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The DHX33 RNA Helicase Promotes mRNA Translation Initiation

Yandong Zhang,b Jin You,b Xingshun Wang,b Jason Webera

ICCE Institute, Department of Internal Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri, USAa; Department of
Biology, South University of Science and Technology of China, Shenzhen, Guangdong, People’s Republic of Chinab

DEAD/DEAH box RNA helicases play essential roles in numerous RNA metabolic processes, such as mRNA translation, pre-
mRNA splicing, ribosome biogenesis, and double-stranded RNA sensing. Herein we show that a recently characterized DEAD/
DEAH box RNA helicase, DHX33, promotes mRNA translation initiation. We isolated intact DHX33 protein/RNA complexes in
cells and identified several ribosomal proteins, translation factors, and mRNAs. Reduction of DHX33 protein levels markedly
reduced polyribosome formation and caused the global inhibition of mRNA translation that was rescued with wild-type DHX33
but not helicase-defective DHX33. Moreover, we observed an accumulation of mRNA complexes with the 80S ribosome in the
absence of functional DHX33, consistent with a stalling in initiation, and DHX33 more preferentially promoted structured
mRNA translation. We conclude that DHX33 functions to promote elongation-competent 80S ribosome assembly at the late
stage of mRNA translation initiation. Our results reveal a newly recognized function of DHX33 in mRNA translation initiation,
further solidifying its central role in promoting cell growth and proliferation.

Mammalian cells maintain tight control of global mRNA
translation through the production of ribosomes (1, 2); de-

regulation in mRNA translation is frequently found in human
diseases (3–6) and is regarded as one of the many factors contrib-
uting to cancer development (7–9).

Most eukaryotic protein translation initiation occurs by an or-
dered assembly of a preinitiation complex on the 5= cap of mRNA
(10). After mature mRNA is transported into the cytosol, the dis-
tinct 5= cap of mRNA is recognized and bound by a large protein
complex comprising eukaryotic initiation factor 4E (eIF4E),
eIF4A, and eIF4G as well as poly(A)-binding protein (PABP) (1,
11, 12). These factors coordinately prevent mRNA degradation
while priming mRNAs for translation initiation.

The initial step in mRNA translation involves formation of a
ternary complex between eIF2-GTP, Met-tRNA interference, and
small 40S ribosomal subunits. This process is stimulated by the
translation initiation factors eIF1, eIF3, eIF4F, and eIF5 (13). This
large complex, termed the 43S preinitiation complex, attaches to
the activated 5= cap of mRNA. Bound RNA helicases are respon-
sible for unwinding various secondary structures in mRNA as the
complex scans along the mRNA from the 5= end to the 3= end until
it finds the initiation codon. The 60S large ribosome subunit then
joins with the 40S subunit to form an 80S ribosome under guid-
ance from eIF5B-GTP (2, 13). eIF2-GTP and eIF5B-GTP are then
hydrolyzed into their GDP forms to promote the assembly of the
functional initiation complex (14). The detailed mechanism of
how elongation-competent 80S ribosomes are assembled prior to
initiation or what triggers initiation is not well understood.

Mammalian mRNAs often contain highly structured untrans-
lated regions (UTRs) at the 5= ends of their open reading frame
sequences that must be unwound to allow ribosome recruitment
and scanning. Not surprisingly, unwinding of secondary struc-
tures in the mRNA 5=UTR involves the activity of specialized RNA
helicases (15). eIF4A and DDX3 are common RNA helicases
shared between mammals and Saccharomyces cerevisiae yeast cells,
while DHX29 appears to be a mammal-specific RNA helicase im-
portant in unwinding highly structured mRNA sequences (16). In
the study described in this report, we identified a new RNA heli-
case, DHX33, involved in translation initiation.

Human DHX33 belongs to the DEAH box family of ATP-de-
pendent RNA helicases, a large family of proteins thought to be
involved in various aspects of RNA metabolism (17). Many of
these RNA helicases remain poorly studied. Recently, we and
other groups have identified DHX33 to be an important partici-
pant in rRNA biogenesis and in mediating inflammasome forma-
tion in response to extracellular double-stranded RNA (dsRNA)
(18–20). Oncogenic Ras alleles and downstream components of
the phosphatidylinositol 3-kinase/AKT/mTOR pathway induce
DHX33 protein expression, indicating the potential importance
for DHX33 in relaying cell growth regulation signals to the trans-
lational machinery (21).

We found DHX33 localized in both the cytosol and the nucleus
in several established human cancer cell lines. Furthermore, en-
dogenous DHX33 interacted with the monoribosome, eIF3 com-
plex, DDX3, and mRNAs, implying that it may also be involved in
processes other than nucleolar ribosome production. Through
polysome profiling and mRNA translation studies, we found that
wild-type DHX33 promotes mRNA translation initiation in a
mechanism that requires its helicase activity. Thus, our data indi-
cate that DHX33 promotes mRNA translation initiation by pro-
moting elongation-competent 80S ribosome assembly.

MATERIALS AND METHODS
Cell culture. T47D and HCC1806 breast cancer cell lines were maintained
in RPMI 1640 medium containing 10% fetal bovine serum (FBS), 2 mM
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L-glutamine, streptomycin, and penicillin. SKBR3, HeLa, BT549, and
MDAMB361 cells were maintained in Dulbecco’s modified Eagle’s me-
dium (DMEM) containing 10% FBS, streptomycin, and penicillin.
HEK293T cells were maintained in DMEM with 10% FBS, streptomycin,
and penicillin.

Lentivirus production. The sequences of short hairpin RNAs
(shRNAs) targeting human DHX33 (shDHX33) are as follows (5= to 3=): GC
TCAATATCTATCGGACCTT for shDHX33 number 1 (#1-shDHX33), CT
CGGGAAACTTCCTCTGAAA for #2-shDHX33, GCAATTTCAGACTC
TTTGCTT for #3-shDHX33, GCTATCGCAAAGTGATCATTT for #4-
shDHX33; and CATTTCCTTTAGAACCCAAAT for #5-shDHX33. A
pLKO.1 vector carrying shRNA for a scrambled sequence (shScrambled)
was purchased from Addgene. A series of deletion mutants of DHX33 was
generated, using a QuikChange site-directed mutagenesis kit (Strat-
agene), according to the primers designed by Stratagene online software.
To produce knockdown virus, HEK293T cells were transfected with
pLKO.1-shRNA, pCMV-VSV-G, and pHR8.2�R, which were used for
virus packaging, by use of the Lipofectamine 2000 reagent (Life Technol-
ogies). To produce virus overexpressing DHX33, pLVX-DHX33 (the wild
type or a K94R mutant) was cotransfected with pCMV-VSV-G and
pHR8.2�R into HEK293T cells. Culture supernatants were harvested at
24 h and 48 h after transfection and then centrifuged at 2,000 rpm for
5 min.

Tandem affinity purification and nano-liquid chromatography
Fourier transform MS analysis. DHX33 with a 3� FLAG tag and a
streptavidin tag was affinity purified from cytosolic lysates of HCC1806
cells. Specifically, cytosolic lysates were first passed through a StrepTactin
column. After washing and elution, crude DHX33 complexes were then
incubated with anti-FLAG M2 antibody-coated beads and immunopuri-
fied. Mass spectrometry (MS) was performed using the system described
previously (22). The survey scans (m/z 350 to 2,000) were acquired using
Fourier transform ion cyclotron resonance MS with a resolution of
100,000 at m/z 421.75 and a target value of 500,000. The 10 most intense
ions from survey scans were isolated in the ion trap and analyzed after a
target value of 10,000 was reached. The MS/MS isolation width was 2.5
Da, and the normalized collision energy using wide band activation was
35%. The electrospray ionization was accomplished with a spray voltage
of 2.2 kV without sheath gas.

Immunoblotting and immunoprecipitation. Whole-cell lysates were
prepared by incubation with whole-cell lysis buffer that included 0.5%
NP-40 and 1% SDS and that was supplemented with Halt protease and
phosphatase inhibitors (Sigma). Lysates were cleared by centrifugation,
and the protein concentration was tested by a DC assay (Bio-Rad). Lysates
were boiled with SDS sample buffer, separated by SDS-PAGE, and trans-
ferred to a polyvinylidene difluoride membrane (Millipore). Membranes
were blocked in 5% nonfat dry milk plus Tris-buffered saline–Tween 20
(TBS-T; 10 mmol/liter Tris-HCl [pH 7.4], 150 mmol/liter NaCl, 0.1%
Tween 20) buffer and incubated with primary antibodies diluted in block-
ing buffer at 4°C overnight. The blots were washed with TBS-T buffer and
incubated with horseradish peroxidase-conjugated secondary antibodies
(1:10,000; GE Healthcare) in blocking buffer at room temperature. Im-
mune complexes were visualized with an enhanced chemiluminescence
kit (GE Healthcare). Primary antibodies for immunodetection were
sourced as follows: antitubulin (goat; Santa Cruz), anti-DHX33 (Novus),
anti-GAPDH (Bethyl), anti-FLAG (Sigma), anti-DDX3 (Bethyl), anti-
eIF3H and anti-eIF3G (Bethyl), anti-rpL7, anti-rpL26, anti-rpL3, and an-
ti-rpS2 (Santa Cruz), and anti-eIF2A (Cell Signaling)

Polysome profiling. Cells (3 � 106) were treated with 10 �g/ml cyclo-
heximide for 5 min before they were harvested and counted. Cells were
then subjected to cytoplasmic ribosome fractionation as described previ-
ously using a sucrose density gradient system ranging from 7% to 47%
(Teledyne Isco). Fractions were collected, and protein for Western blot
analysis was precipitated with 10% trichloroacetic acid (TCA). RNA was
isolated from monosome, disome, and polysome fractions using the
TRIzol reagent (Life Technologies) according to the manufacturer’s spec-

ifications. Reverse transcription (RT) reactions were performed using a
SuperScript III first-strand synthesis system (Life Technologies) with an
oligo(dT) primer. Real-time PCR was performed on a StepOnePlus sys-
tem using SsoFast EvaGreen supermix (Bio-Rad) to amplify GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) and DDX5 from mono-
some/disome and polysome fractions. The numbers of transcripts per
fraction were calculated from a standard curve generated from serial di-
lutions of a cDNA sample with a known total RNA amount. The GAPDH
and DDX5 mRNA distribution per fraction was calculated as a percentage
of the total number of transcripts in all collected fractions.

[35S]methionine pulse-chase labeling. Cells were starved in cysteine-
and methionine-free medium for 4 h and then pulsed with [35S]methio-
nine (50 �Ci/ml)-containing medium for 15 min before being harvested.
The cells were lysed, and supernatants were precipitated with trichloro-
acetic acid at a concentration of 10%. Protein pellets were subsequently
dissolved with 1% SDS, and the protein concentration was analyzed. An
equal amount of protein lysates (25 �g) was loaded onto an SDS-poly-
acrylamide gel, and the gel was transferred to a polyvinylidene difluoride
membrane for autoradiography and Coomassie blue staining. The sam-
ples were then analyzed for radioactivity by liquid scintillation counting.
The data presented were normalized on the basis of an equal amount of
protein in each sample.

Immunofluorescence. Cells were fixed with 10% formalin–10%
methanol. Cells were then incubated with mouse anti-FLAG (Sigma) at a
1:1,000 dilution. Goat anti-mouse fluorescein isothiocyanate-immuno-
globulin was applied to facilitate the visualization of FLAG-tagged
DHX33 protein (FLAG-DHX33). To mark cell nucleoli, rabbit anti-
nucleophosmin (NPM) was used at a dilution of 1:100, followed by incu-
bation with goat anti rabbitrhodamine-immunoglobulin.

Heterokaryon assay. HeLa cells (2 � 105) were seeded onto glass
coverslips and transfected with plasmids. NIH 3T3 cells (6 � 105) were
seeded onto the HeLa cells at 24 h posttransfection. Cocultures were then
incubated for 30 min with cycloheximide (100 �g/ml), followed by incu-
bation with 50% polyethylene glycol 2000 in phosphate-buffered saline
for 105 s. Cocultures were incubated with Dulbecco’s modified Eagle’s
medium containing cycloheximide (100 �g/ml) for an additional 4 h.
Heterokaryons were fixed and stained with a mouse anti-FLAG antibody,
followed by rhodamine X-conjugated anti-mouse immunoglobulin
(Pierce). Nuclei were stained with DAPI (4=,6-diamidino-2-phenylin-
dole). Fluorescent signals were detected with a fluorescence microscope.

Bioluminescence imaging. Cells were plated in a 6-well tissue dish
and transfected with pGL3-5=-UTR-F-luc-3=-UTR-GAPDH. Twenty-
four hours later, the cells were replated in 96-well plates, D-luciferin was
added, and the plate was imaged with an IVIS-100 instrument. These cells
were also harvested for total RNA extraction and analyzed by RT-PCR for
determination of firefly luciferase (F-luc) transcript levels. To analyze
firefly luciferase mRNA levels, the following other primers were used:
firefly luciferase forward primer 5=-CCCTGGTTCCTGGAACAATT-3=
and firefly luciferase reverse primer 5=-GCAACCCCTTTTTGGAAACG-
3=.

Protein-RNA coimmunoprecipitation assays. Cells stably expressing
the FLAG-tagged DHX33 were seeded in 10-cm plates at 2 � 106 cells per
plate and incubated overnight. Cells were then lysed in polysome lysis
buffer. Insoluble material was removed by centrifugation, and lysates were
normalized by the protein concentration and incubated with FLAG M2-
agarose for 2 h at 4°C with rotation. Immunoprecipitates were then
washed 6 times with polysome lysis buffer. A plasmid carrying the se-
quence for firefly luciferase was spiked in as an internal control. Beads
were then divided into portions for immunoblotting and RNA extraction.
For RNA extractions, a NucleoSpin RNA II kit (Clontech) was used. The
isolated RNA was used as a template for cDNA synthesis using oligo(dT)
primers and analyzed by quantitative PCR. The mRNA abundance in each
sample was normalized to that of the spiked-in luciferase. For Western
blotting, sample buffer was added to the beads, which were analyzed as
described above.
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The following primer sets were used in the PCRs: hGAPDH-FP (5=-C
CCACTCCTCCACCTTTGAC-3=) and hGAPDH-BP (5=-CATACCAG
GAAATGAGCTTGACAA-3=), hDDX5-FP (5=-ACCAAAACAGGCACA
GCATACA-3=) and hDDX5-BP (5=-TACCCCTGGAACGACCTGAA-
3=), hDHX8-FP (5=-TAGTAACTTGCTGCGTCTCATACAAA-3=) and
hDHX8-BP (5=-GGTCCGAACAGAAGGGTTGTC-3=), hDDX21-FP (5=-
CCATGATCTTGCAGTGCTCAA-3=) and hDDX21-BP (5=-GCGGTAGG
TACATCAAAGCAAAC-3=), and hUBF-FP (5=-TGACCCCTTATTTCC
GCTTC-3=) and hUBF-BP (5=-GTTAGGTCCAGGTTGCTCATC-3=).

RESULTS
DHX33 protein reduction reduces the ratio of polysomes/
monosomes in established breast cancer cell lines. We previ-
ously identified DHX33 to be a key regulator of nucleolar ribo-
some biogenesis (20). However, the mechanism behind DHX33’s
ability to promote cell growth remained unanswered. We sought
to determine how DHX33 might integrate with the ribosome ma-
chinery to drive mRNA translation. In order to study the require-
ment for DHX33 in regulating cytosolic ribosome levels and
global mRNA translation, we initially performed ribosome profil-
ing following DHX33 knockdown. Breast cancer cell lines BT549,
HCC1806, and MDAMB361 and human primary fibroblast BJ
cells were each infected with lentiviruses encoding shScrambled as
a control and two different shRNAs that target endogenous
DHX33. Cells were then subjected to cytosol isolation and contin-
uous ribosome profiling. A reduction in the amount of DHX33
resulted in the accumulation of a significantly larger amount of
80S monoribosomes compared with that obtained with the use of
a reduced amount of DHX33, while it markedly inhibited the for-
mation of total polysomes (Fig. 1A to D). There was a significant
decrease in the ratio of polysomes/monoribosomes compared to
that for the control (Fig. 1A to D). To eliminate the possibility that
the 40S and 60S subunits reassociated under low-salt conditions
(130 mM KCl), we repeated the ribosome profiling with high-salt
buffer (1 M NaCl) after DHX33 knockdown in HCC1806 cells. As
shown in Fig. 1E, we observed that DHX33 deficiency again
caused 80S ribosomes to accumulate. In all instances, total 80S
monoribosome levels were elevated markedly or slightly (Fig. 1A
to D). This is in stark contrast to the results of other studies, where
the knockdown of ribosome biogenesis proteins resulted in a con-
comitant reduction in cytosolic 80S ribosome levels (23, 24). Our
decreased ratio of polysomes/monoribosomes suggests a signifi-
cant flaw in translation initiation following DHX33 knockdown
(25, 26).

DHX33 promotes protein synthesis through its RNA heli-
case activity in established cancer cell lines. To determine
whether a DHX33 reduction would affect overall protein output,
we performed [35S]methionine pulse-label analysis to measure the
rate of new total cellular protein synthesis. We introduced five
different shRNAs to knock down DHX33 in HCC1806, BT549,
and MDAMB361 cells. Equal numbers of cells were pulsed with
[35S]methionine to radiolabel newly synthesized proteins, the
proteins were extracted, and the incorporation of [35S]methio-

FIG 1 DHX33 knockdown markedly reduces the ratio of polysomes/mono-
somes. Polysome profiling was performed on HCC1806 cells, BT549 cells, BJ
primary fibroblasts, and MDAMB361 cells after lentiviral infection by
DHX33-specific shRNA. shScrambled was used as a control. (Left) Polysome
profiles; (right) protein knockdown efficiency for each cell line analyzed by
Western blotting. Control and knockdown samples were aligned on the basis
of the peak position of the 40S ribosome and labeled with distinct colors. (A)

Black line, shScrambled (shSCR); red line, #2-shDHX33; blue line, #4-
shDHX33. (B) Blue line, shScrambled; red line, #4-shDHX33. (C and D) Black
line, shScrambled; red line, #2-shDHX33; blue line, #4-shDHX33. (E) Poly-
some profiles were determined with 1 M NaCl after HCC1806 cells were in-
fected with lentivirus encoding #2-shDHX33. Blue line, shScrambled; red line,
#4-shDHX33.
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nine was measured. DHX33 knockdown significantly reduced the
level of protein synthesis to various extents in all cell lines tested
(Fig. 2).

To determine whether DHX33 RNA helicase activity was re-
quired to promote mRNA translation, we performed DHX33
knockdown and rescue experiments. First, we generated a lucifer-
ase reporter system to analyze the global protein translational ef-
ficiency. Cells were transiently transfected with this firefly lucifer-
ase (F-luc) reporter after DHX33 knockdown. F-luc activity was
monitored by RT-PCR after normalization of F-luc transcript lev-
els. As shown in Fig. 3A and B, we found that the translational
efficiency of mRNA was greatly reduced in DHX33 knockdown
cells. We then stably overexpressed an shRNA-resistant wild-type
or helicase-dead DHX33 mutant and then knocked down endog-
enous DHX33 protein levels (Fig. 3C and D). The shRNA-resis-
tant DHX33 was cloned from a mouse. There is 95% similarity
and 91% sequence identity between the primary amino acid se-
quences of mouse DHX33 and human DHX33, and we have pre-
viously successfully used it for knockdown rescue assays. Cells
were then transfected with firefly luciferase reporter plasmids and
analyzed for mRNA translational efficiency. Only the wild-type
DHX33 and not the helicase-dead mutant DHX33 was able to
rescue the deficiency in mRNA translation (Fig. 3D). Wild-type
DHX33 has been shown to function in ribosome biogenesis, mak-
ing it difficult to determine whether the observed rescue effect was
indirectly due to gains in ribosome biogenesis. Thus, we repeated
this experiment using a DHX33 mutant lacking residues 1 to 80

(DHX33 �1– 80, also referred to as the D1 mutant), which is re-
tained in the cytosol and does not partake in nucleolar processes.
The N terminus of DHX33 contains a bipartite nuclear localiza-
tion signal; deletion of this region (residues 1 to 80) causes the D1
mutant to remain in the cytosol (see Fig. 8). As shown in Fig. 3E to
G, the D1 mutant of DHX33 was able to markedly rescue the loss
of translational activity in cells in which DHX33 was knocked
down but failed to rescue the defect in ribosome RNA transcrip-
tion, as analyzed by determination of 47S pre-rRNA levels. Hence,
the separation of DHX33 functions indicated that cytosolic
DHX33 promotes protein translation independently of its activity
in nucleolar ribosome RNA production.

DHX33 proteins are localized in the cytosol of multiple es-
tablished cancer cell lines. We have previously shown that
DHX33 primarily localizes in the nucleolus of several cell lines.
These initial experiments were performed using immunofluores-
cence to detect endogenous DHX33 in fixed cells. While this tech-
nique showed that DHX33 localization was predominantly nucle-
olar, this technique is hindered by its inability to detect lower
levels of proteins in more diffuse subcellular compartments, espe-
cially given the strong DHX33 staining of the dense nucleolus. As
such, we sought to more accurately measure cytosolic DHX33
using a biochemical analysis. Isolating cytosolic and nuclear sub-
cellular fractions, we were able to detect DHX33 in both subcellu-
lar compartments of several established cell lines. As shown in Fig.
4A, HeLa and SKBR3 cells exhibited the largest amount of DHX33
in the cytosol, while T47D cells displayed very little cytosolic

FIG 2 DHX33 is required for new protein synthesis. (A) Five different shRNAs (#1-shDHX33 to #5-shDHX33) were delivered into HCC1806, BT549, and
MDAMB361 cells by use of a lentiviral vector. DHX33 protein levels were analyzed by Western blotting to determine the knockdown efficiency. scr, shScrambled.
The numbers between the gels are fold changes. (B) A 35S incorporation assay was performed for the above-mentioned cells infected by use of a lentiviral vector;
the radioactivity from each sample was analyzed by scintillation counting after normalization for equal total cellular protein levels. Quantitation data are shown.
Bars represent the standard deviations from three separate experiments. P was �0.005 for all of the DHX33 knockdown samples compared to the results for the
shScrambled control.
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FIG 3 The nucleoside triphosphatase activity of DHX33 promotes mRNA translation. (A) HCC1806 cells were infected with lentiviruses encoding shDHX33or
shScrambled (shSCR) as a control. Equal numbers of cells were then transiently transduced with pGL3-5=-UTR-F-luc-3=-UTR-GAPDH. F-luc activity was
analyzed by IVIS imaging. Western blot analysis was performed to determine the levels of knockdown of the DHX33 protein. (B) Quantitation data for F-luc
activity after normalization of the luciferase transcript levels in each sample. The data shown are the results from three independent experiments, and bars
represent standard deviations. P was �0.001 for DHX33 knockdown samples compared to the results for the shScrambled control. (C) HCC1806 cells were
infected with lentiviruses encoding wild-type (WT) DHX33, the DHX33 K94R mutant, or the empty vector (EV). Cells were then infected with lentiviruses
encoding shDHX33 to knock down endogenous DHX33. Western blot analysis was performed to determine the levels of knockdown of the DHX33 protein as
well as the level of overexpression of DHX33 (wild-type and K94R mutant DHX33). (D) Equal numbers of cells were then transiently transduced with
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DHX33. We also performed cytosolic and nuclear fractionation
on nontransformed BJ primary fibroblasts and analyzed the
amounts of DHX33 protein expressed in the cytosolic and nuclear
fractions of cells. The DHX33 protein was expressed at levels

nearly 50-fold higher in the nucleus than in the cytosol of BJ cells,
a nuclear expression/cytosol expression ratio that was much
higher than that in HeLa and SKBR3 cancer cell lines (Fig. 4B).
The higher cytosolic levels of DHX33 in some cancer cell lines

pGL3-5=-UTR-F-luc-3=-UTR-GAPDH. F-luc activity was analyzed by IVIS imaging. The F-luc activity of each cell sample, after normalization of the F-luc
transcript levels, is shown. Data represent the results from three independent experiments, and bars represent standard deviations. (E) HCC1806 cells were
infected with lentiviruses encoding wild-type DHX33, the DHX33 �1– 80 mutant (the D1 mutant), or the empty vector. Cells were then infected with lentiviruses
encoding DHX33-specific shRNA to knock down endogenous DHX33. Western blot analysis was performed to determine the levels of knockdown of the DHX33
protein as well as the overexpression of DHX33 (wild-type and mutant D1 DHX33). (F) Equal numbers of cells were then transiently transduced with
pGL3-5=-UTR-F-luc-3=-UTR-GAPDH. F-luc activity was analyzed by IVIS imaging. The F-luc activity of each cell sample, after normalization of the F-luc
transcript levels, is shown. Data represent the results from three independent experiments, and bars represent standard deviations. (G) Cells were then harvested;
total RNA was isolated and analyzed by quantitative RT-PCR for 47S pre-rRNA levels. The bar graph shows 47S rRNA levels after normalization to the amount
of total RNA for each sample, and bars represent standard deviations from three independent experiments.

FIG 4 DHX33 participates in nucleolar/cytoplasmic shuttling. (A) T47D, HCC1806, SKBR3, and HeLa cells were fractionated into cytosolic and nuclear
fractions, and the DHX33 protein levels in each fraction were analyzed by immunoblotting. SOD1 was used as a cytosolic marker, and lamin A/C was used as a
nuclear marker. (B) Human primary fibroblast BJ cells were fractionated into cytosolic and nuclear fractions, and approximately 100 �g each of the cytosolic and
nuclear extracts was loaded onto an SDS-polyacrylamide gel for Western blot analysis using antibodies to the indicated proteins. (C) HeLa cells were transiently
transfected by pLVX carrying FLAG-tagged wild type-DHX33. At 24 h posttransfection, NIH 3T3 cells were seeded onto these HeLa cells, and the cells were
cocultured in the presence of cycloheximide. The cells were then treated with polyethylene glycol to fuse neighboring cells. Indirect immunofluorescence was
performed with antibodies recognizing DHX33 to visualize DHX33 protein expression in mouse donor cells (m) and human recipient cells (h). DHX33 staining
is red, and the blue DAPI staining demarcates human and mouse nuclei (dominated by heterochromatin). The heterokaryon formed between two mouse cells
and a single human cell is outlined in white. DIC, differential interference contrast.
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might indicate that DHX33 contributes to the rapid proliferation
of HeLa and SKBR3 cells, although in the case of T47D cells, this
localization is not requisite for proliferation. However, these ex-
periments were performed on pools of asynchronously growing
cells, where DHX33 localization might be more dynamic than
anticipated. Many nucleolar proteins are known to shuttle be-
tween the nucleolus and cytosol in a regulated manner. To inves-
tigate whether DHX33 participates in this shuttling mechanism,
we performed a heterokaryon shuttling assay. DHX33 was first
transfected into HeLa cells, NIH 3T3 cells were then seeded onto
HeLa cells, and the cells in the mixture of neighboring HeLa and
NIH 3T3 cells were fused together by polyethylene glycol in the
presence cycloheximide (to prevent the synthesis of new proteins
in the recipient NIH 3T3 cells). We were able to visualize the
nucleolar localization of DHX33 in NIH 3T3 cells, indicating that
DHX33 was able to actively move from the HeLa nucleolus
through the NIH 3T3 cytosol and into the NIH 3T3 nucleolus
(Fig. 4C).

DHX33 cosediments with monosomes. Having shown a re-
quirement for DHX33 in cytosolic ribosome function, we next
sought to determine whether DHX33 associated with cytosolic
ribosomes. We performed sucrose gradient fractionations of three
established cancer cell lines. This fractionation technique allowed
us to identify 40S, 60S, and 80S ribosome subunit and polysome
fractions on the basis of continuous monitoring of the sucrose
gradient at a wavelength of 254 nm following ultracentrifugation.
As shown in Fig. 5, we observed DHX33 expression in fractions
that also contained 40S and 60S subunits as well as 80S mono-
somes. We also probed for the distribution of rpS2 as a marker for
the small 40S ribosome subunit protein and rpL3 as a marker for
the 60S large ribosome subunit protein, as well as that of eIF2A,
eIF4AII, and eIF3G as mRNA translation initiation factors. As
expected, eIF2A, eIF4AII, and eIF3G primarily resided in RNP
complexes and monosome fractions but not in the heavier poly-
ribosome fractions (Fig. 5). Importantly, the same distribution
pattern held true for all three cell lines tested (Fig. 5), indicating

FIG 5 DHX33 cosediments with ribosome subunits and monosomes. Approximately 3 � 106 cells each of HCC1806, SKBR3, and HeLa cells were centrifuged
over a sucrose gradient for polysome profiling using a continuous 254-nm monitoring system to detect RNA across the gradient. Fractions were collected and
TCA precipitated. Proteins that precipitated from the fractions were analyzed by Western blotting for antibody to each of the indicated proteins.
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that DHX33 associated with individual ribosome subunits and
monosomes but not polysomes in the cytosol.

Identification of novel cytosolic DHX33 binding partners. In
an effort to identify cytosolic components of a DHX33 protein

complex, we constructed a double-tagged DHX33 for affinity pu-
rification. In this setting, we engineered DHX33 with an N-termi-
nal triple FLAG epitope tag and a C-terminal streptavidin tag (Fig.
6A). Mass spectrometry was performed to identify DHX33 inter-

FIG 6 DHX33 associates mRNA translation initiation factors and ribosomes. (A) Experimental flowchart for tandem affinity purification of DHX33 from
cytosolic extracts doubly tagged with 3� FLAG at the N terminus and streptavidin (Strep) at the C terminus. (B) Proteins identified by MS analysis. Ribosomal
proteins and mRNA translation initiation factors were detected in the DHX33 immunoprecipitates. None of these proteins were detected in precipitates from the
sample transfected with lentiviruses encoding the empty vector. (C) HCC1806 cells were transduced with pCMV-3�FLAG-DHX33, and cells transfected with
lentiviruses encoding the empty vector were used as a negative control. Cell lysates were then immunoprecipitated with anti-eIF3G or anti-FLAG antibodies or
with IgG as a control and then immunoblotted with the indicated antibody to detect an association between DHX33 and eIF3G. (D and E) rpL27, rpL7, and rpL26
were found to be coimmunoprecipitated with FLAG-DHX33 in HCC1806 cells. HCC1806 cells were transfected by pCMV-3�FLAG-DHX33; cells transfected
with lentiviruses encoding the empty vector were used as a negative control. Cell lysates were then immunoprecipitated with anti-FLAG antibody or with IgG and
immunoblotted with antibodies to the indicated proteins. IB, immunoblotting; IP, immunoprecipitation.
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action partners after tandem affinity purification from BT549 cells
and by use of the empty vector as a negative control. As shown in
Fig. 6B, an array of protein factors involved in mRNA translation
was associated with DHX33, but none was associated with the
sample transfected with lentiviruses encoding the empty vector as
a control. These proteins included translation initiation factor
eIF3G and several large ribosomal subunit proteins. Reciprocal
immunoprecipitation was performed to verify the interaction be-
tween eIF3G and DHX33 (Fig. 6C). We implemented further co-
immunoprecipitation experiments using a FLAG epitope anti-
body and found that DHX33 readily interacted with large
ribosome subunit proteins rpL27, rpL26, and rpL7 but did not
associate with rpS2 (Fig. 6D and E).

We showed earlier that the DHX33 K94R mutant is unable to
rescue the loss of DHX33 in terms of global mRNA translation
restoration (Fig. 3). We hypothesized that this defective DHX33
mutant might also be unable to interact with proteins required for
translation. However, when we immunoprecipitated the FLAG-
tagged DHX33 K94R mutant (20), we found that equal amounts
of ribosomal proteins and initiation factors bound to DHX33
K94R and wild-type DHX33 (Fig. 7A). These proteins included
eIF3H, eIF3G, DDX3, and rPL27. These findings imply that the
helicase activity of DHX33 is not an important factor in regulating
the binding between DHX33 and components of the mRNA

translation machinery. We further performed the coimmunopre-
cipitations with and without RNase to examine whether the inter-
action between DHX33 and the translation machinery was depen-
dent on the existence of RNAs. Treatment with RNase showed that
the interaction of DHX33 with DDX3 and eIF3H occurred inde-
pendently of RNA (Fig. 7B).

DHX33 requires the HA2 domain for binding to eIF3G and
requires HA2 and helicase C domains for binding to rpL26. To
further delineate the interaction domains between DHX33 and
the protein translation factors, a series of DHX33 deletion mu-
tants was constructed (Fig. 8A). The subcellular localization of
each DHX33 deletion mutant was examined by immunofluores-
cence (Fig. 8B). The N-terminal domain of DHX33 contains a
nuclear localization signal, and the DHX33 mutant that was ex-
pressed diffusely in the cytosol was that in which the nuclear lo-
calization signal was deleted (Fig. 8B). Cells were transiently trans-
duced with the DHX33 deletion mutants, and the interaction of
DHX33 with eIF3G and rpL26 was determined by coimmunopre-
cipitation analysis. We found that the formation of DHX33-eIF3G
complexes required the HA2 (helicase-associated 2) domain of
DHX33 (Fig. 8C), while the DHX33-rpL26 complex required both
helicase C and the HA2 domain (Fig. 8D).

DHX33 interacts with mRNAs and promotes translation ini-
tiation of the 80S ribosome. Our earlier results indicated a re-

FIG 7 DHX33 helicase activity and RNA interactions are dispensable for DHX33 complex formation. (A) HCC1806 cells were transduced with pCMV-
3�FLAG-DHX33 (carrying wild-type or K94R helicase-dead mutant DHX33) and the empty vector as a control. Cell lysates were then immunoprecipitated
using an anti-FLAG antibody and immunoblotted with antibodies to the indicated proteins. (B) HCC1806 cells were transduced with pCMV-3�FLAG-DHX33
(wild-type or K94R mutant DHX33) and the empty vector as a control. Cell lysates were then immunoprecipitated by anti-FLAG antibody with 10 �g/ml RNase
and without 10 �g/ml RNase and immunoblotted with antibodies to the indicated proteins.
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quirement for DHX33 in global mRNA translation (Fig. 2). More-
over, these findings were reinforced by our data showing the
formation of cytosolic complexes containing DHX33 and numer-
ous ribosomal proteins and initiation factors and that these com-
plexes cosedimented with 80S monosomes. We next investigated
whether cytosolic DHX33 associated with mRNAs using protein-
RNA coimmunoprecipitation assays. HCC1806 cells were in-
fected with lentiviruses encoding either an empty vector or 3�
FLAG-DHX33. Cytosolic cell lysates were then immunoprecipi-
tated by anti-FLAG antibody, and total RNA was extracted from
the immunoprecipitated complexes (Fig. 9A and B). This tech-
nique allowed us to identify and enrich several mRNAs that were
bound to DHX33. We chose to perform RT-PCRs on a select
number of mRNA transcripts with the primer sets indicated
above. These mRNAs included GAPDH, DDX21, DDX5, UBF,

and DHX8 mRNAs. The GAPDH gene is a housekeeping gene,
while DDX21, DDX5, upstream binding factor (UBF), and DHX8
are all known regulators of ribosome biogenesis or mRNA trans-
lation. We discovered a significant enrichment of these mRNAs
with cytosolic DHX33 irrespective of the length of their 5= UTRs
(Fig. 9C), suggesting that the length of the 5= UTR is not a factor
determining its association with DHX33.

To gain a deeper understanding of the role of DHX33 in the
translation of any one specific mRNA, the steady-state distribu-
tion of GAPDH mRNA, which we found bound to DHX33, was
analyzed by polysome profiling after DHX33 knockdown (Fig.
9D). GAPDH mRNA is efficiently translated and is readily found
in the heavy polysome fractions. As shown in Fig. 9E, in cells
infected with virus encoding shScrambled it was found that �98%
of total GAPDH mRNA was associated with polysomes and about

FIG 8 DHX33 binds to eIF3G and ribosomal proteins through shared protein domains. (A) A series of deletion mutants of DHX33 was generated. Diagrams of
the sequences of a panel of deletion mutants compared to the sequence of wild-type DHX33 are shown. Helic C, helicase C; OB-NTP-bind, oligonucleotide/
oligosaccharide-nucleoside triphosphate binding. (B) HCC1806 cells were transduced with pCMV-3�FLAG-DHX33 carrying the DHX33 wild type and deletion
mutants, and cells transduced with the empty vector were used as a control. Cells were then fixed and incubated with anti-FLAG antibody for immunofluores-
cence detection of mutant DHX33. Anti-NPM was used to mark nucleoli, and DAPI was used to mark nuclei. (C and D) Coimmunoprecipitations were
performed using the deletion mutants after transient transduction of each mutant into HCC1806 cells. (C and D) Initiation factor eIF3G required DHX33
residues 480 to 580 (C), while rpL26 required DHX33 residues 340 to 580 (D).
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FIG 9 DHX33 interacts with numerous mRNAs and promotes translation initiation after 80S ribosome assembly. (A) Experimental flowchart describing the
immunoprecipitation of DHX33 and analysis of its interacting mRNAs. (B) The immunoprecipitated complex was immunoblotted with anti-DHX33 to confirm
that DHX33 is pulled down from cell lysates. (C) FLAG-DHX33 was immunoprecipitated with anti-FLAG antibody, followed by RNA extraction from the
immunoprecipitated complex. Quantitative RT-PCR was performed with a primer set defined for each indicated mRNA with the empty vector control (Vc) or
DHX33 sample. The data listed are the mean results from three separate experiments, and standard errors are shown. nt, number of nucleotides. (D) HCC1806
cells were infected with lentiviruses encoding shScrambled or DHX33-specific shRNA. The efficiency of knockdown of the DHX33 protein was analyzed by
Western blotting with GAPDH as an internal control. (E) Equal cell numbers from the above-mentioned samples were then treated and used for polysome
profiling. Fractions from the polysome profiles were collected, and total RNA was extracted from each fraction. These RNA samples were then converted into
cDNA and used as the templates for analysis of the GAPDH mRNA distribution. The experiment was repeated three times, and a representative distribution
pattern for GAPDH mRNA is shown. (F) Quantitation data from three independent experiments show that DHX33 knockdown redistributes GAPDH mRNA
from heavy polysomes to light polysomes (P � 0.001; n � 3). (G) Quantitation data from three independent experiments show that DHX33 knockdown causes
the accumulation of GAPDH mRNA in 80S monosomes (*, P � 0.005; n � 3). (H to J) Experiments similar to those described above were performed to analyze
the polysome distribution of DDX5 mRNA after DHX33 knockdown. The numbers on the x axis in panel H are fraction numbers.
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35% of GAPDH was associated with heavy polysomes (fractions
19 and 20). Knockdown of DHX33 reduced the amount of
GAPDH mRNA in the heavy polysomes (fractions 18 to 20) (Fig.
9E). The amount of GAPDH mRNA in the heavy fraction of cells
infected with #2-shDHX33 was reduced 2-fold (Fig. 9F), while
#4-shDHX33 (which had a better DHX33 knockdown efficiency
than #2-shDHX33 [Fig. 9D]) nearly abolished all GAPDH mRNA
(0.68%) in the heavy polysomes (Fig. 9F), with the GAPDH
mRNA in cells infected with #4-shDHX33 instead showing a shift
into the lighter polysomes (Fig. 9E, fractions 15 to 17). This result
clearly indicates that the loss of DHX33 significantly reduces the
translation of GAPDH. Notably, DHX33 deficiency also signifi-
cantly increased the percentage of GAPDH mRNA on 80S mono-
somes from 0.68% to approximately 6 to 8% (Fig. 9G). Accumu-
lation of GAPDH mRNA on 80S monosomes indicates a less
efficient initiation of mRNA translation after the 80S subunit has
been assembled.

To determine whether DHX33 silencing inhibits the transla-
tion of mRNAs with structured 5= UTRs differently, we analyzed
the polysome distribution for DDX5 mRNA after DHX33 knock-

down. The 5= UTR of DDX5 mRNA has 247 nucleotides and is
much longer than the GAPDH 5= UTR. The results shown in Fig.
9H to J demonstrate that DDX5 mRNA is more readily shifted
from the heavy polysome fraction (from 83% down to 0%) into
the light polysome fraction and monoribosomes, and the percent-
age of DDX5 mRNA associated with 80S monoribosome could be
increased from 0% up to approximately 54% (for cells infected
with #4-shDHX33). These results suggest that DHX33 knock-
down has a more dramatic effect on structured mRNAs and im-
plies that DHX33 knockdown leads to significant stalling, albeit
not a complete blockade, of 80S ribosome complexes on mRNAs.

Purified DHX33 does not stimulate firefly luciferase mRNA
in vitro. To study whether DHX33 stimulates protein translation
in vitro, we purified recombinant DHX33 protein in Escherichia
coli and transfected wild-type immunoprecipitated DHX33 into
cells. However, in both cases, with the rabbit reticulocyte system,
we could not detect DHX33-enhanced mRNA translation; rather,
the addition of either recombinant DHX33 or immunoprecipi-
tated DHX33 slightly inhibited mRNA translation (as shown in
Fig. 10). We think that, on the one hand, it may still be difficult to

FIG 10 Purified DHX33 does not enhance luciferase mRNA translation in vitro. (A) The open reading frame of mouse DHX33 was cloned into the BamHI/
HindIII sites in the pET32M-3C vector. The following primers were used to amplify DHX33 PCR products: forward primer 5=-ATTATAGGATCCATGCCGG
AGGAGGCGAGCCT-3= and reverse primer 5=-ATAAATAAGCTTGTTTCTGGCCGTTCTCAGCTT-3=. Overexpressed wild-type recombinant DHX33 with a
thioredoxin (Trx) tag at its N terminus and a 6� His tag at its C terminus was affinity purified from E. coli through an Ni-nitrilotriacetic acid column (Qiagen).
(Left) Coomassie blue-stained proteins showing the purity of crude DHX33, which was further verified by Western blotting. Approximately 0.5 �g of this DHX33
recombinant protein was added into a rabbit reticulocyte lysate system (catalog no. L4960; Promega) to monitor in vitro protein translation activity with firefly
luciferase mRNA as a control. (Right) After DHX33 was added, protein translational activity was decreased slightly. (B) FLAG-tagged DHX33 overexpressed in
HeLa cells was immunoprecipitated by anti-FLAG beads and was then added into a rabbit reticulocyte system (catalog no. L4960; Promega) to assay in vitro
protein translation activity. (Left) The DHX33 protein was immunoprecipitated from the cell lysates by Western blotting; (right) the addition of wild-type
DHX33 inhibits luciferase mRNA translation in this experimental setting.
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copy the complex in vivo situation for now, as we have limited
knowledge of its detailed mechanism; on the other hand, the sim-
ple firefly luciferase mRNA plus rabbit reticulocyte system might
not be a good system for us to detect the translational efficiency. A
more straightforward analysis and more biochemical studies are
needed in order to address this issue.

DISCUSSION

We have identified a new DEAH box RNA helicase, DHX33, in-
volved in mRNA translation. This extends the list of RNA helicases
involved in translation initiation; the previous list included eIF4A,
DDX3, and DHX29 (16, 27). The activity of eIF4A and DHX29
helicases in the unwinding of mRNA 5= UTRs is important to
promote translation initiation, while the function of DDX3 in
translation has been shown to be quite diverse. DDX3 is involved
in promotion of the 80S ribosome and resolution of the eIF4/
mRNA complex (28–31). Our findings now support a role for
DHX33 to promote the assembly of an elongation-competent 80S
ribosome at a late stage of translation initiation. As such, DHX33
likely participates in resolving the final translation initiation com-
plex and primes it for elongation.

We have previously shown that nucleolar DHX33 promotes
ribosome RNA synthesis (20), thus complicating the effect of
DHX33 knockdown on mRNA translation. The difficulty often
encountered in deciphering the function of DEAD box RNA he-
licases resides in their multitude of subcellular locations. To ad-
dress this concern in our studies of DHX33, we successfully sepa-
rated the nucleolar DHX33 function from the cytosolic function
through the use of targeted DHX33 domain mutants. The DHX33
D1 mutant was largely confined to the cytosol and as such was
unable to rescue the nucleolar rRNA transcription properties of
DHX33. However, this mutant was fully capable of rescuing
mRNA translation in the cytosol, thus separating these two func-
tions of DHX33. The results of the heterokaryon shuttling assays
reinforce these findings, clearly demonstrating that DHX33 mo-
bilization throughout the cell is a dynamic process. This allows
DHX33 to function in various cellular processes that take place in
distinct subcellular locations.

Indeed, the cytosolic function of DHX33 in translation initia-
tion occurs even in the face of diminished rRNA production in the
nucleolus, separating the two processes. Our results indicate an
elevation in the amounts of cytosolic ribosome subunits and 80S
monosomes concomitantly with a loss of polysomes, even in the
face of severe defects in nucleolar ribosome production in these
cells (20). This is most likely due to the enormous stability of
existing cytosolic ribosomes at the times where we assayed cyto-
solic polysome formation. Our results show that although there is
an increase in the amount of cytosolic 80S ribosome due to
DHX33 deficiency, the extent of the increase in the amount of the
80S ribosome is not as significant as that seen with other typical
RNA helicases involved in translation initiation (32). This might
be due to lower levels of rRNA production in the absence of
DHX33 (20), making the moderate increase in 80S ribosome lev-
els a result of a combination of both a reduction in the amount of
rRNA and inhibition of translation initiation. Although the levels
of cytosolic 80S ribosomes were increased by DHX33 deficiency,
these ribosomes were not elongation competent. This implies that
DHX33 must have some essential role in promoting mRNA trans-
lation. In agreement with this, we further demonstrated the asso-
ciation of DHX33 with the translation machinery and mRNAs.

Furthermore, additional evidence from studies with nonstruc-
tured and structured mRNAs showed a failure of mRNA transla-
tion initiation, despite sufficient 80S monosome assembly, under-
scoring the role of DHX33 in the later stage of mRNA translation
initiation.

The effect of the DHX33 loss on mRNA translation appears to
be global and not necessarily selective for any specific mRNAs.
However, it will be worthwhile to further characterize the pattern
of mRNAs bound to DHX33 through further RNA interaction
studies and subsequent deep sequencing. We had initially identi-
fied DHX33 to be a target downstream of mTOR activity. TOR has
been shown to control both cap-dependent and terminal oligopy-
rimidine (TOP)-dependent mRNA translation (33). Our findings
place DHX33 squarely downstream of mTOR to control global
mRNA translation through translation initiation. While we found
that many mRNAs were bound to DHX33 complexes, it is worth
noting that the fold enhancement in their interaction varied
greatly, highlighting the possibility that DHX33 directs a more
selective translation initiation program, one that could be driven
by mTOR signals.
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