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Decompressive Craniectomy Reduces White Matter Injury
after Controlled Cortical Impact in Mice

Stuart H. Friess,1 Jodi B. Lapidus,1 and David L. Brody2

Abstract

Reduction and avoidance of increases in intracranial pressure (ICP) after severe traumatic brain injury (TBI) continue to

be the mainstays of treatment. Traumatic axonal injury is a major contributor to morbidity after TBI, but it remains

unclear whether elevations in ICP influence axonal injury. Here we tested the hypothesis that reduction in elevations in

ICP after experimental TBI would result in decreased axonal injury and white matter atrophy in mice. Six-week-old

male mice (C57BL/6J) underwent either moderate controlled cortical impact (CCI) (n = 48) or Sham surgery (Sham,

n = 12). Immediately after CCI, injured animals were randomized to a loose fitting plastic cap (Open) or replacement

of the previously removed bone flap (Closed). Elevated ICP was observed in Closed animals compared with Open

and Sham at 15 min (21.4 – 4.2 vs. 12.3 – 2.9 and 8.8 – 1.8 mm Hg, p < 0.0001) and 1 day (17.8 – 3.7 vs. 10.6 – 2.0 and

8.9 – 1.9 mm Hg, p < 0.0001) after injury. Beta amyloid precursor protein staining in the corpus callosum and ipsilateral

external capsule revealed reduced axonal swellings and bulbs in Open compared with Closed animals (32% decrease,

p < 0.01 and 40% decrease, p < 0.001 at 1 and 7 days post-injury, respectively). Open animals were also found to have

decreased neurofilament-200 stained axonal swellings at 7 days post-injury compared with Open animals (32% de-

crease, p < 0.001). At 4 weeks post-injury, Open animals had an 18% reduction in white matter volume compared with

34% in Closed animals ( p < 0.01). Thus, our results indicate that CCI with decompressive craniectomy was associated

with reductions in ICP and reduced pericontusional axonal injury and white matter atrophy. If similar in humans,

therapeutic interventions that ameliorate intracranial hypertension may positively influence white matter injury severity.
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Introduction

Traumatic axonal injury (TAI) is thought to be a major

contributor to morbidity after severe traumatic brain injury

(TBI).1–6 TAI is primarily a histopathological nomenclature, and

our ability to diagnose axonal injury in vivo in the clinical setting is

limited.7–9 The lack of easily accessible methods for in vivo de-

tection of axonal injury after severe TBI has limited our under-

standing of the natural course of axonal injury during the acute

phases of TBI. The primary goal of clinical care for severe TBI in

the acute phase is the reduction and avoidance of secondary in-

sults.10,11 It remains unclear whether TAI in white matter is entirely

the result of primary injury or if commonly occurring secondary

insults (such as increased intracranial pressure (ICP), hypoxia, or

hypotension) after TBI can influence the extent and severity of

axonal injury.12–15 Reduction and avoidance of elevations in ICP

continue to be the mainstays of treatment patients with for severe

TBI.10,11 Although there is evidence that sustained elevations in

ICP > 20 mm Hg after severe TBI are associated with poor out-

come, efficacy of threshold-targeted interventions has not been

thoroughly established.10,16–21 Previous clinical investigations in

pediatric TBI patients have demonstrated an association between

raised ICP and white matter loss, as well as changes in diffusion

tensor imaging of white matter in the corpus callosum at long-

term follow-up.22,23 It remains unclear, however, whether sus-

tained elevations in ICP play a causal role in secondary white

matter injury or are simply associated because of the severity of

underlying injury.

Several animal models have been developed to examine the role

of elevated ICP after TBI.24–28 The primary histologic focus of

many of these investigations, however, has been cortical lesion

volumes and neuronal injury. Recently, Lafrenaye and associates26

investigated axonal injury in a central fluid percussion rat model of

TBI with elevations in ICP. Using beta amyloid precursor protein

(b-APP) immunohistochemistry, no difference in axonal swellings

was observed in the cortex of animals that experienced persistent

elevated ICP versus those that did not.26 These investigations did

not explore the effect of elevated ICP on axonal injury of white

matter. In the current study, we hypothesized that reduction in ICP

elevations after controlled cortical impact (CCI) would result in
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decreased axonal injury in the ipsilateral corpus callosum and ex-

ternal capsule as well as sparing of white matter tract volumes.

Methods

Injury

All procedures were approved by the Washington University
Animal Studies Committee and are consistent with the National
Institutes of Health (NIH) guidelines for the care and use of ani-
mals. Six-week-old C57BL/6J male mice ( Jackson Laboratory, Bar
Harbor, ME) weighing 18–22 g were used in these experiments.
Mice were sacrificed at three different time points: 24 h, 7 days,
and 28 days (n = 20 for each time point). For each time point, four
mice underwent Sham injury and 16 mice underwent CCC.29 The
mice were anesthetized with 5% isoflurane at induction, followed
by maintenance at 2% isoflurane for the duration of the procedure.
The head was shaved, and head holders were used to stabilize the
head within the stereotaxic frame (MyNeurolab, St. Louis, MO).
Then, a single 5-mm craniotomy was performed by an electric
drill on the left lateral side of the skull centered 2.7 mm lateral
from the midline and 3 mm anterior to lambda. The 3-mm elec-
tromagnetic impactor tip was then aligned with the craniotomy
site at 1.2 mm left of midline, 1.5 mm anterior to the lambda
suture. The impact was then delivered at 2-mm depth. The head
holders were released immediately after the injury. At the time of
injury, animals were randomized to either a loose fitting plastic
cap (Open, n = 8 for each time point) or replacement of the pre-
viously removed bone flap (Closed, n = 8 for each time point)
secured over the craniotomy with Vetbond (3M, St. Paul, MN)
after injury. Animals randomized to the Sham group also received
a bone flap to cover the craniotomy site similar to the Closed
group. The skin was closed with interrupted sutures and treated
with antibiotic ointment before removing the mouse from anes-
thesia and allowing it to recover on a warming pad.

ICP monitoring

All mice in the 24 h and 7 day time points underwent paren-
chymal ICP monitoring. A single small (0.9 mm) burr hole for ICP
monitoring was made 2.5 mm to the right of midline and 2.5 mm
anterior to lambda before the craniotomy for CCI. ICP measure-
ments were performed with a 1.4F solid-state pressure transducer
(Millar, Houston, TX) stereotaxically introduced through the pre-
viously described burr hole until an ICP waveform with cardio-
pulmonary variability was observed (approximate depth of
0.5 mm). Measurements were performed after craniotomy, 15 min
after CCI, and either 24 h or 7 days after injury. Mice were an-
esthetized with 2% isoflurane and were secured in the stereotaxic
frame for all measurements. Mice were continuously monitored for
5 min at each time point. Using LabChart (AD Instruments, Col-
orado Springs, CO), a mean ICP for each 5 min monitoring period
was calculated. The burr hole for ICP monitoring was sealed with
Vetbond before skin closure. For ICP measurements at 24 h and 7
days after injury, the same burr hole was reaccessed using the same
0.9 mm drill bit without removing the Vetbond.

Immunohistochemistry

Mice were sacrificed under isoflurane anesthesia by transcardial
perfusion with 0.3% heparin in phosphate buffered saline. Whole
brains were removed and fixed in 4% paraformaldehyde for 48 h,
followed by equilibration in 30% sucrose for at least 48 h before
sectioning. Serial coronal slices 50-lm thick were cut on a freezing
microtome starting with the appearance of a complete corpus cal-
losum and caudally to bregma - 3.08 mm. Sets of 12 sections
spaced every 300 lm were mounted on glass slides and used for
immunohistochemical studies. Staining was performed on free-
floating sections washed in tris buffered saline (TBS) between

applications of primary and secondary antibodies. Endogenous
peroxidase was blocked by incubating the tissue in TBS + 3% hy-
drogen peroxide for 10 min. Normal goat serum (3%) in TBS with
0.25% Triton X (TBS-X) was used to block nonspecific staining for
all antibodies. Slices were then further blocked with 1% goat serum
in TBS and incubated at 4�C overnight with one of the following
primary antibodies: polyclonal rabbit anti-b-APP (Invitrogen,
Carlsbad, CA) or polyclonal rabbit anti-neurofilament-200 (Sigma,
St. Louis, MO) at concentrations of 1:1000 or polyclonal rabbit
anti-NeuN (Millipore, Billerica, MA) at a concentration of 1:4000.
Biotinylated goat anti-rabbit secondary antibodies in TBS-X were
used at a 1:1000 concentration to detect bound primary antibodies.
Colorization was achieved using the Vectastain ABC Elite Kit
(Vector Laboratories, Burlingame, CA) followed by the application
of 3-3¢ diaminobenzidine.

Stereology

Stereological analysis was performed on StereoInvestigator
software version 8.2 (MBF Bioscience, Williston, VT). Assess-
ments were made by an investigator blinded to the injury group.
The optical fractionator function was used to quantify target
markers per cubic millimeter of tissue. A grid size of 250 lm ·
250 lm, a counting frame of 40 lm · 40 lm, and a dissector
height of 15 lm with a guard zone of 5 lm were used for all
quantifications, resulting in 3% of the region of interest (ROI)
being randomly sampled. All ROI were traced at 4X magnifica-
tion, and markers were counted at 60X magnification. The ipsi-
lateral corpus callosum and external capsule spanning 12 sections
were used as the ROI for the b-APP and neurofilament-200
(NF200) stains. This region was defined as the white matter area
between midline and the lateral edge of the cingulum in rostral
sections; in caudal sections, a horizontal line drawn laterally from
the end of the fimbria served as the end boundary of the ROI.
Injured axons were identified by b-APP-positive varicosities
greater than 5 lm. Similarly, NF200-positive axonal varicosities
greater than 5 lm in diameter were counted as injured axons
during stereological assessment. Gunderson coefficients of error
were < 0.1 for both b-APP and NF200 quantifications. For
quantification of NeuN positive cells, the CA3 region of the ip-
silateral hippocampus was used as the ROI from the same 12
sections as described above. Intact neurons were identified as cell
bodies with NeuN-positive nuclei. This ensured the Gunderson
coefficient of error was < 0.1.

White matter volume quantification

The ipsilateral corpus callosum and external capsule spanning
12 sections were used as the ROI for white matter volume quan-
tification at 1 month after injury. This region was defined as the
white matter area between midline and the lateral edge of the
cingulum in rostral sections, and in caudal sections, a horizontal
line drawn laterally from the end of the fimbria served as the end
boundary of the ROI. White matter volume estimation was per-
formed using the Cavalieri method.

Statistical analysis

All data were analyzed using Prism 6.0 software (GraphPad
Software, San Diego, CA). The results are presented as
mean – standard deviation. For all data sets, there was no evidence
for significant deviations from normal distribution ( p > 0.05 by
Shapiro-Wilk tests). ICP measurements were analyzed with a two-
way analysis of variance (ANOVA). Significant main effects on
animal group were subjected to post hoc analysis with Tukey tests
with a significance level of p < 0.05. Quantitative histologic data
were analyzed with one-way ANOVA, followed by Tukey tests for
multiple comparisons with a significance level of p < 0.05. Spear-
man correlation was used to assess the correlation between peak

792 FRIESS ET AL.



ICP measurements (15 min post-injury) and neuropathology at 1
day and 1 week post-injury time points.

Results

ICP elevations following bone flap replacement
after CCI

As previously described by others, we used a rodent CCI model

with bone flap replacement to generate elevations in ICP.24,30,31 We

used two separate cohorts of mice to evaluate ICP over time. In the

first cohort, ICP measurements were obtained after craniectomy but

before injury, 15 min after injury, and just before sacrifice at 24 h

after injury (Fig. 1A). In a two-way repeated measures ANOVA of

the 24 h survival cohort, there were significant main effects of

group (F = 56.6, p = 0.0001) and time of measurement after injury

(F = 30.8, p < 0.0001), as well as a significant group * time inter-

action (F = 16.34, p < 0.0001). In post hoc analysis with Tukey tests,

ICP measurements in the Closed group were significantly elevated

compared with Sham and Open 15 min and 24 h after injury (Fig.

1A). In the 1 week survival cohort, significant elevations in ICP at

15 min in the Closed group were again observed that were mod-

erated by 1 week but still statistically elevated compared with Sham

and Open (Fig. 1B).

ICP elevations are associated with an increase TAI
in pericontusional white matter

After CCI in mice, the pericontusional corpus callosum and

external capsule have been observed to be ROI with large amounts

of TAI.32,33 To determine the effects of elevations in ICP on TAI,

we assessed TAI in the ipsilateral corpus callosum and external

capsule with two different markers—b-APP and NF200.

Consistent with previous reports, we observed b-APP accumu-

lations in varicosities in the pericontusional corpus callosum and

external capsule at both 1 day and 7 days post-injury, with a re-

duction in immunohistochemical staining over time (Fig. 2A–I).32

Injured mice with elevations in ICP (Closed) appeared to have

increased b-APP staining in the pericontusional white matter

compared with mice in the Open group (Fig. 2). We did not ob-

serve any immunohistochemical staining in the contralateral

hemisphere (Fig. 3).

Stereological quantification of b-APP in the pericontusional

white matter confirmed our qualitative observations (Fig. 2J, K). At

1 day post-injury, one-way ANOVA revealed a significant main

effect of group (F = 48.1, p < 0.0001). Post hoc Tukey tests dem-

onstrated a higher number of b-APP positive varicosities and

swellings in Closed compared with Open ( p < 0.01). Similarly, at 1

week post-injury, one-way ANOVA revealed a significant

group effect (F = 30.4, p < 0.0001), and post hoc Tukey analysis

confirmed a higher number of B-APP stained swellings and var-

icosities in Closed compared with Open ( p < 0.001). Im-

munohistochemistry with NF200 demonstrated increased

background staining compared with B-APP immunohistochem-

istry, but increased amounts of NF200 swellings in the peri-

contusional corpus callosum and external capsule were still

observed (Fig. 4A–I). We did not observe any immunohisto-

chemical staining in the contralateral hemisphere. Stereological

quantification of NF200 in pericontusional white matter revealed

increased NF200 positive swellings in injured mice compared

with Sham at 1 day and 7 days after injury. One-way ANOVA

revealed a significant main effect of group (F = 26.6, p < 0.0001);

however, post hoc Tukey tests did not demonstrate a significant

difference between Closed and Open at 1 day post-injury. At 7

days post-injury, one-way ANOVA confirmed a significant group

effect (F = 39.0, p < 0.0001). Post hoc Tukey test also showed a

significantly higher number of NF200 swellings in Closed com-

pared with Open ( p < 0.001) (Fig. 4J, K). Thus, elevated ICP in

the Closed group was associated with increased white matter

axonal injury at two time points using B-APP and using two

different immunohistochemical markers at 1 week post-injury.

White matter atrophy increases after CCI
without decompressive craniectomy

At 4 weeks post-injury, little to no immunohistochemical

staining with b-APP or NF200 was observed in the pericontusional

white matter. To assess the effects of ICP elevations on white

matter at longer time points, we assessed white matter atrophy at 4

weeks after injury. White matter volume of the ipsilateral corpus

callosum and external capsule was estimated by the Cavalieri

method (Fig. 5) after immunohistochemical staining with b-APP.

One-way ANOVA analysis demonstrated a strong effect of group

(F = 23.9, p < 0.0001) and post hoc Tukey test revealed Closed

animals had increased white matter atrophy compared with Open,

resulting in smaller corpus callosum and external capsule volumes

( p < 0.01).

Decompressive craniectomy after CCI
reduces hippocampal CA3 neuronal loss

Neurons in the CA3 region of the hippocampus have been re-

ported to be highly susceptible to injury after TBI.34,35 To explore

the effects of ICP elevations on neuronal injury, we performed

stereological analysis of the CA3 region of the hippocampus with

FIG. 1. Controlled cortical impact with immediate bone flap replacement (Closed) resulted in elevations in intracranial pressure (ICP).
(A) ICP measurements in mice survived for 24 h after injury or Sham surgery. (** p < 0.001, Tukey test). (B) ICP measurements in mice
survived for 7 days after injury or Sham surgery. (* p < 0.01, ** p < 0.001, Tukey tests).
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FIG. 2. Controlled cortical impact with immediate bone flap replacement (Closed) resulted in increased beta amyloid precursor
protein (b-APP) stained axonal swellings. (A–C) b-APP staining in the pericontusional white matter of Sham, Open, and Closed mice
respectively at 1 day post-injury; scale bar 250 lm. (D–I) Higher magnification of the pericontusional white matter at 1 day and 1 week
post-injury; scale bars 25 lm. (J, K) Stereological quantification of numbers of b-APP positive axonal swellings per cubic millimeter of
the ipsilateral corpus callosum and external capsule: J at 1 day post-injury and K at 1 week post injury (*p < 0.01, **p < 0.001,
#p < 0.0001 compared with Sham, Tukey test).

FIG. 3. Controlled cortical impact with or without immediate bone flap replacement did not result in increased beta amyloid precursor
protein (b-APP) stained axonal swellings in the contralateral white matter. (A–C) b-APP staining in the contralateral white matter of
Sham, Open, and Closed mice respectively at 1 day post-injury; scale bar 250 lm. (D–I) Higher magnification of the contralateral white
matter at 1 day and 1 week post-injury; scale bars 25 lm.
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NeuN immunohistochemistry at 1 day, 1 week, and 4 weeks after

injury (Fig. 6, 7). At 1 day post-injury, one-way ANOVA revealed

no significant differences between groups in number of NeuN

stained cells in the CA3 region (F = 0.5, p = 0.62). At 1 and 4 weeks

post-injury, however, a significant group effect was observed

(F = 22.34, p < 0.0001 at 1 week and F = 30.31, p < 0.0001 at 4

weeks). Post hoc Tukey analysis demonstrated a significantly

greater reduction in NeuN positive cells in Closed compared with

Open at 1 and 4 weeks post-injury ( p < 0.05 and p < 0.01, respec-

tively).

Correlation of ICP measurements
with neuropathology

The association between ICP measurements in Closed animals

15 min after injury and neuropathology (b-APP, NF200, and NeuN)

at 1 day and 1 week post-injury was assessed. There were no sig-

nificant correlations between ICP measurements at 15 min after

injury and any of the three immunohistochemical markers at 1 day

post-injury. There was a significant positive correlation, however,

between ICP measurements and the extent of axonal injury deter-

mined by stereological quantification of b-APP immunohisto-

chemistry at 1 week after injury (r = 0.833, p < 0.05) but not with

NF200 or NeuN (Fig. 8).

Discussion

Even moderate elevations in ICP after CCI in mice without

decompressive craniectomy were associated with increased axonal

injury and white matter atrophy. We observed increased axonal

injury in mice with elevations in ICP using two different markers of

axonal injury—b-APP and NF200—at 1 week post-injury in the

ispilateral corpus callosum and external capsule. Our findings were

further supported by increased white matter atrophy at 1 month

after injury in the mice with elevated ICP. Together, these data lend

support to our hypothesis that elevations in ICP after CCI in mice

worsen axonal injury in white matter. CCI without decompressive

craniectomy in the mouse has been shown to increase ICP, contu-

sion lesion volume, brain edema, and blood–brain barrier disrup-

tion.24,30,36,37 Its influence on axonal injury, however, has not been

previously reported, to our knowledge. In our experiments, the

difference in the extent of axonal injury between groups was more

pronounced at 1 week post-injury compared with 1 day post-injury.

Previous investigations in mice using a CCI model of TBI have

demonstrated peak contusional volume at 24 h post-injury.30

We postulate that at our 24 h post-injury assessment of axonal

injury, the complete effects of secondary insults (elevations in ICP,

decreased cerebral perfusion pressure, and brain edema resulting in

vascular compromise) on susceptible axons were not yet manifest.

FIG. 4. Controlled cortical impact with immediate bone flap replacement (Closed) resulted in increased neurofilament-200 (NF200)
stained axonal swellings. (A–C) NF200 staining in the percontusional white matter of Sham, Open, and Closed mice, respectively, at 1
day post-injury; scale bar 250 lm. (D–I) Higher magnification of the pericontusional white matter at 1 day and 1 week post-injury; scale
bars 25 lm. Arrows denote NF200 positive axonal swellings. (J, K) Stereological quantification of numbers of NF200 positive axonal
swellings per cubic millimeter of the ipsilateral corpus callosum and external capsule: J at 1 day post-injury and K at 1 week post-injury
(*p < 0.01, #p < 0.0001 compared with Sham, Tukey test).
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At 1 week post-injury evaluation, elevations in ICP were still

present at a reduced level, but the effects of the ICP elevations on

white matter were more pronounced. Neuropathological investi-

gations of nonsurvivors of TBI and non-TBI have attempted to

correlate patterns of axonal injury with injury mechanism based on

b-APP immunoreactivity as well as the role secondary insults such

as hypoxia or vascular compromise related to elevations in

ICP.14,15,38 Neuropathology from disabled human survivors of

head injury have demonstrated strong associations of diffuse axonal

injury and raised ICP with poor outcomes months after injury.14

Further, the number of lesions detected by T2-weighted magnetic

resonance imaging 4 weeks after closed head injury in adults

correlated with intracranial hypertension detected in the first few

days after injury.39 These previous clinical investigations along

with our own investigations support our hypothesis that eleva-

tions in ICP after CCI exacerbate axonal injury in a delayed

fashion. Despite a small sample size, we did observe a strong

correlation between peak ICP measurements and extent of axonal

injury determined by stereological analysis of b-APP immuno-

histochemistry at 1 week but not 1 day post-injury. We postulate

that intracranial hypertension produces vascular compromise and

decreased cerebral blood flow to susceptible axons resulting in

exacerbation in the amount of detectable axonal injury. An al-

ternative hypothesis, however, is that increased expansion of

contusional volume in mice receiving bone flap replacement

compromises blood flow to the pericontusional white matter.

Previous investigations have observed reductions in ICP and

contusional volume when early decompression is performed in

mice undergoing CCI.24,30 Additional experiments involving in-

dependent manipulations of ICP will be required, however, to

further assess the causal role of ICP per se, independent of con-

tusion evolution to exacerbate pericontusional axonal injury.

White matter volume assessment at 1 month post-injury was

used as a longer term pathological assessment. Animals in the

Closed group had significantly increased white matter atrophy in

the ipsilateral corpus callosum and external capsule compared with

Open and Sham animals. Increased contusional expansion in the

Closed group animals is a possible explanation for the reduced

white matter volumes. Nonetheless, taken together, neuropatho-

logical assessments of axonal injury at various post-injury time

points provide strong evidence to support the hypothesis that ICP

elevations are associated with exacerbated pericontusional axonal

injury. A separate question is whether clinically relevant delayed

decompression or other approaches to reduce ICP improve peri-

contusional axonal injury. Addressing this question will require a

different study design.

FIG. 5. Controlled cortical impact with immediate bone flap replacement (Closed) resulted in increased white matter atrophy 4 weeks
after injury. (A–I) Exemplar images of the ipsilateral corpus callosum and external capsule from three rostral-caudal sections per mouse;
scale bar 250 lm. (J) Estimation of white matter volume of the ipsilateral corpus callosum and external capsule by the Cavalieri method
at 1 month post-injury or Sham surgery. (*p < 0.01, #p < 0.001 compared with Sham, Tukey test).
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Clinical studies on the effects of elevated ICP on white matter

after TBI are limited. Tasker and associates23 investigated changes

in the corpus callosum of adolescent patients with TBI at long-term

follow-up (mean 4.9 years). Using diffusion tensor imaging, they

observed volume thinning of the corpus callosum; reduced frac-

tional anisotropy; and increased mean, radial, and axial diffusivity

in patients who had experienced elevations in ICP during the acute

phase of treatment. Our findings of increased white matter atrophy

in mice with elevations in ICP after injury are consistent with these

clinical observations. Neurons in the CA3 region of the hippo-

campus have been reported to be highly susceptible to injury after

TBI.34,35 We performed stereological analysis of the CA3 region of

the hippocampus to assess the association of elevations of ICP with

neuronal loss. At 24 h, we did not observe significant neuronal loss

in either injury group compared with Sham, but stereological

analysis at 7 days and 4 weeks post-injury revealed significant

neuronal loss in both the Open and Closed groups. Further, animals

that had experienced elevations in ICP (Closed) had an even greater

increase in neuronal loss, demonstrating that the secondary insult of

ICP elevation in our CCI model worsened both axonal and neuronal

injury. This model provides an opportunity to evaluate therapeutics

that may have the potential to ameliorate or prevent the effects of

ICP elevation on neuronal injury.

There are limitations to our experimental design that must be

considered when translating our findings to the clinical setting.

TBIs in humans can be quite heterogeneous. In this investigation,

we used a focal contusion model that is highly reliable and con-

sistent in its pathologic response, but does not encompass the full

spectrum of TBIs.40 It remains unclear whether elevations in ICP

in other models of TBI would produce the same association with

axonal injury and white matter injury. A fluid percussion injury

(FPI) rat model of TBI failed to demonstrate increased axonal

injury after elevations in ICP; however, there may be several

reasons for the difference in findings.26 Axonal injury in the FPI

rat model was only assessed at 6 h post-injury and the ROI in-

cluded only the neocortex. We observed the greatest significant

difference in axonal pathology using two different immunohis-

tochemical markers at 7 days post-injury suggesting that a 6 h

post-injury end-point may be too early to fully assess the entire

effects of elevations of ICP on axonal pathology. Further, dif-

ferences in the characteristics of the injury model such as vari-

ances in the intracranial pulse pressure waves generated and

typical pathology observed in each model may also be responsible

for the differences in axonal pathology.41 In addition, we did not

perform invasive blood pressure monitoring to determine whether

there were differences in mean arterial pressure and cerebral

perfusion pressure across groups. In children with severe TBI,

hypotension and cerebral perfusion pressures below 40 mm Hg

have been associated with poor outcomes.19,42,43 We also did not

investigate the effects of elevated ICP in female mice, nor in mice

of different ages.

In our model, ICP elevations occurred immediately after injury

whereas in humans, intracranial hypertension can be delayed after

TBI.44 It is not known whether or not the difference in timing of

peak ICP influences axonal or neuronal injury. Modulating the

timing of decompression in this model may provide some insight

into the window of vulnerability of pericontusional white matter

to elevations in ICP and the length of the therapeutic window for

rescue. Although unlikely, it has not been fully established

whether the effects of immediate bone flap replacement apart

from elevations in ICP influence injury severity. An orthogonal

method of ICP manipulation would be needed to establish whe-

ther there are effects of bone flap replacement unrelated to ICP

elevations, such as artificially increasing cerebrospinal fluid

FIG. 6. Controlled cortical impact with immediate bone flap replacement (Closed) resulted in decreased NeuN positive cells in the
hippocampus. (A–L) NeuN staining of the hippocampus of Sham, Open, and Closed mice, respectively; scale bar 200 lm. (M–N)
Stereological quantification of numbers of NeuN positive cells per cubic millimeter of the ipsilateral CA3 region of the hippocampus: M
at 1 day post-injury and N at 1 week post-injury (*p < 0.05, # p < 0.01 compared with Sham, Tukey test).
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volume. ICP measurements in our studies were performed under

anesthesia with isoflurane, an inhaled anesthetic, which is known

to influence cerebrovascular hemodynamics.45–47 Direct transla-

tion of the actual ICP values observed in these experiments to the

clinical environment is premature.

No apparent histological abnormalities were observed in the

contralateral white matter or hippocampus using the immunohis-

tochemical markers described above, but these regions were not

included in our detailed stereological analysis. Prominent silver

staining contralateral to the impact site after CCI in mice has been

observed by others.32,48 Future investigations evaluating the in-

fluence of ICP elevations on brain tissue remote to the impact site

are planned.

Conclusion

CCI in mice, without decompressive craniectomy, resulted in

significant elevations in ICP. Reductions in ICP after decom-

pressive craniectomy were found to be associated with decreased

white matter axonal injury as determined by two different markers

up to 7 days after injury, as well as reduced white matter atrophy 1

month after injury. In the future, it will be important to test whether

therapeutic interventions that prevent or reduce intracranial hy-

pertension influence white matter injury severity and associated

long-term outcomes.
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