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Massive Thymic Deletion Results in Systemic Autoimmunity
through Elimination of CD4" CD25" T Regulatory Cells

Fei E Shih, Laura Mandik-Nayak, Brian T. Wipke, and Paul M. Allen

Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO 63110

Abstract

Incomplete deletion of KRN T cells that recognize the ubiquitously expressed self~antigen
glucose-6-phosphate-isomerase (GPI) initiates an anti-GPI autoimmune cascade in K/BxN
mice resulting in a humorally mediated arthritis. Transgenic (Tg) expression of a KRN T cell
receptor (TCR) agonist under the major histocompatibility complex class II promoter resulted
in thymic deletion with loss of anti-GPI T and B cell responses and attenuated arthritis course.
However, double Tg mice succumbed to systemic autoimmunity with multiorgan inflammation
and autoantibody production. Extensive thymic deletion resulted in lymphopenia and elimina-
tion of CD4* CD25* regulatory T cells (Tregs), but spared some CD4" T cells expressing
endogenous TCR, which oligoclonally expanded in the periphery. Disease was transferred by
these T cells and prevented by cotransfer of CD4* CD25* Tregs. Moreover, we extended our
findings to another TCR system (anti—hen egg lysozyme [HEL] TCR/HEL mice) where
similarly extensive thymic deletion also resulted in disease. Thus, our studies demonstrated that
central tolerance can paradoxically result in systemic autoimmunity through differential suscep-
tibility of Tregs and autoreactive T cells to thymic deletion. Therefore, too little or too much

negative selection to a self-antigen can result in systemic autoimmunity and disease.

Key words:  autoimmunity * thymic deletion ¢ arthritis « T regulatory cells « TCR transgenic

Introduction

K/BxN is a murine model of spontaneous rheumatoid arthritis
that mimics many of the clinical and histologic features of
human disease with synovitis predominantly in the distal
small joints and systemic features of hypergammaglobulinemia
and splenomegaly (1). K/BxN mice were generated by
crossing KRN TCR transgenic (Tg) mice with nonobese
diabetic (NOD) mice. Although the initial specificity of the
KRN TCR was directed to RNase(42-56)/1-A, KRN
TCR also recognizes peptides 281-293 of the glycolytic
enzyme, glucose-6-phosphate-isomerase (GPI) bound to
[-A¢#’ (2). Failure of complete T cell tolerance allows KRN
T cells to become activated by endogenously presented
GPI and to provide help to anti-GPI B cells, giving rise to
arthritogenic autoantibodies. These autoantibodies are neces-
sary and sufficient for the induction of synovitis, as transfer
of anti-GPI antibodies into most strains of mice resulted in
disease (3). Extensive serum transfer studies have provided
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important insights into the pathogenesis of the joint disease
through the deposition of arthritogenic anti-GPI antibodies
and subsequent recruitment of inflammatory mediators into
the joints (4, 5). However, it is still unclear how anti-GPI
T and B cells persist in the mature lymphocyte pool despite
the ubiquitous nature of this autoantigen. As KRN T cells
serve as the catalyst to ignite this autoimmune cascade, we
have focused our attention on the negative selection of
KRN T cells.

To investigate the role of antigen presentation in the
failure in T cell selection, we have generated a Tg mouse
expressing a peptide mimic of GPI(281-293) termed G7m
under the control of the MHC II promoter. Accordingly,
we showed G7mTg splenocytes to be potent stimulators
of KRN T cells, signifying effective presentation of the
transgene-encoded agonist. As expected, KRN/G7mTg
double Tg mice exhibited a greatly attenuated arthritis
course with concomitant loss of anti-GPI T and B cell re-
sponses. Surprisingly, KRN/G7mTg mice succumbed to a

Abbreviations used in this paper: ANA, antinuclear antibodies; d3Ntx, day 3
neonatally thymectomized; GI, gastrointestinal; GPI, glucose-6-phosphate-
isomerase; HEL, hen egg lysozyme; mHEL, membrane form of HEL;
NOD, nonobese diabetic; SP, single positive; Tg, transgenic; Treg, reg-
ulatory T cell.
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systemic autoimmunity with multiorgan inflammation and
autoantibody production. Expression of the TCR ligand
resulted in severe deletion of T cells bearing transgene-
encoded TCR, leaving behind autoreactive CD4" T cells
using endogenous TCRs. CD4* CD25* regulatory T cells
(Tregs) were reduced in the double Tg mice, suggesting
loss of Tregs as a mechanism of disease. Significantly,
cotransfer of CD4* CD25" Tregs prevented induction of
disease achieved via transfer of splenocytes from double Tg
mice. Taken together, our studies demonstrated that cen-
tral tolerance can paradoxically result in systemic autoim-
munity through differential susceptibility of Tregs and au-
toreactive T cells to thymic deletion.

Materials and Methods

Mice. The Tg mouse line (G7mTg) expresses a membrane
form of hen egg lysozyme (HEL; mHEL) containing the KRN
agonist peptide G7m(GKKVATFVHAGYG) as an epitope tag.
G7m was previously shown to stimulate KRN T cells with 10—
100-fold increased sensitivity compared with the GPI(281-293)
(2). This is due to increased binding to I-A#’ relative to the native
GPI(281-293) peptide (6). The mHEL/G7m transgene construct
was generated by PCR mutagenesis of the previously described
mHEL/Hb(64-76) transgene construct using nonoverlapping oli-
gonucleotides: 5'-CACGCTGGATACGGAAACCGTAACAC-
CGATGGGAGTACCGAC-3' (coding) and 5'-CACGAAGG-
TCGCCACCTTTTTGCCTGTAGCCTGGGTGTTG-3" (non-
coding). Nucleotides encoding the G7m peptide are underlined.
Sequencing in both directions confirmed the replacement of
Hb(64-76) with G7m peptide. Transgene expression is driven by
the Ea promoter that has been previously demonstrated to effec-
tively target transgene expression in MHC II" cells (7). A 5.2-kb
Bgll fragment containing the Ea promoter and the mHEL/G7m
chimeric gene was isolated and injected into the male pronuclei
of fertilized B6.AKR oocytes. Seven founders were identified by
flow cytometry using the mHEL-specific antibody F10.6.6 (8).
G7mTg7 and G7mTg5 mice were used in this study. Transgene
expression was 63—75% of MHC II* splenocytes in G7mTg7 and
~10% in G7mTg5 splenocytes (unpublished data). These were
bred to KRN TCR Tg mice with specificity for GP1(281-293)/
[-A% or to 3A9 TCR Tg mice which are specific for HEL(46—
61)/1-Ak. The resulting progeny were screened by PCR analysis
of tail DNA. All progeny were heterozygous for the relevant
transgenes.

KRN TCR Tg mice on a C57BL/6 background have been
described (1). KRN Tg mice were bred to congenic B6.AKR
(H-2% background) to generate KRIN* mice, which are homozy-
gous for H-2X. KRNK mice were crossed to G7mTg* mice to
generate KRN/G7mTgk mice, which are then bred to NOD
mice to generate KRN¥¢ and KRIN/G7mTg¥#¢ mice on an
H-2¥¢ heterozygous background. B6.G7 denotes congenic C57BL/6
mice expressing [-A%’. These were crossed to KRN/G7mTg* to
generate congenic KRIN/B6.G7 and KRIN/G7mTg/B6.G7 mice
expressing H-2¥¢7 with pure B6 genetic background. NOD mice
were purchased from Taconic. All mice were bred and housed
under specific pathogen-free conditions in the animal facility at
the Washington University Medical Center.

Primary T Cell Proliferation.  Proliferation assays were per-
formed in triplicate with unfractionated T cells (5 X 105 cells/
well) from the spleen and LNs in Iscove’s medium containing

10% heat-inactivated fetal calf serum, 2 mM Glutamax (GIBCO
BRL), 2 X 107> M B-mercaptoethanol, and 50 wg/ml gentami-
cin (ISC-10) in round-bottom 96-well plates (Costar). Splenic
APC:s received 2,000 rad <y irradiation before use. Cultures were
pulsed at 72 h with 0.2 wCi [*H]thymidine/well and harvested
18-24 h later. Proliferation was measured as counts per minute
incorporated.

In Vitro Suppression Assay. T cell proliferation was assayed as
described above with sorted CD4* CD25* and CD4* CD25~ T
cells (at 5 X 10* cells/well) from KRN mice being cultured
separately or mixed at 1:1 in 96-well round-bottom plates with
5 X 10%irradiated T cell-depleted H-2¢7 splenic APCs.

Arthritis and Wasting Incidence.  Mice were assessed weekly for
synovitis of the rear and front paws for 4 mo. Ankle thickness
was measure axially across the malleoli using a Fowler Met-
ric Pocket Thickness Gauge (Ralmikes Tool-A-Rama). Ankle
thickness was rounded off to the nearest 0.05 mm. Mice were
weighed weekly using a miniscale. Wasting is defined clinically
as fur ruffling, hunched posture, and weight loss >20%. Mice
were killed when moribund or weight fell below 12 g (<50%
mean weight of control).

Anti-GPI ELISA. Mice were bled weekly and sera were
stored at —20°C before analysis. Sera were diluted at 1:100 in PBS,
1% BSA, and 0.1% Tween 20 and plated in Immunlon II plates
(Fisher Biotech) coated with 2 pg/ml GPI-GST as previously de-
scribed (9). Donkey anti-mouse horseradish peroxidase (Jackson
ImmunoResearch Laboratories) was used as a secondary antibody.
The assay was detected using 2,2'-Azino-di-(3-ethylbenathiazoline
sulfonate) diammonium salt (ABTS substrate; Roche Molecular
Biochemicals). Absorbance was measured at 414 nm.

Antinuclear Antibodies (ANA). Sera was diluted at 1:100 in
PBS. 50 wl diluted serum sample was applied to immobilized
Hep2 cells (Antibodies Inc.) and Crithidia luciliae (Antibodies
Inc.). Anti-mouse IgG-FITC and anti-mouse IgM-FITC were
used as secondary antibodies. ANA and Crithidia staining were
read independently by two readers. Positive controls were sera
from MRL/lpr mice.

Anti-RBC Antibody. Sera was diluted at 1:50 in FACS®
buffer (PBS, 1% BSA, and 0.1% NaN;). 50 wl diluted sera was
used to stain B6.,AKR RBCs and was detected with anti-mouse
IgG-FITC and anti-mouse IgM-FITC for flow cytometric analy-
sis. Positives were defined as staining >3X background.

RF ELISA. This RF ELISA made use of allotypic difference
between the capture Ig (a allotype) and sample IgG of b allotype.
Sera were diluted at 1:100 in PBS, 1% BSA, and 0.1% Tween 20
and plated in Immunlon II plates (Fisher Biotech) coated with 2
pg/ml IgG2a* (HOPC-1). A cocktail of biotinylated antibodies
comprising of anti-IgM (11/41), anti-IgG2a® (5.7), and anti-
IgG1P (B68-2; 2 pg/ml each), followed by SAV-horseradish per-
oxidase, was used for detection. HOPC-1, 11/41, 5.7, and B68-2
were purchased from Southern Biotechnology Associates, Inc. As
b allotype—specific antibodies were available for only the IgG2a
and IgG1 isotypes, RFs of the IgG2b or IgG3 isotypes were not
detected. Hence, the RF measurement was likely to be an under-
estimate. The assay was developed using ABTS substrate. Positive
was defined as OD > 3X background.

Flow Cytometry. Single cell suspensions of thymocytes, sple-
nocytes, and LN cells (1-2 X 10°) were surface stained accord-
ing to standard protocols. The following antibodies/reagents
were used: GK1.5-PE, GK1.5-FITC (anti-CD4), 53-6.7-FITC
(anti-CD8), RR4-7-biotin (anti-VB36), 14.4.4-FITC (anti-I-E¥),
PC61-PE (anti-CD25), MEL-14-PE (anti-CD62-L), PgP-1-
FITC (anti-CD44), H1.2F3-FITC (anti-CD69), streptavidin-
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PerCP (BD Biosciences), F10.6.6-biotin (HEL specific), 1G12-
biotin (3A9 clonotype specific), and streptavidin-PE (Caltag).
TCR V[ usage was determined by flow cytometry using a panel
of 15 FITC-conjugated TCR V[-specific antibodies from BD
Biosciences. All samples were analyzed on a FACScalibur™ flow
cytometer (BD Biosciences) with CELLQuest™ software. Gating
on live lymphocytes was based on forward and side scatter and/or
exclusion of propidium iodide. 50-500,000 gated events were
collected per sample.

Quantitative PCR.  CD4% T cells were enriched from the
spleen and LN cells from three to five 4-wk-old KRN¥* or
KRN¥¢” mice using anti-CD4 microbeads (Miltenyi Biotec) ac-
cording to the manufacturer’s directions. CD4" single positive
(SP) thymocytes were isolated by complement-mediated deple-
tion of CD8" thymocytes using anti-CD8 antibody 3.166. CD4™"
CD25" and CD4* CD25~ T cells were sorted using the FACS
Vantage™ after labeling with anti-GK1.5-FITC and PC61-PE.
Typically, 0.5 X 10° CD4* CD25" T cells and 0.2 X 10° CD4"*
CD25" thymocytes were isolated from three to five mice.
mRNA was isolated using TRIzol (Invitrogen) extraction and
was treated with DNase I for 15 min at 25°C. First strand cDNA
was generated using oligo-dT primers via TagMan Reverse
Transcription kit (Applied Biosystems) according to the manufac-
turer’s directions. Real-time PCR for FoxP3 was measured as
previously described (10) using TagMan Universal Master Mix
(Applied Biosystems). CD25 and HPRT PCR were performed as
previously described (11) using SYBR Master Mix (Applied Bio-
systems). PCR was performed in 25 wl with cycling conditions as
previously described (10). Data were collected using ABI Prism
7700 Sequence Detection System Software. A standard curve
was generated with a dilution series (1:1, 1:10, 1:100, 1:1,000,
1:10,000, and 1:100,000) of a reference cDNA sample that was
run at the same time as the unknown samples. CD25 and FoxP3
expression were normalized to HPRT mRNA.

Transfer Studies.  Spleens were harvested from 5-12-wk-old
3A9 or 3A9/G7mTg mice. Single cell suspension was generated by
RBC lysis. Unfractionated splenocytes (30—40 X 10 from one
spleen were injected intravenously into each 4—6-wk-old B6.AKR.
or congenic RAG1™/~ mouse. Equivalent numbers of T cells from
3A9 or 3A9/G7mTg mice were transferred. CD4+ CD25% T cells
comprised 1.5% (4.5-6 X 10%) and <0.2% (<7 X 10% of total
transferred cells from 3A9 and 3A9/G7mTg mice. Mice were fol-
lowed weekly for weight loss and clinical evidence of disease.

For the cotransfer experiments, 5 X 10° CD4* CD25% or
CD4* CD25~ T cells were purified from 3A9 mice via MACS
(Miltenyi Biotec) separation according to the manufacturer’s di-
rections and injected intravenously into each RAG1™/~ mouse
24 h before transter of 3A9/G7m splenocytes. Some mice re-
ceived 20 X 10° CD4+ CD25™ T cells purified from 3A9 mice.

Online Supplemental Material. ~Fig. S1 demonstrates the ex-
pression of the mHEL/G7m transgene on I-Ef—expressing cells in
the thymic medulla of mMHEL/G7mTg7 mice. Fig. S2 depicts the
time course of wasting of representative KRN/G7mTg (Fig. S2
A) and 3A9/mHELTg (Fig. S2 B) mice. Fig. S3 illustrates the
splenomegaly and disrupted splenic architecture seen in KRIN/
G7mTg7 mice. Figs. S1-S3 are available at http://www jem.org/
cgi/content/full/jem.20031137/DC1.

Results

Generation of mHEL/G7mTg Mice. To address the role
of antigen insufficiency in thymic tolerance, we sought to
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augment thymic presentation of the peptide ligands recog-
nized by KRN T cells. We first attempted to generate Tg
mice that express GPI(281-293) as an epitope tag in a
fusion protein consisting of HEL and the L¢ transmem-
brane domain (designated mHEL). Transgene expression is
driven by the Ea promoter to target expression on APCs in
the thymus and periphery (7). This strategy had been suc-
cessfully used by our laboratory previously to express
Hb(64-76) and its analogs in the thymus for selection of
Hb-specific T cells (8). Although mHEL/Hb chimeric pro-
teins incorporating Hb(64—76) and its analogs were stably
expressed on cell surfaces, similar mHEL/GPI chimeras
were unstable, making expression studies problematic. To
circumvent this difficulty, we used a GPI(281-293) mimic,
G7m, which was structurally based on Hb(64-76), strongly
stimulated KRN T cells (2), and proved to be stably ex-
pressed as mHEL/G7m chimeric proteins. Using this ap-
proach, seven Tg lineages on a B6.AKR (H-25) back-
ground were obtained, and one line, designated G7mTg7,
was used in the majority of the studies described herein.

The transgene was expressed in the majority of MHC
II* cells in the spleen, LN, and thymus. In the thymus,
mHEL/G7m chimeric molecules were expressed most
highly in the medulla, coinciding with MHC II* cells (Fig.
S1, top, available at http://www jem.org/cgi/content/full/
jem.20031137/DC1). Hence, we showed that the trans-
gene was appropriately targeted to thymic medullary cells,
which have previously been shown to be exquisitely eftec-
tive at mediating thymic negative selection (12).

Moreover, when we bred G7mTg7 mice to NOD mice
to introduce the I-A¢” molecule, the resultant G7mTg7%/¢’
splenocytes provoked vigorous proliferation of KRN T cells
in comparison to the modest response elicited by transgene-
negative and NOD splenocytes (Fig. 1). Indeed, expression

| —e—mHELIGTmTg7¥/a7
—a—non-Tgklg?
40 {—5—NoODa/g7
2 30 A
X
5
O 20 A
10 1
L) T T
103 104 105 108 107

Splenocytes/well

Figure 1. mHEL/G7m splenocytes are potent stimulators of KRN T
cells. Graded numbers of unfractionated irradiated splenocytes from
mHEL/G7mTg7"¢" (@), nontransgenic®s’ (A), and NOD#¢/¢7 ([]) mice
were cultured with 5 X 10> KRNKT cells in 96-well round-bottom plates
for 72 h with 0.2 wCi [*PH]thymidine in the last 18 h. Each point represents
the mean of triplicate wells with error bars indicating SD. Data are repre-
sentative of four independent experiments.
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of the mHEL/G7m transgene augmented T cell stimulation
by 1,000-fold relative to that achieved with endogenous
GPI, highlighting the enhanced presentation of the KRN
TCR ligand through our targeted transgene approach.

G7m Transgene Expression Abrogates Arthritis in KRN/
G7mTg7%¢” Mice. - KRIN¥# and KRIN/G7mTg7%'¢” mice
were followed for the onset and severity of arthritis starting
at 4 wk of age. Arthritis initiated in KRN¥¢” mice between
4-5 wk of age underwent a robust acute inflammatory
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Figure 2. KRN/G7mTg7¥¢’ mice exhibited reduced arthritis and
anti-GPI antibodies. (A) Mean ankle thickness £ SD of 6 KRNK#7 (&)
and 10 KRN/G7mTg7¥¢’ (@) mice. Data are representative of 20
KRN¥¢7 and 16 KRN/G7mTg7¢” mice derived from 14 separate litters
of mice collected over a 6-mo period. (B) Absorbance of anti-GPI ELISA
of KRN¥¢7 (&), KRN/G7mTg7v¢ (@), G7TmTg7%¢ (A), and double
negative (DN; O) mice (n = 15, 20, 23, and 12, respectively). Sera from
8-wk-old mice were diluted at 1:100 and serum anti-GPI was detected by
ELISA. Each symbol represents an individual mouse. (C) T cell proliferation
in response to GPI(281-293). 5 X 107 splenocytes from KRN¥¢7 (H),
KRN/G7mTg7"¢ (@), and transgene-negative (A) mice were cultured
with graded doses of GPI(281-293) peptide with 2 X 10° irradiated H-2¢
splenocytes in 96-well round-bottom plates for 72 h with 0.2 pnCi
[*H]thymidine in the last 18 h. Each point represents the mean of tripli-
cate wells with error bars indicating SD. Data are representative of three
independent experiments.

phase, peaked at 6-8 wk, and settled to a chronic phase
where ankle deformity predominated and the inflammation
was relatively quiescent (Fig. 2 A). In contrast, arthritis in
the KRN/G7mTg7%%” mice followed a greatly attenuated
course both in terms of severity and penetrance. Although
100% of KRN¥#¢7 mice exhibited symmetrical involvement
of all four limbs, KRN/G7mTg7"¢ mice showed hetero-
geneous presentation with asymmetrical swelling of one or
two isolated limbs in ~40% of mice. The remainder had
swelling on the dorsum of the paws or no synovitis at all.
Among those with synovitis, the acute inflammatory phase
was foreshortened to 1-2 wk and did not leave any residual
limb deformity. Neither control G7mTg7%¢” nor transgene-
negative littermates showed any arthritis (unpublished data).

As anti-GPI antibodies are the causative agents in ini-
tiating joint inflammation, we showed an attendant de-
crease in the production of anti-GPI antibodies in KRN/
G7mTg7¥¢ mice (Fig. 2 B). This low anti-GPI titer was
maintained through later time points and serum was insuf-
ficient to elicit disease when transferred into BALB/c¢ mice
(unpublished data).

Next, we assessed T cell response to GPI(281-293) in
KRN/G7mTg7%¥ mice relative to their KRN litter-
mate. In contrast to the residual but significant GPI reactiv-
ity exhibited by KRN# splenocytes, no proliferation was
elicited from splenocytes isolated from KRN/G7mTg7%'¢’
mice (Fig. 2 C). Hence, GPI-specific T cells were func-
tionally eliminated. Taken together, overexpression of the
KRN TCR agonist abrogated arthritis and anti-GPI B and
T cell responses, demonstrating effective T cell tolerance of
KRN T cells in KRN/ G7mTg7*#” mice.

KRN/G7mTg7*¢ Mice Develop Multiorgan Inflammation.
Surprisingly, KRN/G7mTg7¥¢” mice developed multior-
gan systemic autoimmunity. Starting at 10-12 wk of age,
the mice exhibited wasting, manifested as ruffled fur, scaly
skin, hunched posture, colitis, and weight loss. By 100 d of
age, 50% of the KRN/G7mTg7%¥’ (n = 16) mice had suc-
cumbed to wasting. A representative time course is pre-
sented in Fig. S2 A, available at http://www .jem.org/cgi/
content/full/jem.20031137/DC1. The remaining mice be-
came progressively affected, such that by 6 mo of age only
20% remained. With the exception of arthritis in KRN<¢’
mice, KRN¥¢ (n = 20) and G7mTg7"¢ (n = 15) mice
were otherwise healthy throughout this time course.

A survey of multiple organs from 4-20-wk-old KRN/
G7mTg7"¥¢ mice revealed involvement of the liver, kid-
neys, lungs, heart, pancreatic islets, salivary glands, thyroid,
and gastrointestinal (GI) tract. No histologic inflammation
was seen in the muscle, skin, brain, ovaries, and testes. Two
patterns of inflammatory infiltrates were observed. The first
was well-organized perivascular infiltrates comprised of T
and B cells, as well as neutrophils, seen in the liver, kid-
neys, lungs, pancreatic islets, and salivary glands (Fig. 3,
A—C, and unpublished data). In the more affected organs,
the infiltrates eroded through the vessel walls with resultant
vasculitis occluding the lumen. The organ parenchyma was
relatively spared as there was no hepatocellular necrosis or
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glomerulonephritis. These perivascular lesions were ob-
served in all the KRN/G7mTg7%# mice as early as 4 wk of
age, albeit to a lesser degree.

The second inflammatory pattern was a more invasive
infiltrate seen in the heart and the GI tract (Fig. 3, G and
H). The heart exhibited an intense neutrophilic pericarditis
with lymphocytic myocarditis (Fig. 3 G). However, the
most severely affected organ was the GI tract, particularly
the distal bowel (cecum and colon). Inflaimmatory bowel
disease was in all probability the major cause of mortality in
the KRN/G7mTg7%'¢’ mice as colitis preceded wasting in
the affected mice. The severe diffuse colitis typical of the
colon and cecum is shown in Fig. 3 H. Multiple ulcer-
ations eroded through the wall of the mesentery with focal
peritonitis. The normal colonic architecture was replaced
by a robust influx of neutrophils, mast cells, and plasma
cells into the lamina propria with formation of crypt ab-
scesses. Significantly, the gastric mucosa and parietal cells
appeared unaffected.

KRN¥# mice exhibited inflammatory infiltrates in the
periarticular regions as previously reported (1). Of the mul-
tiple visceral organs surveyed in 8 KRNY#" mice, perivas-
cular infiltrates in the lungs were seen in one 3-mo-old
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Figure 3. KRN/G7mTg7%¥
mice displayed inflammation in
multiple organs. We examined 10
KRN/G7mTg7¥¢ mice (7 aged
8-12 wk, 2 aged 1620 wk, 1 aged 4
wk), 8 KRN mice (7 aged 8-12 wk,
1 aged 4 wk), and 2 G7mTg7"¥’
mice (both 8~10 wk) for histological
evidence of autoimmunity. Paraffin
sections of liver (A and D), kidneys
(B and E), lungs (C and F), heart (G
and I), and colon (H and ]) from
2-mo-old KRN/G7mTg7"¢7 (A-C,
G, and H) and KRN¥¢” (D-F, I, and
J) mice are stained with hematoxylin
and eosin. *, crypt abscesses. X100.
Bar, 100 pM.

mouse. No other pathologic abnormality was evident (Fig.
3, D-F, 1, and J). Organs from control G7mTg7%'¢’ mice
were notably normal.

To exclude infection as the cause of the inflammation,
KRN/ G7mTg7¥¢ mice were screened and were negative
for respiratory and enteric pathogens including rodent Heli-
cobacter spp. with the exception of lactose-negative Esche-
richia coli. Thus, by overexpressing the KRN TCR ligand
in MHC II* cells, the disease phenotype was diverted from
a largely joint-centered disease to a lethal multiorgan sys-
temic inflammation.

Splenomegaly with Extramedullary Hematopoiesis in KRN/
G7mTg7%¢” Mice. KRN/G7mTg7¥¢ mice displayed
significant splenomegaly, two- to fourfold greater than
their KRIN¢7 littermates (Fig. S3 A, available at http://
www.jem.org/cgi/content/full/jem.20031137/DC1). The
anatomic distinction between red and white pulp in the
spleen was obliterated by the presence of exuberant ex-
tramedullary hematopoiesis. No normal lymphoid fol-
licles were discernible (Fig. S3, B and C, available at
http://www jem.org/cgi/content/full /jem.20031137/DC1).
Correspondingly, complete blood counts and peripheral
blood smears from KRN/G7mTg7%¢” mice revealed au-
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Table I.  Clinical Features of KRN/G7mTg Mice, 3A9/G7mTg, and 3A9/]B5 Mice

Mouse TCR Antigen Number aGPI ANA Wasting

KRN TCR
KRN KRN — 20 20/20 0/20 0/20
KRN/G7mTg7 KRN mHEL/G7m 16 0/16 16/16 8/16
KRN/G7mTg5 KRN mHEL/G7m 10 0/10 10/10 5/10
G7mTg7 — mHEL/G7m 13 0/13 0/13 0/13
G7mTg5 — mHEL/G7m 15 0/15 0/15 0/15
DN — — 26 0/26 0/26 0/26

3A9 TCR
3A9 3A9 — 25 NA 0/25 0/25
3A9/G7mTg7 3A9 mHEL/G7m 17 NA 7/17 16/17
3A9/G7mTg5 3A9 mHEL/G7m 16 NA 10/16 13/16
3A9/]B5 3A9 mHEL/Hb 14 NA 3/14 10/14
G7mTg7 — mHEL/G7m 7 NA 0/7 0/7
G7mTg5 — mHEL/G7m 7 NA 0/7 0/7
JB5 — mHEL/Hb 19 NA 0/19 0/19
DN — — 36 NA 0/36 0/36

Litters of mice were followed for 4 mo with weekly weights and serial bleeds starting at 4 wk of age. Data are derived from 14 litters of KRN/
G7mTg7¥, 9 litters of KRN/G7mTg5"¥, 9 litters of 3A9/G7mTg7, 7 litters of 3A9/G7mTg5, and 13 litters of 3A9/]B5 mice. Detection for anti-
GPI antibodies and ANA was performed as described in Materials and Methods. Wasting was defined as loss of >20% initial body weight. Colitis
(manifesting as diarrhea and anal prolapse) accompanied wasting in a majority of the affected animals. DN, double negative; NA, not applicable.

toimmune hemolytic anemia and compensatory reticulocy-
tosis. There was also markedly enhanced granulocytosis
with elevated numbers of neutrophils and immature band
forms in the peripheral blood, indicative of acute inflam-
mation (unpublished data).

Autoantibody Production in KRN/G7mTg7 Mice.  Given
the disease involvement in multiple organ systems, we next
assessed for the presence of autoantibodies commonly as-
sociated with systemic autoimmunity. Although KRN/
G7mTg7¥¢ mice did not produce anti-GPI antibodies,
they were hypergammaglobulinemic (unpublished data)
and produced autoantibodies of multiple specificities. ANA
were detected in the sera of all the KRN/G7mTg7"¢
mice tested (n = 30), as early as 5 wk of age (before the on-
set of overt disease). The specificity of ANA was confirmed
to be double stranded DNA by positive staining for the ki-
netoplast of C. luciliae. RF (anti-IgG antibodies) was de-
tected in 67% of the KRN/G7mTg7# mice (n = 15) in
contrast to their absence in KRN¥¢ mice. In addition,
anti-RBC antibodies were detected in 50% of the KRN/
G7mTg7%¢ sera (n = 14). The production of disease-asso-
ciated autoantibodies was not the result of indiscriminate
polyclonal B cell activation as antibodies to GPI or neoself-
antigen, HEL, were not produced (unpublished data).

NOD Background Is Not Required for Disease Development.
To ascertain whether the NOD background was necessary
for disease manifestation, KRN/G7mTg7* mice were bred
to congenic B6.G7 mice to introduce I-A8’ while main-
taining a pure B6 genetic background. Similar to KRN/

G7mTg7%¢ mice, KRN/G7mTg7/B6G7%¢’ mice did not
develop arthritis but succumbed to multiorgan inflamma-
tion, colitis, hematologic abnormalities, and autoantibodies
(ANA and RF). The tempo of disease was accelerated. All
KRN/G7mTg7/B6.G7¥¢ mice succumbed to wasting by
3 mo of age. Despite sharing some of the inflaimmatory
changes of aged NOD mice, the systemic autoimmunity
seen in KRIN/G7mTg7¥¢ mice did not require the NOD
genetic background. Indeed, the NOD background genes
conferred a degree of protection, as the disease course
was less severe in the KRN/G7mTg75#” mice (B6xNOD
background) compared with the KRN/G7mTg7/B6.G7¢
mice (homozygous B6 background).

To exclude a transgene founder effect, KRN mice were
crossed to another G7mTg line, designated G7mTg5.
KRN/G7mTg5*¢ mice displayed a similar disease pheno-
type as KRN/G7mTg7%% mice with an attenuated arthri-
tis course (Table I). They did not produce anti-GPI anti-
bodies but produced ANA in all the mice assayed. KRN/
G7mTg5%¢ mice also succumbed to the multiorgan disease
seen in KRN/G7mTg7%¢” mice (Table I and Fig. S2 A,
which is available at http://www.jem.org/cgi/content/
full/jem.20031137/DC1).

Extensive Thymic Deletion in KRN/G7mTg7%¢7 Mice.
We had purposefully targeted expression of a KRN TCR
agonist to APCs, including those in the thymus to alter the
KRN T cell repertoire, resulting in unexpected autoimmu-
nity. Thus, to ascertain the effect of G7m on T cell selection,
T cells from thymi, LNs, and spleens of 4-wk-old KRN¥,
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Figure 4. Deletion of VB6" CD4" T cells in KRN/G7mTg7¢” mice.
(A) CD4/CD8 profile of thymocytes and LN cells from KRN, KRNF¢7,
and KRN/G7mTg7%%” mice. Cell numbers are displayed above each
plot. Numbers in each panel indicate percent of cells. Average thymocyte
numbers were 190 + 56 X 10°, 72 * 34 X 10°, and 1.9 = 0.8 X 10°, and
average LN cell numbers were 16 = 7.8 X 10° 23 *£ 13 X 10°, and
0.9 * 0.8 X 10%in KRN¥, KRN¥¥ and KRN/G7mTg7"¢ mice, re-
spectively (n = 4). (B) Splenocytes from four KRN (CJ) and four
KRN/G7mTg7%¢ (B) mice were analyzed by flow cytometry for TCR
VP gene expression. Each data point represents mean percent of total
CD4* T cells with error bar indicating = SD. (C) CD4" splenocytes were
gated and analyzed for activation markers CD44-FITC, CD62L-PE, and
CD25-PE. Data are representative of three independent experiments.

KRIN¥¥ and KRN/G7mTg7%¥ mice were analyzed by
flow cytometry. As T cells in KRIN* mice matured in the ab-
sence of I-A#, their T cell compartment and response were
not subjected to negative selection by the endogenous GPI
and therefore represented the baseline. Mice were analyzed
before the onset of overt disease to minimize alterations to
the T cell compartment due to systemic inflammation.
Consistent with negative selection, there was graded re-
duction of thymocyte numbers in KRIN¥¢ and KRN/
G7mTg7%¢ mice relative to KRNK mice (Fig. 4 A). Dele-
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tion of KRN T cells by endogenous GPI in KRN mice
was relatively inefficient as the thymocyte numbers were
reduced only threefold with preservation of the CD4/
CDS8 profile. In contrast, thymocyte deletion in KRN/
G7mTg7%'¢ mice was much more effective with a 100-fold
reduction in total cellularity. Analysis of the CD4/CD8
compartments showed that the loss was primarily in the
double positive thymocytes with preservation of CD4* SP
thymocytes compared with the CD8* SP thymocytes.

The peripheral lymphoid compartments reflected the thy-
mic constituents. At 4 wk of age, equivalent CD4* T cells
were isolated from the LNs of KRNKand KRN¥#" mice. In
contrast, LNs in KRN/G7mTg7¥¢” mice were atrophic and
10-fold fewer lymphocytes were recovered. These residual
lymphocytes were predominantly CD4* T cells comprising
22.5-44.6% of total LN cells. As a clonotypic antibody to
KRN was unavailable, we measured the expression of V36
as a surrogate for the transgene-encoded TCR. We found
that VB6 expression was decreased among the residual
CD4* T cells in KRN¥#” and KRN/G7mTg7¥¢ mice both
in terms of frequency and level (unpublished data) as a con-
sequence of negative selection. In KRN/G7mTg7%¢" mice,
~25% of the CD4" T cells expressed V36 compared with
64% in KRN¥# and 80% in KRIN* mice.

To determine the TCR usage in the remaining CD4* T
cells, we conducted flow cytometric analysis using a panel
of 15 VB-specific antibodies. There was a dramatic shift in
the TCR repertoire such that >50% of the residual CD4"
T cells in the KRN/G7mTg7#” mice used VB2 in con-
trast to 6.5% in the KRIN¥#" mice (Fig. 4 B). There was no
significant difference among the other endogenous V@
genes. VB2* T cells were not selectively elevated in either
G7mTg7 or non-Tg mice on the H-2¥% background (un-
published data). It was plausible that the V32 expansion re-
sulted from aberrant thymic selection for HEL-specific T
cells in KRIN/G7mTg7¥¢” mice. To address this possibil-
ity, we assayed for T cell proliferation in response to HEL
protein and the five identified MHC II determinants of
HEL. No HEL-specific T cell response was detected (un-
published data). Therefore, this oligoclonal expansion of
VB2* T cells is likely a reflection of autoreactive T cells
that had evaded deletion and expanded in response to self-
antigen as had been seen in certain autoimmune disease
such as experimental autoimmune encephalomyelitis (13).

CD4* T cells from KRN/G7mTg7¥” and KRNK¢ mice
displayed activation markers consistent with previous antigen
exposure. In KRN¥# mice, increased numbers of CD4+ T
cells were CD44% and CD62LP compared with KRN mice
(Fig. 4 C). These data are consistent with the immune acti-
vation of KRN T cells by endogenous GPI. CD4* T cells in
KRN/G7mTg7%# mice exhibited a further elevation in ac-
tivation markers, such that 91% of the CD4" T cells were
CD44" CD62L" (Fig. 4 C). In addition, these activated T
cells exhibited elevated CD69 levels as well as increased cell
volume by forward and side scatter (unpublished data).

Despite the activated phenotype of the CD4* T cells de-
rived from KRN/G7mTg7¥¢ mice, only 6% of these
CD4* T cells were CD25", whereas 20% of CD4% T cells
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Figure 5. CD4% CD25" T cells from KRN¥ mice
are Tregs and are thymically derived. (A) Sorted CD4*
CD25" (open and solid bars) and CD4* CD25" (dotted
and striped bars) T cells from pooled LNs and spleens
from three KRN¥¥ (open and dotted bars) and three
KRN¥#7 (solid and striped bars) mice were analyzed for
HPRT, CD25, and FoxP3 expression by quantitative
PCR and normalized to housekeeping gene HPRT.

(B) Sorted CD4* CD25% and CD4* CD25~ T cells
were purified from pooled LNs and spleens of seven
KRNV mice. CD4" CD25% T cells (solid bars),
CD4* CD25~ (open bars), and mixed CD4* CD25%/
CD4* CD257 (1:1; striped bars) were cultured at 5 X
10*/well with graded doses of GPI(281-293) peptide
and 2 X 107 irradiated T-depleted H-25¢7 splenocytes
in 96-well round-bottom plates for 72 h with 0.2 wCi

[*H]thymidine in the last 18 h. Each point represents
the mean of duplicate wells with error bars indicating
SD. (C) Thymocytes from 4-wk-old KRNk and
KRN¥¢ mice were analyzed by flow cytometry with

CD4-APC, CDS-FITC, and CD25-PE. Live cells
were identified by propidium iodide exclusion. Histo-
grams of CD25 expression of CD4" SP thymocytes are
presented with the percentage of CD25" cells indicated
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from KRN¥¢ mice were CD25" (Fig. 4 C). As KRN T
cells were activated by endogenous GPI in KRIN¥#” mice,
the enhanced CD4* CD25* T cells may reflect peripherally
activated T cells or CD4* CD25* Tregs. To distinguish be-
tween these two possibilities, we assessed the expression of
the forkhead transcription factor, FoxP3, by quantitative
PCR. FoxP3 had been identified as critical in the develop-
ment of CD4* CD25" Tregs (10, 11). CD4* CD25™ and
CD4*" CD25* T cells were sorted from pooled LN cells and
splenocytes from three to five KRNK* and KRIN¥# mice.
Expression of CD25 and FoxP3 were analyzed by quanti-
tative PCR and normalized to the housekeeping gene
HPRT. FoxP3 was expressed in low abundance but corre-
lated with CD25 expression in both KRIN¥* and KRIN#7
mice (Fig. 5 A). Moreover, to show that these are indeed
Tregs, we assayed the ability of CD4* CD25* T cells from
KRN¥¢ mice to suppress the proliferation of their CD4*

Fold over HPRT

20 25 3.0 mice and analyzed for HPRT, CD25, and FoxP3 ex-

pression by quantitative PCR and normalized to HPRT.

CD25~ counterparts. CD4* CD25% T cells proliferated
poorly in response to GPI compared to the response elicited
in CD4" CD25~ T cells. The addition of CD4* CD25*
Tregs at a 1:1 ratio reduced proliferation by 70-85% (Fig. 5
B). Hence, CD4" CD25" T cells from KRN¥# mice ex-
pressed FoxP3 and functioned as Tregs.

Consistent with the hypothesis that CD4" CD25" Tregs
arose as a consequence of failed negative selection, we
showed enhanced CD25 expression in CD4*" SP thy-
mocytes from KRN¥# mice compared with KRN¥* mice
(19.9 = 0.8% compared with 6.3 £ 0.6%, respectively; Fig.
5 C). Moreover, FoxP3 expression was enriched among
the CD25* population (Fig. 5 D). Taken together, our data
demonstrated that CD4% CD25% T cells from KRNK¢’
mice were thymically derived Tregs.

The paucity of CD4* CD25* T cells coupled with
the severe thymic atrophy and lymphopenia in KRN/
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Figure 6. Clonotype™ T cells are deleted in 3A9/
G7mTg7 mice. Splenocytes from 3A9 and 3A9/
G7mTg7 mice were analyzed by flow cytometry using
CD4-PE, CDS8-FITC, and 3A9-specific clonotypic
antibody 1G12. Dot plot represents CD4 and CDS8
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G7mTg7%¢’ mice precluded similar analyses in these mice.
In day 3 neonatally thymectomized (d3Ntx) mice, loss of
CD4* CD25* Tregs was shown to result in systemic au-
toreactivity (14, 15). In light of the regulatory function ex-
hibited by CD4* CD25% T cells from KRN¥¢ mice and
the similar disease manifestation seen in KRN/G7mTg7v/¢
and d3NTx mice, our data suggest loss of Tregs as a mech-
anism for the systemic autoreactivity.

Systemic Autoimmunity Is Generalizable to Settings of Exten-
sive Thymic Deletion. To determine if the disease pheno-
type was unique to KRN or was a generalizable phenome-
non, we made use of 3A9 TCR Tg that recognizes HEL.
Moreover, as HEL is a component of the mHEL/G7m
transgene and clonotypic antibody to the 3A9 TCR is
available, we could directly examine negative selection of
3A9 in mHEL/G7m. Accordingly, 3A9 TCR Tg mice
were crossed to both G7mTg lineages. Consistent with ef-
ficient thymic deletion, clonotype™ 3A9 T cells were elim-
inated in 3A9/G7mTg mice (Fig. 6). As summarized in
Table I and Fig. S2 B, which is available at http://
www.jem.org/cgil/content/full/jem.20031137/DC1, both
lineages of 3A9/G7mTg mice succumbed to disease with
wasting, colitis, dermatitis, and autoantibody production
starting at 9-10 wk of age. Compared with KRN/
G7mTg¥¢ mice, 3A9/G7mTg mice displayed a higher fre-
quency of wasting and colitis (80-94 vs. 50%) and lower
frequency of autoantibody production. ANA were pro-
duced in 40—60% of 3A9/G7mTg mice and developed at a
later time (8-12 wk). Histologically, 3A9/G7mTg mice
also displayed multiorgan inflammation, albeit in only a
subset of target organs (lungs, liver, and GI tract).

To eliminate the possibility of confounding effects of
G7m or its transgene expression pattern, we made use of
JB5 mice that expressed the mHEL/Hb chimeric protein
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on all MHC II* cells in the thymus and spleen (8) and at
higher levels compared with G7mTg7¥¢’ mice (unpub-
lished data). Despite higher mHEL transgene expression,
the T cell compartments were identical to 3A9/G7m mice
(unpublished data). In our previous report on 3A9/JB5
mice, we had not observed any pathology (8). In retro-
spect, that analysis was performed on 4—6-wk-old mice.
However, by following the mice over a longer time course,
we found that a majority of 3A9/]B5 Tg mice (70%) devel-
oped dermatitis and wasting by 12—-16 wk of age (Fig. S2
B, available at http://www.jem.org/cgi/content/full/jem.
20031137/DC1). ANA production was found only in 20%
of the mice and these arose at late time points of >12 wk.
Hence, the disease phenotype appeared to be a general
phenomenon of massive thymic deletion.

Transfer of 3A9/G7m Splenocytes Recapitulates Disease Phe-
notype. Next, we ascertained whether the disease is trans-
ferable by splenocytes. We made use of the 3A9 system
where the expression of the cognate antigen can be con-
trolled. Accordingly, unfractionated splenocytes from 3A9/
G7mTg mice were transferred into B6.AKR mice. Control
mice received unfractionated 3A9 splenocytes. Mice were
monitored weekly by clinical appearance and weight.
Transter of 3A9/G7mTg splenocytes into B6.AKR mice
did not induce disease. Recipients remained healthy and
continued to gain weight compared to control mice that
received 3A9 splenocytes (Fig. 7 A). Failure to transfer dis-
ease may result from a requirement for mHEL/G7m ex-
pression in the host or active suppression by host lympho-
cytes. As the reduction of CD4* CD25* T cells in the
KRN/G7mTg7%% mice suggested the loss of Tregs as a
mechanism accounting for the systemic autoimmunity seen
in these double Tg mice, we repeated the experiment us-
ing immunodeficient RAG17/~ hosts. Transfer of 3A9/
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Figure 7. Wasting disease is transferable by
3A9/G7mTg splenocytes into immunodeficient
hosts but not immunocompetent hosts. (A) Un-
fractionated 3A9 ([J) and 3A9/G7m (M) sple-
nocytes were transferred into B6.AKR mice
(n = 3/group). Each data point represents the
mean percent of initial weight with error bars
indicating SD. (B) Unfractionated 3A9 (O) and

——  (CD4*CD25* depleted 3A9 T cells

3A9/G7m (@) splenocytes were transferred
into RAG17/~ mice (n = 3/group). Each data
point represents the mean percent of initial
weight with error bars indicating SD. (C) Un-
fractionated 3A9/G7m (O, B, A) splenocytes
were transferred into RAG1™/~ mice. 5 X 10°
1 CD4* CD25" (H) or CD4" CD25~ (A) sple-

nocytes from 3A9 mice were transferred 24 h

J before the transfer of 3A9/G7m splenocytes.
(D) Unfractionated 3A9 splenocytes (O) or 2 X

107 3A9 CD4*" T cells depleted of CD4*
CD25" T cells (M) were transferred into
J RAG17/~ mice. Each data point represents the
mean percent of initial weight of three mice

with error bars indicating SD. Data are repre-
sentative of three independent experiments for
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Days after transfer

G7mTg splenocytes into RAG17/~ mice recapitulated the
disease phenotype present in 3A9/G7mTg mice. RAG1™/~
mice that received 3A9/G7mTg splenocytes displayed
steady weight loss with >25% weight loss by 24 d (Fig. 7
B). These mice were moribund and were killed. Histologic
examination showed inflammatory changes in the liver, co-
lon, and cecum similar to that seen in double Tg mice (un-
published data). RAG1~/~ mice that received 3A9 spleno-
cytes remained healthy. Moreover, the ability to transfer
disease into host mice that do not express the mHEL/G7m
transgene indicated that anti-HEL T cell response was not
required for disease induction consistent with the loss of
clonotype* T cells in 3A9/G7mTg mice. Therefore, the
autoreactivity resulted from the specificity encoded by en-
dogenously derived TCRs.

CD4*CD25* Tregs Prevent Induction of Colitis. The
differential ability to transfer disease into immunodeficient
hosts but not immunosufficient hosts suggested active sup-
pression of disease by host lymphocytes. Moreover, as 3A9
splenocytes also did not induce disease, we reasoned that
they must contain inhibitory lymphocytes. Thus, to directly
test the hypothesis that the absence of CD4* CD25* T cells
from 3A9/G7mTg mice was responsible for the disease, we
used two approaches. First, CD4* CD25* T cells from 3A9
mice were cotransferred into RAG17/~ mice with 3A9/
G7mTg splenocytes and mice were monitored for weight
loss. As shown in Fig. 7 C, cotransfer of CD4* CD25" T
cells prevented the wasting evident in RAG1™/~ mice that
received 3A9/G7mTg splenocytes alone. Cotransfer of
CD4* CD25~ T cells failed to prevent disease. By a com-
plementary approach, transfer of CD4* T cells from 3A9

Days after transfer

A and B and two independent experiments for

C and D.

20 30 40

mice that were depleted of CD4* CD25" T cells induced
wasting (Fig. 7 D). Taken together, our data demonstrated
the absence of a regulatory population in the 3A9/G7mTg
mice as a critical factor in the pathogenesis of the systemic
autoimmunity. In addition, as CD4" T cells from 3A9 mice
were clonotype®, Tregs derived from 3A9 mice were there-
fore HEL specific. As pathogenic 3A9/G7mTg T cells
could mediate disease in mice lacking HEL, their target an-
tigens represent as yet undetermined self-antigens. There-
fore, the ability of HEL-specific CD4* CD25* T cells from
3A9 mice to suppress the pathogenicity of 3A9/G7mTg
splenocytes indicates that Tregs and the cells that they con-
trolled need not be directed to the same antigen. This is
consistent with previous observations that Tregs can sup-
press T cells bearing other antigen specificities (16).

Discussion

To study tolerance induction of KRN T cells, we ex-
pressed its ligand, G7m, on APCs in the thymus and pe-
riphery. Through this Tg approach, APCs from G7mTg7
mice were 1,000-fold more potent in stimulating KRN T
cells. Accordingly, we showed that such thymic overex-
pression resulted in T cell tolerance to GPI as demonstrated
by deletion of >99% VB6* thymocytes, loss of GPI-spe-
cific T and B cell responses, and abrogation of arthritis.
Unexpectedly, KRN/G7mTg7%¢’ mice succumbed to an
aggressive systemic autoimmune disease with multiorgan
inflammation and autoantibody production. We showed
further that the disease phenotype was not limited to the
KRN mice but can also be elicited in 3A9 TCR Tg mice

332 Systemic Autoimmunity from Overzealous Deletion of Tregs

TTO0Z ‘€T Jaquardas uo Bio'ssaidni wal woiy papeojumoq


http://jem.rupress.org/

Published January 26, 2004

bearing specificity for HEL. In both systems, systemic au-
toimmunity arose in the setting of massive thymic deletion
with loss of transgene-encoded TCR specificity and dimi-
nution of CD4% CD25% Tregs. We propose that Tregs and
autoreactive T cells can have differential susceptibility to
tolerance induction, such that autoreactive T cells persist
into the periphery. In the setting of lymphopenia, these
cells undergo homeostatic proliferation to induce disease.

Thymic deletion is the major mechanism whereby au-
toreactive T cells are eliminated from the functional T cell
repertoire. Incomplete thymic deletion allows autoreactive
T cells to persist in the periphery where under certain con-
ditions they are activated and cause disease. Mechanisms
such as the induction of extrathymic deletion, anergy, and
Tregs offer a buttress against the dangers of autoimmunity.
In this study, we showed that the extremes of negative se-
lection to a self-antigen can both result in autoimmunity
and disease. In KRIN¥#" mice, presentation of endogenous
GPI was insufficient to eftect complete deletion of KRN T
cells resulting in their activation and arthritis through pro-
vision of T cell help to anti-GPI B cells. Overexpression of
its TCR ligand G7m in the thymus deleted >99% of T
cells with elimination of CD4" CD25" Tregs. Residual ef-
fector T cells bearing endogenously encoded TCRs with
likely low affinity recognition for peripheral self-peptides
escape thymic deletion and expand in the periphery
through homeostatic proliferation and release from Treg
inhibition to cause systemic disease.

KRN/G7mTg"#” and 3A9/mHEL mice differed criti-
cally from the growing rank of systemic autoimmune dis-
ease models generated through targeted gene disruption,
such as CTLA-47/~, TGFdnR, and IL-10R ™/~ mice (for
review see reference 17) in that multiorgan systemic autore-
activity arose paradoxically in the setting of tolerance induc-
tion. Instead of the generalized lymphadenopathy and an
expanded T cell compartment seen in the majority of these
autoimmune models, KRN/G7mTg"¢’ and 3A9/mHEL
mice exhibited a paucity of T cells. The thymi and periph-
eral LNs were atrophic, an expected finding given the pur-
poseful targeting of the antigen to sites mediating negative
selection. As such, these mice more closely resembled au-
toreactivity associated with lymphopenia such as TCR
Ca™/~ and d3Ntx mice. Although KRN/G7mTg and
3A9/mHEL mice exhibited an ulcerative colitis-like disease
as do the TCR Ca™/~ mice (18), the disease in the KRN/
G7mTg mice was more extensive affecting multiple organs
and involving autoantibody production. The disease pheno-
type of KRN/G7mTg and 3A9/mHEL mice resembled the
wasting disease described in neonatally thymectomized mice
(19, 20). The mechanism of this autoimmunity has yet to be
defined. In the more extensively studied d3NTx model of
autolmmunity, autoimmune gastritis and oophoritis were
mediated by T cells with specificity for peripherally ex-
pressed antigens: gastric parietal H/K* ATPase (21) and
ovarian antigen (22), respectively. Autoimmunity to these
peripheral antigens was attributed to the absence of thymi-
cally derived CD4" CD25" Tregs, whose restoration abro-
gated disease (14). Similarly, we showed here that depletion
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of CD4* CD25" Tregs conferred disease phenotype and the
addition of CD4% CD25" Tregs prevented disease induc-
tion. In contrast to the surgical thymectomy models, we
achieved such overwhelming thymocyte depletion via the
thymic expression of a highly potent TCR ligand.

Numerous models of thymic tolerance had been de-
scribed with diverse results. As allelic exclusion of trans-
gene-encoded TCR was incomplete, coexpression of en-
dogenously encoded TCRs allowed the generation of a
repertoire of T cell specificities separate from those en-
coded by the transgenes. In some studies, coexpression of
dual TCRs allowed autoreactive T cells to escape from
negative selection and become activated upon recognition
of their cognate antigen in the periphery to cause disease
(23-26). In those cases, the autoreactivity was confined to
that of the transgene-encoded TCR. Our system differed
critically from these models in that the transgene TCR
specificity was not required for disease as pathology can be
elicited in recipient mice that do not express the cognate
antigen. In other TCR systems, deletion in response to an-
tigens such as superantigens resulted in no pathology. In ac-
cordance with previous observation, we found superanti-
gen (Mls-1%)-mediated deletion of KRN T cells to be
delayed and less efficient. There was no ensuing disease
(unpublished data). Yet other systems demonstrated the
generation of Tregs through the recognition of self-peptide
(27-30). Interestingly, it is weak recognition of self-peptide
that gave rise to Tregs. As such, it is intriguing that CD4*
CD25" Tregs are increased in KRN¥# mice. One ques-
tion that had been unanswered is why KRN¥#" mice were
not subjected to systemic autoimmunity given the ubiqui-
tous presentation of GPI. As we have shown, thymic pre-
sentation of GPI is insufficient to induce complete deletion
of KRN T cells but does induce the development of GPI-
specific CD4" CD25" Tregs, which may provide a mecha-
nism whereby the autoreactivity is limited to humorally
mediated joint-specific disease. Precedents of such modula-
tion of autoaggression by Tregs had previously been
demonstrated in the IDDM and experimental autoim-
mune encephalomyelitis models (31, 32). In the face of
overwhelming antigen dose due to overexpression of a
strong TCR agonist, Tregs may indeed be deleted. This is
consistent with our observation that HEL-specific 3A9
TCR Tg mice also developed systemic autoreactivity when
crossed to mHEL Tg mice. 3A9 T cells are exquisitely sen-
sitive to HEL(46—61) and can be deleted by 10-100
HEL(46—61)—I-A* complexes on APC surfaces (33). Thus,
overly efficient deletion of 3A9 may eliminate Tregs from
the repertoire. It is, therefore, the convergence of high
ligand density and/or TCR binding affinity that results in
T cell overstimulation and deletion. The requirement for
these two factors to coexist may explain the lack of sys-
temic autoreactivity seen in some but not all TCR systems
(34-36). It is also possible that the TCR Tg mice were not
followed for sufficient time for disease to manifest, as we
had demonstrated with 3A9/JB5 mice.

What could account for the differential susceptibility of
Tregs and pathologic effector T cells to deletion? Although
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the mechanism of Tregs differentiation is yet unclear, selec-
tive loss of Tregs from the repertoire in B7.1/B7.2- (37)
and Foxp3-deficient (10, 11) mice suggests that Tregs and
effector T cells arise from different maturation programs. As
Tregs required cognate interaction with their ligand for dif-
ferentiation, they may exhibit higher affinity for self-pep-
tide-MHC complex and thus be more susceptible to dele-
tion compared with those expressing other autoimmune
specificities to peripherally derived antigens. The preferen-
tial outgrowth of effector CD4* T cells using endogenously
encoded Vs provides support to this hypothesis. An alter-
native possibility is that Tregs and autoimmune T cells arise
at a distinct time course in ontogeny as shown by d3Ntx
models and represent different lineages. Therefore, they
might be subjected to different selection pressures.

In addition to the loss of Tregs from the T cell reper-
toire, a critical component to the disease phenotype is the
requirement for homeostatic proliferation as lymphopenia
was a shared feature in both TCR/antigen models and
d3NTx mice. However, the homeostatic proliferation is
not indiscriminate as only V2* T cells were selectively ex-
panded in KRN/G7mTg7%¢ mice, suggesting that this ex-
pansion is antigen driven. Stimulation of VB2* T cells by
BALB/cV virus in H-2¢ and H-22 had been previously re-
ported correlating with deletion of VR2* T cells (38). No
known endogenous V2-specific superantigens had been
found in B6 nor NOD mice, hence this expansion is un-
likely to be superantigen related. Therefore, these cells rep-
resent endogenous autoreactive T cells that escape negative
selection and in the setting of lymphopenia and absence of
Tregs, cause systemic autoimmunity.
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