
Mutant podocytes resemble those
observed in immature control
glomeruli (c), suggesting that
mutant podocytes are develop-
mentally arrested. P, podocyte;
rbc, red blood cell; E, endothelial
cell; arrowheads, foot processes.
Bar, 2.3 µm for a, c, and d; 0.7
µm for b, e, and f.
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Secondary antibodies were conjugated to FITC (ICN
Biomedicals Inc., Costa Mesa, California, USA) or
Cy3 (Chemicon International).

In situ hybridizations. For Cd2ap in situs, kidneys were
frozen fresh in OCT and sectioned at 12 µm. Digoxi-
genin-UTP-labeled sense and antisense Cd2ap riboprobes
were hybridized to the sections and detected as described
(23). The segment of mouse Cd2ap cDNA used to make
the probes extended from nucleotides 430 to 926 (Gen-
Bank accession no. AF149092). For podocin in situs, kid-
neys were fixed in 4% paraformaldehyde in PBS and
embedded in paraffin. Sectioning and in situ hybridiza-
tion were carried out as described (24). The mouse
podocin cDNA probe was homologous to nucleotides
250–632 of human podocin (GenBank accession no.
AJ279254). The probe was generated by RT-PCR ampli-
fication of newborn mouse kidney RNA using primers
designed from a mouse expressed sequence tag (Gen-
Bank accession no. AW106985). Primers were: sense, 5′-
CCGCCACCGTAGTGGACGTG-3′; antisense, 5′-CTCCAT-
TATAAACATATCTTTGG-3′. Antisense and sense probes
were labeled with α-35S-UTP (ICN Biomedicals Inc.).

Electrophoretic mobility shift assay and transfections. Expres-
sion plasmids contained cDNAs encoding the full-length
human LMX1B cDNA, its wild-type homeodomain, or
the N246K mutant homeodomain in pcDNA3.1 (10). In
vitro transcription/translation reactions were performed
with unlabeled or 35S-labeled methionine using the TNT
Quick Coupled Transcription/Translation System
(Promega Corp., Madison, Wisconsin, USA). Labeled
products were analyzed by PAGE to estimate efficiency of
translation. Putative LMX1B binding sites (FLAT
sequences) found in 5′ genomic sequences of CD2AP and
NPHS2 (GenBank accession nos. AL355353 and
AL160286, respectively) were generated by synthesis and
annealing of two complementary oligonucleotides, as fol-
lows. CD2AP –2855: 5′-ATACGTACATTAATTATGGCAATA-
3′ and 5′-TCAGTTATTGCCATAATTAATGTA-3′; CD2AP
–1817: 5′-CTCATACTGTTAATTAACTTTGTGTT-3′ and 5′-
GATACGAACACAAAGTTAATTAACAGTA-3′; CD2AP –1170:
5′-GCTTGCTGAAATAATTATACTTCTT-3′ and 5′-TACGAA-
GAAGTATAATTATTTCAGC-3′; NPHS2 –825: 5′-
GCATAAGCATTAATAAAGACCCTAAATAATAACAG-3′ and
5′-GGCTCTGTTATTATTTAGGGTCTTTATTAATGCTT-3′.
Each different 32P end-labeled probe (2 fmol) and each in
vitro transcribed/translated LMX1B or homeodomain
polypeptide (3 µl) were used in electrophoretic mobility
shift assay (EMSA) as previously described (25).

Transient transfection assays in NIH 3T3 cells were
performed in triplicate using Lipofectamine-Plus (Invit-
rogen Corp., Carlsbad, California, USA). Reporter plas-
mids contained four head-to-tail copies of either the
NPHS2 –825 FLAT site and flanking sequences
(CATAAGCATTAATAAAGACCCTAA) or a mutated version
(CATAAGCATTGCTAAAGACCCTAA) in front of the Col2a1
minimal promoter (26) and a luciferase reporter. These
plasmids were cotransfected with pcDNA3.1-LMX1B or
empty pcDNA3.1 (Invitrogen Corp.), with pSV2βgal
(Promega Corp.) included as a control for transfection

efficiency. Luciferase and β-galactosidase activities were
assayed as described previously (13) 16 hours after an ini-
tial 4-hour incubation with the transfection mixture.

Results
Aberrant foot process and slit diaphragm formation in Lmx1b–/–

podocytes. Examination of glomeruli in Lmx1b–/– kidneys
revealed an aberrant morphology at birth, including a
dilated Bowman’s space and atypical cellular organiza-
tion (data not shown). These abnormalities were similar
to those visible in the initial report of the Lmx1b–/– phe-
notype (11). Lmx1b has been shown to positively regulate
expression of Col4a3 and Col4a4 (13), genes that encode
GBM collagens. However, reduced expression of only
these genes cannot fully explain the glomerular abnor-
malities, because mice with inactivating mutations in
Col4a3 and Col4a4 have unremarkable glomeruli at
young ages (27–29). Here, we further investigated the
nature of the glomerular defect in Lmx1b mutants, pay-
ing particular attention to podocytes, the specialized
glomerular cell that expresses Lmx1b (13).

We performed an ultrastructural analysis of podocyte
morphology in Lmx1b+/– and Lmx1b–/– glomeruli (Figure
1). Electron microscopy was used to evaluate the refined
structure of podocytes that is so critical for proper
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Figure 2
Immunohistochemical analysis of podocyte gene expression in
Lmx1b+/+ and Lmx1b–/– glomeruli from newborn mice. No differences
in levels of nephrin (a and b), laminin (Lam) α5 (c and d), or integrin
α3 (e and f) were detected, suggesting that Lmx1b does not normally
regulate their expression. G, glomerulus. Bar, 50 µm.
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glomerular filtration (1). In comparison to control,
Lmx1b–/– podocytes exhibited striking defects. Foremost
was the lack of normal foot process formation. Though
mutant podocytes were properly juxtaposed to the
GBM, they only rarely elaborated processes (Figure 1, a,
b, d, and e). Most mutant podocytes appeared quite sim-
ilar to control podocytes present in immature glomeruli
(Figure 1c), suggesting that there is an arrest in podocyte
development at the stage when foot processes normally
form. (The mutant podocytes examined were from the
most mature glomeruli, so our interpretation was not
confounded by comparing immature mutant podocytes
to mature control podocytes.)

Another defect was observed in the morphology of
those processes that did form: many did not have the flat-
tened, side-by-side appearance typical of normal foot
processes (Figure 1b, arrowheads). Instead, they had a
somewhat stacked arrangement, with one process
appearing to invaginate slightly beneath an adjacent one
(Figure 1f, arrows). In addition, there was a lack of typical
slit diaphragms between the processes. Slit diaphragms
are specialized cell-cell junctions with characteristics of
both adherens junctions (30) and tight junctions (31).
They extend across the gap between foot processes and
are thought to serve as the kidney’s ultimate filtration
barrier. Slit diaphragms were visible in controls as elec-
tron-dense material lying between the foot processes par-
allel to the GBM (Figure 1b). In Lmx1b–/– mice, two class-
es of cell-cell junctions were observed: those between the
rare processes, and those between adjacent podocyte cell
bodies. For both classes, electron-dense material was not
always observed in the spaces between the cells, and when
it was, it was usually not parallel to the GBM (Figure 1f
and data not shown). Thus, there were clearly defined
morphological defects in Lmx1b–/– podocytes, suggesting
perturbation of podocyte development. In addition, the
nature of the defects suggests that renal function should
be impaired. Consistent with this prediction, little if any
urine was found in the bladders of Lmx1b–/– mice, and
there were protein casts in a subset of tubules in the
mutant kidney (data not shown). This indicates that
what little urine was produced by Lmx1b–/– mice con-
tained significant levels of protein, one hallmark of fil-
tration barrier defects.

Aberrant podocyte gene expression in Lmx1b mutants.
Based on these results, we hypothesized that Lmx1b, in
addition to regulating collagen IV genes, also regulates
podocyte genes encoding proteins involved in slit
diaphragm and foot process formation. Over the last
few years, several proteins from diverse families have
been shown or hypothesized to be critically important
for proper podocyte and/or slit diaphragm develop-
ment, maturation, and function (2, 5, 6). It is unknown
whether the genes encoding these proteins are regulat-
ed by Lmx1b. Those that are should exhibit reduced
expression in Lmx1b–/– podocytes. We used immuno-
histochemistry to assay for expression of podocyte pro-
teins thought to be important for filtration. The data
shown were derived from the deepest glomeruli to
ensure that only the most mature podocytes were
assayed. Levels of several proteins were not significant-
ly changed. These included nephrin, a component of the
slit diaphragm (32–35); laminin α5 and γ1 chains, com-
ponents of the GBM (20, 36); integrin α3, a podocyte
receptor for laminin in the GBM (37); and α-actinin-4,
a cytoskeletal protein mutated in one form of familial
focal segmental glomerulosclerosis (18) (Figures 2 and
3). Thus, the genes encoding these proteins are not like-
ly to be directly regulated by Lmx1b on a transcription-
al level. Slight reductions in levels of ZO-1, a cytoplas-
mic protein found associated with tight junctions and
slit diaphragms (31), and synaptopodin, an actin-asso-
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Figure 3
Immunohistochemical analysis of podocyte gene expression in
Lmx1b+/+ and Lmx1b–/– glomeruli from newborn mice. Levels of CD2AP
(a and b) and podocin (e and f) were greatly reduced in the mutant,
suggesting that Lmx1b regulates their expression. Sections in a and b
were doubly labeled with an antibody to laminin γ1 chain (c and d,
respectively), and sections in e and f were doubly labeled with an anti-
body to ZO-1 (g and h, respectively). Laminin γ1 was not reduced,
and ZO-1 was only slightly reduced. G, glomerulus. Bar, 50 µm.
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ciated protein found in foot processes (38), were con-
sistently observed (Figure 3, g and h; and data not
shown). However, because the reductions were slight, we
suspect that they are more likely attributable to the
paucity of cell-cell junctions and foot processes (respec-
tively) than to decreased gene expression.

In contrast to these results, levels of CD2AP, an
adapter protein that binds to the cytoplasmic tail of
nephrin at the slit diaphragm (39), and podocin, a
transmembrane protein which has been localized to the
slit diaphragm (22, 40), were drastically reduced in
mutant podocytes (Figure 3). Reduction was apparent
not only in the deepest, most mature glomeruli, but also
in the very primitive S-shape and capillary loop stage
glomeruli (data not shown). Importantly, CD2AP and
podocin are known to have crucial roles in podocyte
function. Mice lacking CD2AP and humans with
homozygous or compound heterozygous mutations in
NPHS2, the gene encoding podocin, exhibit nephrotic
syndrome accompanied by foot process effacement (41,
42). We therefore conclude that the podocyte abnor-
malities observed in Lmx1b–/– kidneys are, at least in
part, caused by reduced levels of CD2AP and podocin.

We next hypothesized that Lmx1b directly regulates
transcription of the Cd2ap and Nphs2 genes. To begin to
test this hypothesis, we performed in situ hybridization
on sections of control and Lmx1b–/– kidneys with probes
for Cd2ap and podocin mRNA. This was done to distin-
guish potential posttranscriptional effects on gene
expression; rather than regulating Cd2ap and Nphs2
directly, Lmx1b might regulate expression of other genes
whose products stabilize CD2AP and podocin. Howev-
er, the in situ analysis revealed significant reductions in
the levels of both Cd2ap and podocin mRNAs (Figure 4).
The reduction was most evident for Cd2ap in early capil-
lary loop structures, the stage at which CD2AP protein
is first detectable in normal kidney (14). Importantly, the
reduction was specific to podocytes; Cd2ap RNA and
protein levels were not significantly reduced in mutant
collecting ducts (Figure 4a and data not shown), consis-
tent with the fact that Lmx1b is not normally expressed
in collecting ducts (11, 13). Podocin RNA was essential-
ly undetectable in Lmx1b mutant kidney but was easily
detected in the control (Figure 4b). Semiquantitative 
RT-PCR demonstrated that total podocin mRNA levels
were reduced by 75% (data not shown). Together, these
data provide strong evidence that Lmx1b is involved in
regulating transcription of Cd2ap and Nphs2. Consistent
with this notion, Lmx1b is expressed in primitive struc-
tures in the nephrogenic zone (11, 13), at stages before
the onset of Cd2ap and Nphs2 expression (14, 42).

LMX1B binds to putative regulatory elements in CD2AP and
NPHS2 promoters. If Lmx1b directly regulates transcrip-
tion of Cd2ap and Nphs2, then their regulatory regions
should contain LMX1B binding sites. Unfortunately, the
regulatory regions of these genes have not yet been fully
characterized. Nevertheless, we were able to retrieve
genomic DNA sequences of human CD2AP and NPHS2
from GenBank. Candidate LMX1B binding sequences

(FLAT elements) (25) were identified in both genes in the
sequences flanking the first exons (Figure 5a), where
transcriptional regulatory elements are expected to be
located. In CD2AP, five FLAT sites flanked the predicted
first exon, at –2855, –1817, –1170, +874, and +1053
nucleotides relative to the ATG translational start codon.
In NPHS2, three FLAT sites flanked the predicted first
exon, at –1251, –825, and +1275 relative to the ATG.

To determine whether LMX1B is capable of binding to
these elements, we performed EMSA. Oligonucleotides
representing both strands of the three 5′ CD2AP sites and
the –825 NPHS2 site were synthesized and annealed to
make double-stranded FLAT sites. Oligonucleotides were
end-labeled with 32P and incubated with either full-length
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Figure 4
In situ hybridization analysis of CD2AP and podocin mRNA in
Lmx1b+/+ and Lmx1b–/– glomeruli from newborn mice. (a) In podocytes
(arrows) of capillary loop stage glomeruli (outlined in black), CD2AP
transcripts were detected in control (Lmx1b+/+), but levels were great-
ly reduced in mutant (Lmx1b–/–). Transcripts were easily detected in
the branched mutant collecting duct (arrowheads). (b) Podocin tran-
scripts were detected in control but not mutant podocytes. These data
suggest that Lmx1b regulates podocyte transcription of Cd2ap and
Nphs2 (podocin). Bar in a, 50 µm; in b, 500 µm.
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LMX1B or its DNA-binding homeodomain. The mix-
tures were then separated by native PAGE and subjected
to autoradiography (Figure 5b). All four sites were bound
by the full-length protein and were bound even more effi-
ciently by the homeodomain polypeptide. No significant
mobility shifts were observed if a mutant homeodomain
(N246K, described in an NPS patient) or a negative con-
trol was used. This suggests that binding of LMX1B to
the FLAT sites was specific.

To further demonstrate specificity of LMX1B bind-
ing, additional assays with the CD2AP –1817 site were
performed (Figure 5c). An excess of the unlabeled
(cold) –1817 probe was incubated along with the 
32P-labeled probe. The cold probe was able to compete
for binding to both full-length LMX1B and the
homeodomain fragment, as shown by the reduction
in intensity of the shifted bands, but 300-fold excess

of an unrelated cold site did not compete effectively.
Finally, an excess of the CD2AP –1817 site was able to
compete for LMX1B binding to a FLAT-E site from
the COL4A3-COL4A4 regulatory region (13). Taken
together, these data show that LMX1B can efficiently
bind to potential regulatory elements from both
CD2AP and NPHS2 in a dose-related and specific fash-
ion, consistent with the hypothesized regulation of
these genes by Lmx1b.

LMX1B upregulates a reporter construct containing
NPHS2 –825 FLAT sites. LMX1B is considered a rela-
tively weak transactivator that requires coactivators
for optimal activity (43). The coactivators required
for Lmx1b-mediated expression of Cd2ap and Nphs2
in podocytes are unknown. Nevertheless, we attempt-
ed to demonstrate LMX1B-mediated transactivation
of the NPHS2 –825 FLAT site in heterologous cells.
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Figure 5
LMX1B interacts specifically with putative regulatory
elements in CD2AP and NPHS2. (a) Schematic dia-
gram of CD2AP and NPHS2 5′ genomic structures. The
putative LMX1B binding sites (FLAT sites) are num-
bered relative to the ATG translation start codon.
Ovals represent FLAT-E sites (consensus TAATTA) and
rectangles represent FLAT-F sites (consensus
TTAAKAM). (b) EMSA of full-length LMX1B (lanes 2,
6, 10, 14), LMX1B homeodomain (HD) (lanes 3, 7,
11, 15, 17), mutant LMX1B HD (N246K) (lanes 4, 8,
12, 16), and empty vector (lanes 1, 5, 9, 13) using the
following probes: CD2AP –1170, CD2AP –1817,
CD2AP –2855, NPHS2 –825, and the COL4A3-
COL4A4 enhancer element (FLAT-E) as positive con-
trol. Arrows indicate the shifted bands containing full-
length LMX1B and LMX1B HD protein/DNA
complexes. (c) Binding of full-length LMX1B (lanes 1,
3, 5, 7, 9, 11, 13, 15) and LMX1B HD (lanes 2, 4, 6, 8,
10, 12, 14, 16) to the CD2AP –1817 probe (lanes
1–10) was successfully competed with 30-, 100-, and
300-fold excess of cold CD2AP –1817 but not with
excess unrelated cold probe. Binding to FLAT-E (lanes
11–16) was successfully competed with 100- and 300-
fold excess of cold CD2AP –1817 probe. Arrows indi-
cate the full-length LMX1B and LMX1B HD
DNA/polypeptide complexes.

Downloaded on June  3, 2013.   The Journal of Clinical Investigation.   More information at  www.jci.org/articles/view/13954

http://www.jci.org
http://dx.doi.org/10.1172/JCI13954


Four copies of this site and its flanking sequences
were cloned upstream of a minimal promoter and a
luciferase reporter. A similar reporter with a mutated
version of the site was also constructed. These were
cotransfected into NIH 3T3 cells with either LMX1B
expression plasmid or empty vector, together with a
β-galactosidase expression plasmid to control for
transfection efficiency. LMX1B upregulated expres-
sion from the wild-type FLAT site, but not from the
mutant site (Figure 6). Together with our immuno-
histochemical, in situ, and gel shift data, these results
strongly suggest that LMX1B is involved in the tran-
scriptional regulation of NPHS2 and CD2AP in
podocytes, providing an additional basis for the
nephropathy observed in NPS.

Discussion
The fact that heterozygous mutations in LMX1B cause
a glomerulopathy suggests that LMX1B regulates
genes critical for podocyte function. Homozygous
Lmx1b–/– mice are an excellent model system for defin-
ing which genes expressed in podocytes are regulated
by Lmx1b, and therefore which genes might be under-
expressed — perhaps only subtly as a consequence of
haploinsufficiency — in NPS. We previously reported
reduced levels of Col4a3 and Col4a4 protein and RNA
in Lmx1b–/– glomeruli (13); here, we found greatly
reduced levels of both CD2AP and podocin protein
and RNA (Figures 3 and 4). As these four proteins are
known to be required for normal glomerular function,
the glomerulopathy in NPS could stem from a reduc-
tion in any or all of them. In addition, there may be
other genes whose expression is regulated by Lmx1b
and whose products are important for podocyte dif-
ferentiation and function.

Our electron microscopic analysis of Lmx1b–/–

podocytes (Figure 1) showed that Lmx1b is required
for normal podocyte differentiation. Mutant podo-
cytes appeared to be developmentally arrested: they
did not elaborate normal foot processes, and cell-cell
junctions did not have typical slit diaphragms. Both
CD2AP and podocin have been localized to the slit
diaphragm (22, 39, 40) and are necessary for normal
glomerular function (41, 42). We therefore suggest
that reduced levels of CD2AP and podocin contribute
to the developmental arrest and conclude that they
normally act cooperatively to promote foot process
and slit diaphragm formation during glomerulogen-
esis. Indeed, podocin has recently been shown to
interact directly with CD2AP (40).

The ultrastructure of the cell-cell junctions that
form between the mutant podocytes bears some
resemblance to that reported for homozygous Nphs1
(nephrin) mutant podocytes (44). Nephrin is a major
component of the slit diaphragm (32–35), and muta-
tions in NPHS1 cause congenital nephrotic syndrome
of the Finnish type (45, 46). The fact that we found
significant levels of nephrin protein in Lmx1b mutant
podocytes (Figure 2) suggests that nephrin is not 

sufficient for normal slit diaphragm formation. As
CD2AP and podocin interact with each other (40), and
CD2AP interacts with nephrin (39, 41), CD2AP and
podocin may cooperate to organize or stabilize
nephrin. Interestingly, podocytes in mice lacking
nephrin also have reduced numbers of foot processes
and exhibit some effacement (44), but the severity of
these defects is less than we observed in the Lmx1b–/–

podocytes. Thus, proteins other than nephrin must
coordinate foot process formation, and CD2AP and
podocin are likely to be involved.

The demonstration of LMX1B binding sites in putative
regulatory regions of the CD2AP and NPHS2 genes (Fig-
ure 5) and the ability of LMX1B to transactivate the
NPHS2 –825 site (Figure 6) strengthen our conclusion
that Lmx1b positively regulates their expression. We pre-
viously showed that CD2AP and nephrin begin to accu-
mulate in differentiating podocytes at approximately the
same stage and predicted that they would be coregulated
(14). However, we did not find a significant reduction in
nephrin mRNA (13) or protein (Figure 2) in the absence
of Lmx1b. This is consistent with the fact that a 1.25-kb
segment of the human nephrin promoter drives expres-
sion of a reporter in podocytes (47), but it lacks consensus
LMX1B binding sites. It will be interesting to determine
whether Pod1, a basic-helix-loop-helix protein required for
podocyte development (7, 8), and WT1, a zinc finger tran-
scription factor expressed in podocytes (48) and mutated
in Denys-Drash syndrome and isolated diffuse mesangial
sclerosis (49, 50), are involved in regulating expression of
any of the genes, such as Nphs1, that do not appear to be
regulated by Lmx1b (Figure 2 and data not shown). These
transcription factors could each control expression of
nonoverlapping sets of podocyte genes necessary for prop-
er glomerulogenesis and podocyte function. Haploinsuf-
ficiency of LMX1B (as occurs in NPS) or POD1 could lead
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Figure 6
LMX1B transactivates expression of a reporter driven by NPHS2 –825
FLAT sites. Luciferase reporter constructs containing four copies of
the wild-type (WT) or mutant (mut) FLAT site and a minimal pro-
moter were cotransfected with an empty vector (–) or with an LMX1B
expression plasmid (+) into NIH 3T3 cells. LMX1B upregulated
expression of luciferase directed by the wild-type but not by the
mutant FLAT sites.
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to either subtly or significantly reduced expression of a
number of podocyte genes. Over time or with the appro-
priate genetic or environmental cofactors, this could in
turn lead to nephropathy.
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