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A promising approach to improving outcomes in patients with cryptococcal meningitis is to use adjunctive
passive immunotherapy with a monoclonal antibody (MAb) directed against the capsular polysaccharide of
Cryptococcus neoformans. This is the first application of MAb therapy for the treatment of a fungal disease in
humans. We determined the safety and maximum tolerated dose of the murine anticryptococcal MAb 18B7 in
a phase I dose-escalation study. The subjects were human immunodeficiency virus-infected patients who had
been successfully treated for cryptococcal meningitis. Six dosing cohorts received MAb 18B7 at 0.01 to 2 mg/kg
of body weight as a single infusion. Three patients each received 0.01, 0.05, 0.2, and 0.5 mg of MAb 18B7 per kg
without significant adverse events. Four of the subjects who received the 1-mg/kg dose had mild study drug-
associated toxicity, including transient nausea, vomiting, back pain, and urticarial rash. Two of the subjects
who received 2 mg/kg developed drug-associated mild to moderate nausea, vomiting, chills, and myalgias. One
of the subjects who received 2 mg/kg developed intracranial hypertension 10 weeks after MAb 18B7 adminis-
tration. Serum cryptococcal antigen titers in the cohorts receiving doses of 1 and 2 mg/kg declined by a median
of twofold at 1 week and a median of threefold at 2 weeks postinfusion, but the titers subsequently returned
toward the baseline values by week 12. The half-life of MAb 18B7 in serum was approximately 53 h, while the
MAb was undetectable in the cerebrospinal fluid of all patients. These data support the continued investigation
of MAb 18B7 at a maximum single dose of 1.0 mg/kg.

There has been little progress in the treatment of cryptococ-
cal meningitis since the introduction of fluconazole in 1990.
When individuals with AIDS and meningeal cryptococcosis are
treated with either amphotericin B or fluconazole alone, only
40 to 50% have sterile cerebrospinal fluid (CSF) after 2 weeks
(1, 2, 26, 48). Although the combination of either amphotericin
B or fluconazole with flucytosine results in a modest improve-
ment in treatment success, more than 25% of subjects fail
therapy (1, 25, 26, 33, 50). Furthermore, the neurological se-
quelae of cryptococcal meningitis remain a distressingly com-
mon cause of decreased quality of life.

The vast majority of patients with cryptococcal meningitis
are immunocompromised. Therefore, a logical approach to the
improvement of treatment outcomes in patients with crypto-
coccosis is to enhance the host immune response to Cryptococ-
cus neoformans. One method of enhancing the host response is
by the administration of antibodies that bind to C. neoformans
polysaccharide. In animal models and in vitro studies, antibod-
ies have been shown to enhance opsonization of the organisms,
thereby increasing the number of organisms killed (27, 40, 42).
The administration of antibodies that bind to cryptococcal
polysaccharide has also been shown to promote the clearance
of polysaccharide antigen from the serum of experimental an-

imals and humans (13, 14, 41). This enhanced clearance of
antigen may be therapeutic, because the capsular polysaccha-
ride of C. neoformans has been shown to have multiple immu-
nosuppressive effects. For example, capsular polysaccharide
can (i) predispose vaccinated mice to earlier death (30), (ii)
cause the phenomenon of antibody unresponsiveness to cryp-
tococcal antigen (CrAg) (43), (iii) inhibit leukocyte migration
(6, 51), (iv) enhance human immunodeficiency virus (HIV)
infection in vitro (44, 45), (v) induce shedding of L-selectin (7),
(vi) promote cerebral edema (18–21), (vii) induce T lympho-
cytes to secrete immunosuppressive molecules (3), (viii) pro-
mote dysregulation in cytokine production (46, 52, 53), and (ix)
inhibit phagocytosis (24). For all of these reasons, the capsular
polysaccharide of C. neoformans is a major virulence factor
that interferes with host defense mechanisms from clearing this
organism from the bloodstream and infected tissues.

Administration of antibodies directed against C. neoformans
capsular polysaccharide to infected mice has prolonged sur-
vival (9, 16, 35, 37, 38), reduced the tissue fungal burden, and
enhanced granuloma formation (10). Also, antibodies to cap-
sular polysaccharide enhanced the killing of C. neoformans by
amphotericin B (8, 15, 39), fluconazole (36), and flucytosine
(11) in mice and by isolated leukocytes in vitro (34).

On the basis of these promising preliminary data, we car-
ried out a phase I, multi-institution, open-label, nonrandomized,
dose-escalation study of a murine-derived anticryptococcal an-
tibody (monoclonal antibody [MAb] 18B7) in HIV-infected
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subjects who had been successfully treated for cryptococcal
meningitis. This is the first application of MAb therapy for the
treatment of a fungal disease in humans. The trial was de-
signed to determine the maximum tolerated dose of MAb
18B7 and to assess the impact of a single dose of this antibody
on the serum and CSF CrAg titers.

MATERIALS AND METHODS

Study subjects met the following inclusion characteristics: (i) they were HIV
infected and �18 years of age; (ii) they had a history of culture-proven crypto-
coccal meningitis; (iii) they had successfully completed at least 6 weeks of
therapy for cryptococcal meningitis, with resolution of all signs and symptoms of
cryptococcal meningitis; and (iv) they had a negative posttreatment CSF culture
for C. neoformans, or if no posttreatment CSF culture was available, they must
have been asymptomatic for at least 12 weeks prior to enrollment. Additionally,
the subjects were required to have a serum CrAg level of �1:16 and to be on a
stable antiretroviral regimen for more than 4 weeks prior to study entry. Exclu-
sion criteria included (i) a history of treatment with any murine-derived mate-
rials, (ii) participation in another study protocol precluding the use of an exper-
imental agent, (iii) evidence of another active opportunistic infection, or (iv) the
use of systemic glucocorticoid therapy or therapy with other immunomodulating
agents within 30 days of study entry. We chose this study population because the
anticipated target population for treatment with this agent would be those with
active cryptococcal disease, of whom greater than 90% would have HIV infec-
tion. Furthermore, we wished to evaluate the effect that the MAb would have on
the clearance of CrAg, yet we did not want to confound this assessment in the setting
of active infection, when there would be continued production of CrAg. A popula-
tion of subjects without cryptococcal antigenemia was not used because assessments
of the pharmacokinetics (PKs) of the anticryptococcal MAb in such a population
is of very limited interest; sensitization of such subjects to murine products
seemed unwise, as multiple agents derived from murine products have entered
the commercial arena; and the PKs of the antibody were unlikely to mirror those
in the target population because no antigen-antibody complexes that would
presumably alter the kinetics of the anticryptococcal antibody would be created.

The study agent was manufactured at the Massachusetts Public Health Bio-
logic Laboratories (Boston, Mass.) and stored at and distributed to the study sites
by the National Institutes of Health Division of Microbiology and Infectious
Diseases Clinical Agents Repository in Rockville, Md.

Six escalating-dose cohorts with three study subjects per cohort were examined
to determine the maximum tolerated dose of MAb 18B7. The six doses were 0.01,
0.05, 0.2, 0.5, 1.0, and 2.0 mg of MAb 18B7 per kg of body weight; and the doses
were infused intravenously over 2 h with direct observation and monitoring of
vital signs. The maximum tolerated dose was exceeded if more than one subject
among the first three subjects or two subjects among an expanded cohort of six
subjects developed a possible, probable, or definite study-related serious adverse
event (SAE). An SAE was defined as a grade 3, grade 4, or lethal adverse event
according to the Table for Grading Adult Adverse Experiences in the Division of
AIDS Serious Adverse Event Reference Manual (5a).

A response to the antibody infusion was inferred from changes in serum CrAg
titers, which were measured at the baseline, at 4 and 24 h, and then at 7, 14, 28,
56, and 70 days after the MAb 18B7 infusion. Serum was assayed for the MAb 18B7
concentration at 5 min before the initiation of the infusion; at 15, 30, and 60 min and
2 h into the infusion; at 4, 6, 8, and 12 h after the start of the infusion; and on days
7, 14, 28, 56, and 70 after the infusion. Lumbar puncture for CSF collection was
performed 4 to 6 h after the initiation of MAb 18B7 infusion for CrAg titer and
antibody measurement. The samples were tested for the presence of human
anti-mouse antibodies (HAMAs) at the baseline and at days 7, 14, 28, 56, and 70.

The CrAg titer was measured by a latex agglutination assay (Immuno-Myco-
logics, Inc., Norman, Okla.). Serum and CSF specimens were sent overnight to
the central laboratory on wet ice, and titers were measured within 24 to 48 h of
collection. Samples were then placed in batches and stored frozen at �70°C until
they were thawed and the titers were measured at the conclusion of study by latex
agglutination assay and enzyme-linked immunoabsorption assay (Meridian, Cin-
cinnati, Ohio). The MAb 18B7 and HAMA levels were measured by radioim-
munoassays (I125) at the central laboratory at the conclusion of the study (22, 23).
Quantitative HIV RNA assays were performed at the central laboratory, while
CD4 and CD8 lymphocyte counts were measured at each site.

The peak concentration in serum (Cmax), the Cmax per unit dose (Cmax/dose,
which is equal to Cmax/infusion dose), and the time to Cmax (Tmax) of MAb 18B7
were determined by visual inspection of the data. The observed first half-life
(t1/2obs; i.e., the time required for Cmax to decay to half of its value) was deter-

mined by log-linear interpolation. The area under the curve (AUC) of the MAb
18B7 concentration-over-time plot for each patient was calculated by using the
trapezoidal rule during the infusion portion of the curve and the log-linear
trapezoidal rule during the exponential decay (postinfusion) portion of the curve
(4). If the last concentration measured was greater than 0, then the AUC from
the last measured concentration through infinity was estimated by integration as
Cfinal/�, where Cfinal is the final measured concentration and � is the terminal
first-order elimination rate constant (12). � was estimated by using the negative
semilogarithmic slope (i.e., negative change in the log concentration/change in
time) by using the last two observed MAb 18B7 concentrations. When reason-
able estimates of � could not be made due to noise at concentrations close to 0,
then the final concentration was assumed to be equal to 0 and the final segment
of the AUC was calculated by using the trapezoidal rule. AUC was normalized
for the infusion dose by AUC/dose � AUC/infusion dose.

Clearance (CL), mean residence time (MRT), and volume of distribution at
steady state (Vss) were calculated by use of the standard formulae (22). Spear-
man rank correlations were performed to test whether each of the noncompart-
mental PK parameters was independent of the infusion dose. Spearman rank
correlations were also performed to test for any associations between the MAb
18B7 concentrations (as Cmax and AUC) and the minimum CrAg concentration or
the minimum CrAg concentration as a percentage of the baseline concentration.

This study was approved by the institutional review board of each medical
center and was conducted at the respective general clinical research centers. The
study was approved and conducted by members of the National Institute of
Allergy and Infectious Diseases (NIAID) Mycoses Study Group and was mon-
itored by an independent safety monitoring committee administered by the
Division of Microbiology and Infectious Diseases, NIAID.

RESULTS

Twenty HIV-positive subjects were enrolled in the study; 18
were male, the median age was 39 years, 8 were white, 8 were
black, and 4 were Hispanic. The serum CrAg titers ranged from
1:4 to 1:8,192. All subjects were CSF culture negative at the base-
line. The median CD4 lymphocyte level at the baseline was 103
cells/mm3 (range, 33 to 322 cells/mm3). Nineteen (95%) sub-
jects were monitored for 84 days; one subject died during the
study period, but the death was not related to the study ther-

TABLE 1. HIV loads

Dosing
cohort

Subject
no.

HIV load (log10)

Baseline Day 1 Day 7 Day 14 Day 84

10 �g/kg 001 0.00 0.00 0.00 0.00 0.00
002 1.91 1.91 0.00 2.13 2.71
003 1.90 2.11 1.91 2.25 1.92

50 �g/kg 004 2.57 2.38 2.70 2.40 3.77
005 3.94 4.38 4.09 4.18 4.27
006 3.71 3.66 NTa NT 5.60

200 �g/kg 007 4.24 4.34 3.93 4.02 4.19
008 4.33 4.41 4.35 4.66 4.83
009 0.00 0.00 0.00 0.00 0.00

500 �g/kg 010 3.15 3.07 3.20 2.91 1.99
011 0.00 0.00 0.00 0.00 0.00
012 3.54 3.57 3.83 3.58 4.07

1.0 mg/kg 013 4.07 5.02 4.60 5.03 4.68
014 4.06 3.99 4.53 4.53 5.28
015 0.00 0.00 0.00 0.00 2.50
020 2.98 3.10 2.45 1.98 0.00

2.0 mg/kg 016 2.67 2.60 NT 2.61 0.00
017 3.51 NT 3.59 —b —
018 1.76 0.00 2.63 1.86 0.00
019 0.00 0.00 0.00 NT 0.00

a NT, not tested.
b —, the subject died.
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apy. Changes in HIV infection status, e.g., changes in CD4� T-
lymphocyte counts, were not observed. However, HIV loads
increased by 0.5 log10 in 7 of the 20 subjects, including 3 of 4
subjects in the cohort that received 1.0 mg of the study drug
per kg (Table 1).

Adverse events were common among the study subjects,
with 16 (80%) of the 20 subjects experiencing some adverse

event during the study period. Six (30%) subjects experienced
SAEs; however, in only one was the SAE believed to be due to
MAb 18B7. One subject died during the follow-up period due
to septic and thrombotic complications associated with a cen-
tral venous catheter, and this adverse event was not related to
the study drug. MAb 18B7 was well tolerated. When MAb
18B7 was given at 1.0 mg/kg, immediate infusion-related my-

FIG. 1. MAb 18B7 concentrations in individual subjects over time grouped by infusion dose. The vertical dashed reference lines at 2 h indicate
the end of the MAb infusion. All of the data for subject 2 and the data for subject 16 after 14 days (336 h) were excluded from the PK analyses
due to high levels of HAMA.
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algias and back pain were observed in two subjects. In addition,
at a dose of 1.0 mg/kg, a single subject developed a transient
urticarial rash at day 7. Mild infusion-related nausea associated
with vomiting was also observed at the 1.0-mg/kg dosing level.
At the 2.0-mg/kg dose, two of four subjects developed notable
infusion-associated back and muscle pain, with one of these
subjects (subject 19) also developing nausea, retching, and
hematemesis, which resulted in a significant decline in the
subject’s hemoglobin level. The same subject subsequently de-
veloped severe intracranial hypertension 71 days after antibody
infusion. The lumbar and cisternal CSF samples were negative
for CrAg, and serum and CSF were negative for MAb 18B7. A
ventricular CSF sample obtained 2 weeks later at the time of
ventriculoperitoneal shunting had a ventricular CrAg titer
of 1:8. All CSF cultures were negative. CD4� T-lymphocyte
counts were declining. This episode of intracranial hyperten-
sion was thought to be a culture-negative relapse of cryptococ-
cal ventriculitis, but an association with MAb 18B7 adminis-
tration could not be conclusively excluded. With this second
SAE, the independent data safety monitoring committee deemed
the 2.0-mg/kg dosing level to have exceeded the predefined
maximum tolerated dose criteria.

Data for one subject receiving the 0.01-mg/kg infusion dose
were excluded from the PK analysis due to high HAMA levels
found prior to study drug infusion that persisted throughout
the study period. MAb 18B7 titers for another subject collected
after 14 days (336 h) were not used due to high HAMA con-
centrations.

Tmaxs ranged from 1 to 24 h, with 2 h (the end of infusion)
being the most frequent Tmax (6 of 19 subjects; Fig. 1). Data for
subjects 2 and 16 were excluded from the noncompartmental

analyses due to the possible influence of their high HAMA
levels (Fig. 2). All values for all concentrations for samples
obtained after 24 h were missing for subject 19, and thus, the
data for this subject were excluded from the calculations of
AUC and AUC-derived parameters (CL, MRT, and Vss) to
avoid potential bias from the extensive extrapolation of the
AUC from 24 h to infinity for this subject. The medians and
ranges of the parameter estimates from the noncompartmental
PK analysis with their ranges are listed in Table 2. Fifty-three
hours was required for MAb 18B7 concentrations to decrease
from their Cmax by half (t1/2obs). This t1/2obs decreased as the
infusion dose increased (Spearman rank correlation [r] �
�0.51; P � 0.02). The MRT for MAb 18B7 molecules within
the body was estimated to be 73 h, giving an MRT-calculated
half-life of 51 h. Vss was 4.7 liters, with a median CL of 0.1
liters � h�1. All 20 subjects underwent lumbar puncture within

FIG. 2. HAMA concentrations in individual subjects over time. HAMA concentrations for the same individual are connected, and those for
subjects 2 and 16 are connected with dashed lines.

TABLE 2. MAb 18B7 parameter estimates from
noncompartmental PK analysis

Noncompartmental
PK parametera

Median
value

Range
(minimum,
maximum)

r a P value

Cmax/dose (liter�1) 0.12 0.032, 0.52 0.24 0.3309
Tmax (h)b 4 1, 24 0.18 0.4664
t1/2obs (h) 53 17, 214 �0.51 0.0244
AUC/dose (h � liter�1) 10.4 1.2, 31 �0.063 0.7973
CL (liter � h�1) 0.096 0.032, 0.85 0.063 0.7973
VSS (liter) 4.7 1.9, 41 �0.10 0.6785
MRT (h) 73 21, 422 �0.42 0.0700

a r, Spearman rank correlation versus dose.
b The mode was 2 h (6 of 19 patients).
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6 h of infusion of the study drug, and no MAb 18B7 was
detected in the CSF of any subject.

There was little change in baseline serum CrAg titers fol-
lowing infusion of lower doses of MAb 18B7 when these titers
were determined in a sequential fashion (i.e., in real time).
However, at doses of 1.0 and 2.0 mg/kg, modest changes in
sequential measurements of the serum cryptococcal latex ag-
glutination titers were observed, but they tended to return to
the baseline measurements by 10 weeks. Minimum postinfu-
sion CrAg titers as a percentage of the baseline concentration
and their geometric means by dose group are listed in Table 3.
Spearman rank correlations found significant negative corre-
lations for the minimum CrAg titer versus Cmax (r � �0.543;
P � 0.0198) and AUC (r � �0.502; P � 0.040). When Spear-
man rank correlations were adjusted for the baseline CrAg
titer by correlating the minimum CrAg titer as a percentage of
the baseline concentration, the correlations with Cmax (r �
�0.393; P � 0.1072) and AUC (r � �0.340; P � 0.1818) were
not significant, although the Cmax correlation with a P value of
0.1072 does not exclude the possibility of an association.

At the conclusion of the study, assays for CrAg titers were
performed with batched serum specimens that had been fro-
zen at �70°C. The CrAg titers in these serum samples were
considerably lower than those obtained in samples tested pre-
viously, and subsequent analysis has revealed a significant de-
cline in measurable serum CrAg levels with time (A. Casade-
vall, personal communication). Finally, the CrAg titers in the
same batched serum specimens were measured by enzyme-
linked immunoabsorption assay, but these results did not cor-

relate well with the CrAg titers determined at the baseline or
follow-up evaluations by the standard latex agglutination assay
(31).

HAMAs were found in three subjects (Fig. 2). One subject
had detectable HAMAs at the baseline, and two other subjects
given 0.5 and 2.0 mg of MAb 18B7 per kg, respectively, devel-
oped detectable HAMAs at day 56. The HAMA was immu-
nologically active because the subject with detectable HAMA
at the baseline had no detectable MAb 18B7 in serum imme-
diately postinfusion or throughout the postinfusion period. In
the other two subjects, the level of MAb 18B7 in serum had
already fallen below the measurable levels at the time that
HAMA was detected.

DISCUSSION

The adjunctive use of antibody therapy in patients with cryp-
tococcosis combines significant promise with considerable
challenges. Specific antibody is currently the only reagent that
can potentially assist in the removal of cryptococcal polysac-
charide with its many untoward immunological effects (51). In
animal models of cryptococcal infection, passive antibody ad-
ministration has been shown to rapidly clear polysaccharide
from serum through the formation of antigen-antibody com-
plexes that are deposited in the liver (28). There were two
theoretical concerns regarding the safety of antibody therapy
for cryptococcosis during the development of the clinical trial
design. First, antibody-mediated phagocytosis of C. neofor-
mans has been associated with an increase in the level of HIV

TABLE 3. Serum CrAg titers by latex agglutination

Cohort Subject
no.

Log2 serum CrAg titer Minimum
% basea

Geometric
meanb

Baseline Day 1 Day 7 Day 14 Day 28 Day 56 Day 84

10 �g/kg 001 12 10 10 10 12 11 10 25 35
002 10 10 12 12 10 12 12 100
003 3 4 4 4 6 9 2 50

20 �g/kg 004 12 11 12 12 12 12 10 25 40
005 6 7 7 7 9 7 NDc 200
006 11 12 ND ND 8 10 10 12.5

200 �g/kg 007 2 0 0 0 0 1 LEd 50 10
008 8 LE LE 7 6 6 3 3.1
009 13 14 14 12 14 10 9 6.3

500 �g/kg 010 13 14 13 14 13 14 12 50 25
011 5 3 3 4 5 4 3 25
012 10 9 11 9 7 7 8 12.5

1.0 mg/kg 013 7 7 5 4 5 6 5 12.5 7
014 5 3 3 1 4 3 5 6.3
015 5 4 3 3 3 7 5 25
020 7 4 5 1 3 ND ND 1.6

2.0 mg/kg 016 6 6 LE 4 4 5 5 25 12
017 7 ND ND 6 —e — — —
018 9 5 7 7 6 5 4 3.1
019 11 10 9 8 10 10 10 12.5

a Minimum % base, the minimum serum CrAg titer achieved as a percentage of the baseline serum CrAg titer.
b Geometric mean of the minimum serum CrAg titer as a percentage of the baseline serum CrAg titer.
c ND, not done.
d LE, laboratory error.
e —, the subject died.
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expression in monocytic cells, raising concern that antibody
therapy could exacerbate HIV infection in patients with AIDS-
related cryptococcosis (17). Second, antibody administration to
mice with established cryptococcal infection was associated
with cardiovascular collapse and death in some strains of mice
as a result of the release of platelet-activating factor (29, 49).
Experiments with animals revealed that this toxicity was a
function of the antibody dose and could be minimized by slow
antibody administration. Consequently, the major goal of this
study was to establish the safety of antibody administration in
patients with cryptococcal antigenemia. To that end, this study
was designed to use a cautious dose-escalation regimen begin-
ning with very low doses of antibody. Fortunately, the major
concern of cardiovascular collapse documented in murine
studies was not observed in the human subjects. However, we
did note that 7 of 20 (35%) subjects had a 0.5 log10 increase in
HIV load, including 3 of 4 subjects in the 1.0-mg/kg dosing
cohort. This may reflect an in vivo correlate of the enhanced
HIV replication noted in monocytes undergoing antibody-me-
diated phagocytosis (17). The observed increases in HIV loads
were modest, ranging from 0.53 to 2.5 log10. The results sug-
gest that this murine-derived anticryptococcal antibody can
safely be given at doses up to 1.0 mg/kg to patients with cryp-
tococcal antigenemia.

The MAb 18B7 used as a study drug is a murine immuno-
globulin G1 antibody which had been shown to mediate pro-
tection in mouse models of experimental infection (5). The
antibody binds to C. neoformans capsular glucurunoxyloman-
nan, which is the primary component of the capsular polysac-
charide. Although mouse-human chimeric antibodies have
been available for some time, the decision to use a murine
MAb was based on persistent uncertainty about the efficacy of
the mouse-human chimeric antibodies and concerns regarding
possible changes in the specificities of engineered molecules
(32). Our observation that about 10% of this patient popula-
tion developed HAMAs reassures us that host immune re-
sponses will not limit the utility of this agent in the majority of
the target population, although with repeated dosing, it is
probable that HAMAs will evolve more often. However, be-
cause HAMA has a relatively late onset, the activity of MAb
18B7 and its effects on the course of cryptococcal meningitis
should not be impaired during that critical early period of
infection when rapid control of the disease process is essential
(47).

The assessment of the pharmacodynamics of MAb 18B7 in
humans proved to be difficult and reflects the complex inter-
actions that must occur following infusion of a specific anti-
body into a host with antigen in both the serum and the tissue
compartments. Animal models have shown that antibody binds
to antigen in serum and results in rapid uptake by reticuloen-
dothelial cells, which occurs in a background of diffusion of the
murine antibody into tissue, antibody binding to tissue antigen,
and slow clearance of antibody through normal metabolic
mechanisms. Somewhat surprisingly, MAb 18B7 was distrib-
uted in a volume that is twice that of plasma. This implies that
MAb 18B7 leaves the intravascular space rapidly and is likely
bound to tissue-associated antigen. While serum CrAg levels
declined following antibody administration, these levels re-
turned toward the baseline values at 12 weeks, probably indi-
cating a large residual reservoir of CrAg. The levels of MAb

18B7 measured and the lack of immunogenicity of the MAb at
the doses used support repeated dosing of MAb 18B7, which
would lead to higher levels and possibly more rapid and lasting
effects on CrAg.

In summary, antibody therapy for cryptococcal meningitis
was well tolerated up to doses of 1 mg/kg without evidence of
the types of toxicity that were suggested by in vitro or animal
studies. At the higher antibody doses, we observed evidence of
a pharmacological effect, as demonstrated by a reduction in the
serum CrAg titers. These results are sufficiently promising to
justify continued development of this approach for the man-
agement of fungal diseases, particularly cryptococcal meningi-
tis, in which CrAg appears to play such a critical role in the
pathophysiology of the disease. Finally, considering the pres-
ent effort in the historical setting of the development of anti-
microbial therapy, we note that this study represents two ad-
vances in human therapy: application of MAb therapy to a
human mycosis and therapy which intends to mediate a bio-
logical effect through the clearance of a microbial antigen.
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