
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2015

Characterization of herpes simplex virus 2 primary
microRNA transcript regulation
Shuang Tang
Food and Drug Administration

Marta Bosch-Marce
Food and Drug Administration

Amita Patel
Food and Drug Administration

Todd P. Margolis
Washington University School of Medicine in St. Louis

Philip R. Krause
Food and Drug Administration

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P.; and Krause, Philip R., ,"Characterization of herpes simplex virus
2 primary microRNA transcript regulation." Journal of Virology.89,9. 4837-48. (2015).
http://digitalcommons.wustl.edu/open_access_pubs/3838

http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F3838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Characterization of Herpes Simplex Virus 2 Primary MicroRNA
Transcript Regulation

Shuang Tang,a Marta Bosch-Marce,a Amita Patel,a Todd P. Margolis,b Philip R. Krausea

Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland,
USAa; Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USAb

ABSTRACT

In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phe-
notypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the
transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcrip-
tion initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets
ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown).
We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the
ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcrip-
tion of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT
promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in
latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes sug-
gests that ICP4 could play a key role in the switch between latency and reactivation.

IMPORTANCE

The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The
balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the oppo-
site strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome
of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present
study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5=
ends and evaluation of ICP4 response. These findings provide further insight into the virus’ strategy to tightly control expression
of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from
latency to reactivated productive infection.

Herpes simplex virus 1 (HSV-1) and HSV-2 are closely related
herpesviruses. HSV-1 typically infects the facial region and

establishes a lifelong latent infection in sensory neurons of the
trigeminal ganglia (TG), while HSV-2 typically infects the genital
region and establishes a lifelong latent infection in sensory neu-
rons of the sacral dorsal root ganglia. Periodically, either virus may
reactivate to cause symptomatic or asymptomatic recurrences in
the area served by these sensory neurons.

Both HSV-2 and HSV-1 acutely and latently express miRNAs,
which are proposed to play an important role in regulating whether
an infection will be productive or latent. These miRNAs, which are
conserved more in location than in sequence (1, 2, 9, 10), reduce
expression of viral genes transcribed from the opposite strand (2,
8–10) and likely also have additional functions (3–5) (see Fig. 1A).

HSV-2 LAT-encoded miRNAs, miR-I (also called miR-H3)
and miR-II (also called miR-H4), as well as the corresponding
HSV-1 LAT-encoded miRNAs, are processed from the primary
latency-associated transcript (LAT) and from a L/ST (long/short
junction-spanning transcripts) that traverses the viral long/short
repeat junction, target ICP34.5, an inhibitor of PKR and a major
viral neurovirulence factor (2, 6–11). The LAT promoter is highly
active during latency, leading to transcription of the stable LAT
intron and the unstable primary LAT (12, 13). Deletion of the LAT
promoter in both HSV-1 and HSV-2 impairs viral reactivation
(14–20). Although the role of the miRNAs in latency and reacti-

vation is unclear, deletion of HSV-1 miR-H3 and miR-LAT-
ICP34.5 (also named miR-H4) increases viral virulence by 4- to
10-fold in a neuronal cell culture model (8). HSV-2 miR-III (also
named miR-H2) and its HSV-1 homolog are also processed from
the primary LAT and target the immediate-early transactivator
ICP0 (2, 10, 21–24). miR-H6 (identified in both HSV-1 and
HSV-2) is expressed from sequences upstream of the LAT and
from the strand opposite LAT and HSV-1 miR-H1 (1, 10, 25).
miR-H6 is highly expressed during latency from an unknown pri-
mary transcript (1, 10, 26). In HSV-1, miR-H6 was reported to
target ICP4, while HSV-2 miR-H6 was reported not to target ICP4
(10, 26).

HSV-1 ICP4, a key viral trans-activator, inhibits both LAT and
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L/ST expression by binding to specific binding sites near the tran-
scription start sites (27–29). We previously showed that miR-I is
expressed by the LAT promoter during latency in the ganglia of
infected guinea pigs and mice (9). However, mutation of the
HSV-1 ICP4-binding site at the HSV-1 L/ST transcription initia-
tion sites increases the expression of HSV-1 miR-LAT-ICP34.5,
which corresponds in location to HSV-2 miR-II, suggesting that
the L/ST promoter also contributes to miR-I expression at times
when ICP4 inhibition of L/ST expression is relieved. Therefore,
ICP4 is likely directly involved in the transcriptional regulation of
HSV-2 LAT-encoded miRNAs.

Because miR-I, miR-II, miR-III, and miR-H6 are the most
abundantly expressed HSV-2 viral miRNAs during latency and
because the LAT-encoded miRNAs contribute to silencing impor-
tant productive cycle genes, it is of interest to understand the
regulation of the primary transcripts from which these miRNAs
are processed. In addition to identifying the miR-H6 promoter,
we thus undertook to characterize the primary LAT (a precursor
for miR-I, miR-II, and miR-III), the L/ST transcript (a precursor
for miR-I and miR-II), and the as-yet-unnamed miR-H6 primary
transcript by identifying their 5= transcription start sites and char-
acterizing the interactions of their promoters with the important
viral regulator, ICP4 (30–32), which has been shown to reduce
transcription of HSV-1 LAT and HSV-1 L/ST (27, 33, 34) through
interaction with sequences at their transcription start sites.

MATERIALS AND METHODS
Cells, viruses, miRNA inhibitor and antibodies. Sequences of HSV-2
strain HG52 (GenBank accession no. NC_001798) and HSV-1 strain
17syn� (GenBank accession no. NC_001806) were used as reference se-
quences. Vero, HEK 293, HeLa, and U2OS cell lines were obtained from
ATCC. HSV-2 strain 333 was obtained from Gary Hayward (Johns Hop-
kins University, Baltimore, MD). HSV2 mutant virus �LAT (14) has a
624-bp NotI (nucleotides [nt] 119109)-NotI (nt 119732) deletion that
removes the LAT promoter, its TATA box, and the adjacent 241 bp of LAT
exon 1. HSV2 �R is a rescuant virus for HSV2 �LAT (14). HSV2
�LAT-P2 (35) has a 339-bp deletion in LAT exon 1 sequences between the
5= end of the primary LAT and the 5= end of the LAT intron (from nt
119770 to nt 120108) (previously named LAP-2) (see Fig. 5A). Polyclonal
rabbit anti-HSV-2 ICP34.5 and ICP0 antibodies were previously de-
scribed (2, 9). Anti-�-tubulin was obtained from BD Biosciences (San
Jose, CA). Detection of HSV-2 ICP34.5 by Western blotting was per-
formed as described previously (9). The miR-III inhibitor, a 2=-O-methyl-
modified RNA, was also synthesized by Dharmacon (2). The nonspecific
small interfering RNA (NS siRNA) control was also obtained from Dhar-
macon (9).

Plasmid construction. pSSK (containing the entire HSV-2 long re-
peat sequence), pSSB (containing long repeat sequences upstream of LAT
and extending to a BamHI site in an ICP0 intron), and pPstI-HincII (con-
taining partial LAT sequences but not the LAT promoter sequences) were
described previously (9). The relative positions of the LAT-containing
plasmids, including pSSK, pSSB, and pPstI-HincII, are shown in Fig. 1A.
pLAT2-Luc1, containing the HSV-2 LAT promoter and a partial LAT
exon 1 sequence, was constructed by inserting the NotI fragment (includ-
ing the HSV-2 LAT promoter) from pSSB into the pFlag vector and then
subcloning into the pGL3-Basic luciferase vector (Promega, Fitchburg,
WI) BamHI and HindIII sites (2). pLAT2-Luc1R is a reverse direction
(opposite strand) version of pLAT2-Luc1.

Luciferase-expressing promoter mutants were produced by overlap
PCR, using two sets of oligonucleotide primers. Products were cloned into
the NotI site of pLAT2-Luc or into the EcoRI site of pGL3-Basic vector (in
some cases after an intermediate cloning step in pCR4-TOPO cloning
vector (Life Technologies, Carlsbad, CA). All mutant plasmids were con-

firmed by both enzymatic digestion and sequencing. pBSM2 and
pBSM2-R, containing the LAT promoter and a partial exon 1 sequence (nt
119107 to nt 119738) with mutations of putative ICP4-binding site 2, were
constructed by overlap PCR. LAT sequences (nt 119073 to nt 119778)
with putative ICP4 binding site mutations were first amplified by PCR
using pSSB as the template with the primers oBP3 (GCGAGCCGGGCA
GAGTGCGGA) and oMBP (CGCCGCCGatCgagaGGGACTCCGGAGA
AGGAAGGCT; substitution mutations are indicated with the corre-
sponding lowercase letters) or with primers oBP3 (GCGAGCCGGGCAG
AGTGCGGA) and oMFP (GTCCCgagtGtaCGGCGGCGGGCCCCTGC
GTT) to yield overlapping fragments containing the mutant LAT
promoter insert for pBSM2. A mixture of these purified PCR fragments
were used as the template and reamplified with oMBP and oFP1. The
corresponding PCR product was digested with NotI and subsequently
cloned into pLAT2-Luc1 using the NotI sites. pBSM2-R contains the same
insert as pBSM2, oriented in the reverse direction, in the pGL3-Basic
reporter. pLAT2-Luc2 containing the LAT promoter and ICP4-binding
site 1 (nt 119073 to nt 119504) was constructed by first cloning the PCR
fragment obtained using oBP3 and oST516 (CCCCTGCGTTCGTTGCT
GCCGCGCCCCCGGTT) into the pCR4-TOPO cloning vector and then
subcloning the EcoRI fragment into the pGL3-Basic vector using the
EcoRI site. pBSM1, containing the LAT promoter and putative ICP4-
binding site 1 mutant sequence (nt 119073 to nt 119504), was constructed
by cloning the LAT sequence, amplified by oBP3 and oST517 (CCCCTG
CtcgaGTTGCTGCCGCGCCCCCGGTT; substitution mutations of the
ICP4-binding site 1 are indicated in lowercase) into the pCR4-TOPO
cloning vector and subcloning the EcoRI fragment into the pGL3-Basic
vector using the EcoRI site. pICP4 (including the HSV-2 ICP4 coding
region under the control of the CMV-IE promoter) was obtained from
Kening Wang and Jeffrey Cohen (National Institutes of Health/National
Institute of Allergy and Infectious Disease, Bethesda, MD) (2). pCR432-
499 containing HSV-2 ICP34.5 exon 1 sequences was cloned using
oST432 (GAGCCCAGCCGCCCGCCATGT) and oST499 (TGTTCGCC
CACTCTGCGTCGTCGT). pFlag-miRIII, containing �800 bp of HSV-2
ICP0 exon 3 spanning miR-III, was obtained by cloning the PCR product
obtained using primers oST537 (GTCGTGCCGAGAGTGGCCTCT
CTT) and oST538 (CGGCCTGGGACGACGGAGA) with pSSB as the
template into the pCR4-TOPO cloning vector and then subcloning into
the pFlag vector (Sigma, St. Louis, MO) at the EcoRI site. p-565�37 and
p-428�37 are luciferase reporters that contain the L/ST promoter se-
quences ranging from bp �565 to bp 37 relative to the dominant LS/T
transcription initiation site (nt 125799) as characterized in the manu-
script. p-565�37 and p-428�37 contain the wild-type ICP4-binding se-
quence. p-565�9 and p-428�9 are luciferase reporters that contain L/ST
promoter sequences ranging from bp �565 to bp �9 relative to the dom-
inant L/ST transcription initiation site. p-565�9 and p-428�9 do not
contain the ICP4-binding sequence. p-565�14M is also a luciferase re-
porter containing sequences ranging from bp �565 to bp 14 relative to the
dominant L/ST transcription initiation site (nt 125799), with mutation of
the ICP4-binding sequence from ATCGTCTCTTCG to gaatTCTCTTCG.
To obtain these clones, PCR products using HSV-2 333 genomic DNA as
the template and oligonucleotide pairs, including oST576 (CGGGTGTA
CTCCAAGAACCCATTAGCAT) and oST575 (GGAGCCCCGGAGCTC
CGAA), oST577 (GGGGAACCAATAGGGGCCGATCA) and oST575,
oST576, and oST578 (ACGATGGGAGCCCCGCGTATATATC), oST577
and oST578, along with oST576 and oST579 (TCCGAAGAGAattcGGAG
CCCCGCGTATATAC, wherein mutations of the ICP4-binding site are
labeled with lowercase letters) were first cloned into a pCR4-TOPO vector
and then subcloned into the pGL3-Basic vector. Additional successive
deletion constructs for L/ST promoter reporters, including p-254�14M
and p-131�14M, contain a mutated ICP4-binding site but range in start
position from bp �253 to bp �131 relative to the dominant L/ST tran-
scription initiation site. Similarly, to construct the above two luciferase
reporters, PCR products using HSV-2 333 genomic DNA as the template
and oligonucleotide pairs, including oST582 (CTGCTAATTACCGCGA
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GCGGGAA) and oST579 with oST583 (CGGTCGCCGGGGCGGAGT)
and oST579, were first cloned into a pCR4-TOPO cloning vector and then
subcloned into pGL3-Basic vector (Promega). An additional L/ST core
promoter reporter, p-71�12, was constructed using synthetic oligonucle-
otides, oST854 (AATTCGGGAGCCCCGCGTATATATCCGCGAGGGC
CCGGCGCCGCCCCGCCGCTCCGCCCGCCCCAG) and oST855 (AA
TTCTGGGGCGGGCGGAGCGGCGGGGCGGCGCCGGGCCCTCGC
GGATATATACGCGGGGCTCCCG). p-71�12 contains sequences from
71 bp upstream of the dominant L/ST transcription initiation site (nt
125799) to just downstream of the TATAA box, excluding the ICP4-bind-
ing sequence. Annealed oST854 and oST855 were directly cloned into the
EcoRI site of the pGL3-Basic vector. Illustrations of inserts contained in
p-565�37, p-428�37, p-565�9, p-428�9, and p-565�14M are included
in Fig. 2C and E. Two luciferase reporters, p-650�74, including nearly
the entire LAT exon 1 and 74 bp of sequences downstream of the pri-
mary miR-H6 (pri-miR-H6) dominant transcription initiation site (nt
119544), and p-650�106, including nearly the entire LAT exon 1 and 106
bp of sequences downstream of the pri-miR-H6 dominant transcription
initiation site (nt 119544), were constructed by subcloning PCR-ampli-
fied LAT region sequences using the primer pair oST691 (GCTCTCTCA
CACGAGACACACGCA) and oST686 (CTGTGGGCATTTCTGCTGCG
TCA) or the primer pair oST691 and oST687 (TTTATAAAACCGGGGG
CGCGGCA) into a pGL3-Basic luciferase reporter. A diagram illustrating
inserts in p-650�74 and p-650�106 is included in Fig. 4A.

Transfection and dual-luciferase assay. Plasmids and RNA oligonu-
cleotides were transfected into 293 cells using Lipofectamine 2000 (Life
Technologies) according to the manufacturer’s instructions. The lucifer-
ase reporters were cotransfected with pRL-Ts, a Renilla luciferase reporter
(36). The dual-luciferase assay was performed with a dual-luciferase assay
kit (Promega) as described previously (36). The firefly luciferase activity
was normalized to the Renilla luciferase activity. Figure panels comprise a
representative of a minimum of three independent transfection experi-
ments that yielded similar results.

Mapping of transcription start sites by 5= RACE. The transcription
initiation site for the HSV-2 LAT was mapped using Vero cells infected
with HSV-2 strain 333 at an MOI of 2. Total RNAs were prepared at 18 h
postinfection by TRIzol (Life Technologies). Then, 10 �g of the total RNA
was used to determine the transcription start site of HSV-2 LAT by 5=
RACE (rapid amplification of cDNA ends) with a RLM-RACE kit accord-
ing to the manufacturer’s instructions (Applied Biosystems, Carlsbad,
CA). Primers (oST556, CCCGAGGCAAGAGGCGGA; oST555, CCTCG
GAGGCGCGGAAGA) were used as gene-specific primers. The nest-PCR
products were separated by using a 2% agarose gel, and the corresponding
band was purified, ligated to a pCR4-TOPO cloning vector, transformed
into TOP10 cells (Life Technologies), and sequenced. Similarly, the tran-
scription initiation site for the HSV-2 L/ST was determined using RNA
from 293 cells transfected with pSSK by 5= RACE with a RLM-RACE kit.
oST574 (CGGTCTAGGGTTGAACCGGCGA) and oST575 (GGAGCCC
CGGAGCTCCGAA) were used as gene-specific primers. The transcrip-
tion initiation site for the HSV-2 miR-H6 primary miRNA was mapped by
5= RACE with the RLM-RACE kit using RNA from 293 cells transfected
with p-650�106 and p-650�74. Primers (oST689, CTTCATAGCCTTA
TGCAGTTGCTC; oST690, GTTCCATCTTCCAGCGGATAGAA) spe-
cific for the firefly luciferase gene were used as gene-specific primers.

Infection of mice with HSV-2. Six-week-old female Swiss-Webster
mice (Simonsen Laboratories, Gilroy, CA) were anesthetized by intraper-
itoneal injection with sodium pentobarbital, followed by topical corneal
administration of 0.5% proparacaine hydrochloride. The eyes of the mice
were inoculated with 10 �l of viral stock (HSV-2 �LAT, 106 PFU/ml;
HSV-2 �R, 106 PFU/ml; or HSV-2 �LAT-P2, 106 PFU/ml). Mice were
treated with acyclovir starting at 40 h postinfection. The TG were removed
at 21 days after inoculation and snap-frozen. Total DNA and RNA were
extracted from ganglia in parallel using an AllPrep DNA/RNA kit (Qia-
gen, Valencia, CA) after homogenization with an Omni rotor-stator ho-
mogenizer (Omni International, Marietta, GA). 18S rRNA in these RNA

samples was quantified by real-time PCR with a TaqMan ribosomal con-
trol kit (Applied Biosystems) and used to normalize RNA loading.

Detection of miRNAs by Northern blotting and real-time PCR. The
oligonucleotide probes for miR-I and U6 snRNA were described previ-
ously (9). Oligonucleotide oST592 (GATCCAAGGGCAGAAGAAGAT
GGG) was used to detect HSV-2 miR-H6-3p. The Northern blot condi-
tions for the detection of HSV-2 miR-I, miR-H6, and U6 snRNA were
described previously (9).

Detection of HSV-2 ICP34.5, ICP0, and L/ST using Northern blot-
ting in HSV-2-infected cell cultures. A total of 5 �g of total RNA from
U2OS cells infected with HSV-2 or from uninfected controls were re-
solved in a formaldehyde denaturing 1% agarose gel (Life Technologies).
For DNA probes, after transfer to GeneScreen Plus hybridization transfer
membrane (Perkin-Elmer), the membrane was incubated in Hybrisol
containing 50% formamide and 6� SSC (1� SSC is 0.15 M NaCl plus
0.015 M sodium citrate; EMD Millipore) at 60°C overnight with an HSV-2
ICP34.5-specific probe or with an HSV-2 ICP0-specific probe labeled
with [	-32P]dCTP using a random priming kit (Promega). The HSV-2
ICP34.5-specific DNA probe was generated using an EcoRI digestion frag-
ment of pCR432-499 containing ICP34.5 exon 1 sequences (nt 423 to nt
713). The membrane was then washed once with 2� SSC– 0.5% sodium
dodecyl sulfate (SDS) for 30 min at room temperature, once with 0.5�
SSC– 0.5% SDS, and twice with 0.2� SSC– 0.1% SDS for 30 min each time
at 60°C. For the ICP34.5-specific or S/LT-specific RNA probes, the tem-
perature for blocking, hybridization, and washing was raised to 78°C. To
prepare the ICP34.5-specific RNA probe, pCR432-499 containing HSV-2
ICP34.5 exon 1 sequences was first digested with PstI and then used as the
template for in vitro transcription using T7 RNA polymerase and a
MAXIscript SP6/T7 transcription kit (Life Technologies). To prepare the
L/ST-specific RNA probe, pCR432-499 was first digested with NotI and
then used as the template for in vitro transcription using SP6 RNA poly-
merase using the MAXIscript SP6/T7 transcription kit. To make the ICP0-
specific DNA probe, the EcoRI fragment from pFlag-miRIII containing
805 bp (from nt 3839 to nt 4645) of ICP0 exon 3 sequences (not overlap-
ping with the LAT intron) was labeled with [	-32P]dCTP using the ran-
dom priming kit (Promega).

RESULTS
Mapping of the HSV-2 primary LAT transcription initiation
sites and the LAT ICP4-binding sequences. To determine
whether HSV-2 ICP4 functions similarly to HSV-1 ICP4 in con-
trolling LAT promoter activity, we first mapped the HSV-2 LAT
transcription initiation site by 5= RACE PCR using total RNA
from Vero cells infected with HSV-2. Two primary LAT transcrip-
tion initiation sites were mapped: at nt 119499 and at nt 1194503
(Fig. 1B). Transcripts initiating at nt 119499 exceed those initiat-
ing at nt 119503 by approximately 5:1, suggesting that nt 119499 is
the dominant transcription initiation site for HSV-2 LAT. Se-
quence analysis revealed two potential ICP4-binding sequences
(with core sequences AACGCA and ATCGAG) near the LAT tran-
scription initiation sites, both homologous to the HSV-1 LAT
ICP4-binding site (Fig. 1C) (with core sequence ATCGCG). Mu-
tation of each of these sites revealed that HSV-2 ICP4 represses the
HSV-2 LAT promoter reporter with mutations at ICP4-binding
site 2 (Fig. 1D) but does not repress the HSV-2 LAT promoter
reporter with mutations at the ICP4-binding site 1, indicating that
the predicted ICP4-binding site 1 at the LAT transcription initia-
tion site is the functional ICP4-binding site.

Mapping of the L/ST transcriptional initiation sites and the
L/ST ICP4-binding sequences. The same cDNA, prepared from
infected Vero cells and used to successfully map the LAT tran-
scription initiation site, was used to map the predicted L/ST tran-
scription initiation site using L/ST-specific primers. However, no
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FIG 1 Identification of HSV-2 LAT ICP4-binding sequence. (A) Schematic diagram of HSV-2 LAT region. The HSV-2 L/ST homolog is labeled. The relative
positions of the inserts in LAT-containing plasmids, including pSSK, pSSB, and pPstI-HincII, are shown. (B) Mapping of HSV-2 LAT transcription initiation site.
The HSV-2 LAT transcription start sites were mapped to nt 119499 (which was more dominant) and nt 1194503 with a 5= RACE kit and total RNAs from
HSV-2-infected Vero cells. (C) Comparison of the HSV-2 and HSV-1 LAT transcription initiation regions. Two HSV-1 ICP4-binding motifs, including putative
ICP4-binding site 1 and putative ICP4-binding site 2 (underlined), were identified near the LAT transcription initiation site. (D) Mutation of putative
ICP4-binding site 2 does not affect HSV-2 ICP4-mediated repression of LAT promoter reporter activity in cells transfected with LAT promoter reporters with or
without pICP4, indicating that putative ICP4-binding site 2 does not function to limit LAT expression. pLAT2-Luc1 contains LAT sequences ranging from bp
�392 to bp �239 relative to the dominant LAT transcription initiation site (nt 119499). pBSM2 contains LAT sequences ranging from bp �392 to bp �239
relative to the dominant LAT transcription initiation site (nt 119499), with substitution mutations in putative ICP4-binding site 2. pBSM2-R contains the same
insert as pBSM2, oriented in the reverse direction, in the pGL3-Basic reporter. Firefly luciferase activity was normalized with cotransfected pRL-Ts, a Renilla
luciferase reporter. (E) Mutation of putative ICP4-binding site 1, which overlaps the LAT transcription start sites, abolishes inhibition of the LAT promoter
reporter activity by HSV-2 ICP4. LAT promoter reporters were cotransfected with or without pICP4 in 293 cells. pLAT2-Luc2 contains LAT promoter and
putative ICP4 binding site 1 sequences ranging from bp �392 to bp �8 relative to the dominant LAT transcription initiation site (nt 119499). pBSM1 contains
LAT sequences ranging from bp �392 to bp �8 relative to the dominant LAT transcription initiation site (nt 119499), with substitution mutations at putative
ICP4-binding site 1.

4840 jvi.asm.org May 2015 Volume 89 Number 9Journal of Virology
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PCR product was obtained using the same 5= RACE PCR method,
possibly because the predicted HSV-2 L/ST transcript is inhibited
too efficiently by ICP4 during lytic infection. Using total RNAs
from cells transfected with pSSK, a LAT plasmid containing the

potential L/ST promoter and sequences (but no functional ICP4
sequences), the L/ST transcription initiation sites were mapped to
nt 125795 and nt 125799 (Fig. 2A). The ratio of transcripts using
nt 125795 versus nt 125799 is approximately 3:5. Thus, nt 125799

FIG 2 Characterization of the putative HSV-2 L/ST promoter. (A) Mapping of the HSV-2 L/ST homolog transcription initiation sites. HSV-2 L/ST homolog
promoter transcription initiation sites were mapped with a 5= RACE kit and total RNAs from pPstI-HincII-transfected 293 cells. *, Transcription initiation site.
(B) Comparison of the HSV-1 and HSV-2 L/ST transcription initiation regions. The ICP4-binding site is underlined. *, Transcription initiation site. NCBI
sequence positions of the TATA boxes are shown. (C) ICP4 not only not inhibits the activity of an HSV-2 L/ST ICP4-binding site mutation or deletion construct
but also trans-activates the ICP4-binding site mutant or deleted L/ST promoter reporter. L/ST luciferase reporters were cotransfected with or without ICP4 in 293
cells. p-565�9 and p-428�9 contain upstream L/ST promoter sequences but exclude the ICP4 binding site at the transcription initiation site. p-565�14M
contains the upstream L/ST promoter sequence with a mutated L/ST ICP4-binding site. p-565�37 and p-428�37 contain the upstream L/ST promoter sequence
and the wild-type L/ST ICP4-binding site. (D) Dose dependence of ICP4 on regulation of L/ST promoter is analyzed by cotransfecting different amounts of
HSV-2 ICP4 plasmid. Both the repression of wild-type L/ST promoter reporter (p-565�37) and the activation of the ICP4-binding deletion promoter reporter
(p-565�9) is ICP4 dose dependent, suggesting that HSV-2 ICP4 likely plays a double role in regulating L/ST promoter. (E) Activation of the L/ST promoter by
ICP4 is not dependent on an ICP4-binding sequence. ICP4 is capable of inhibiting a series of successive deletion promoter reporters (p-565�14M, p-254�14M,
and p-131�14M) containing a mutated ICP4-binding site, but ranging in start position from bp 565 to bp 131 upstream of the L/ST dominant transcription
initiation site, in transfected 293 cells. An L/ST core promoter reporter (p-71�12) containing �71 bp sequences upstream of the dominant transcription
initiation site showed drastic reduced promoter activity; however, it is still capable of being activated by ICP4 after normalized with the Renilla luciferase control.
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appears to be the dominant transcription initiation site for L/ST.
The putative HSV-2 L/ST ICP4-binding sequence closely resem-
bles the HSV-1 L/ST ICP4-binding sequence (Fig. 2B). HSV-2
ICP4 inhibits L/ST luciferase reporters, including p-565�37 and
p-428�37, that contain the putative ICP4-binding sequence (Fig.
2C), but does not inhibit L/ST reporters that do not contain the
wild-type putative ICP4-binding sequence (p-565�9, p-428�9,
and p-565�14M) (Fig. 2C and D). ICP4 transactivates L/ST pro-
moters that do not contain the wild-type ICP4-binding sequence,
in contrast to findings with the LAT ICP4-binding site mutation
(in Fig. 1E). Furthermore, activation or inhibition of these L/ST
promoter and mutant reporters depends on ICP4 dose (Fig. 2D).
Although in the absence of ICP4 binding sites, ICP4 is expected to
activate minimal promoters containing only TATA homologies
(37), normalization of the L/ST firefly luciferase reporter activity
to the activity of cotransfected pRL-Ts (a thromboxane synthase
Renilla luciferase reporter (36) likely corrected for any nonspecific
ICP-4 induced activation of the basal promoter. Thus, the dose-
dependent activation by ICP4 of the ICP4 site-deleted L/ST mu-
tant promoter was unexpected. To further investigate whether, in
addition to the ICP4-binding sequence at the L/ST transcription
initiation site, there is an ICP4-binding site upstream of the L/ST
promoter, a series of successive deletion constructs were made, all
containing a mutated ICP4-binding site but ranging in start posi-
tion from bp 565 to bp 131 upstream of the L/ST dominant tran-
scription initiation site (Fig. 2E). Although deletions from the 5=
end of the L/ST promoter reduced promoter activity in trans-
fected cells, these modified promoters were still activated by ICP4
(Fig. 2E), so specific sequences responsible for HSV-2 ICP4 acti-
vation of the L/ST promoter in ICP4 deletion mutants were not
identified. This suggests that the mechanism for this activation
might be indirect. An additional L/ST core promoter reporter,
p-71�12 containing the sequences from 71 bp upstream of the
L/ST dominant transcription initiation site (nt 125799) to just
downstream of the TATAA box, excluding the ICP4-binding se-
quence, was constructed by cloning synthetic oligonucleotides
into the pGL3-Basic vector. The additional 60-bp deletion in the
L/ST promoter from bp �131 to bp �71 dramatically reduced
L/ST promoter reporter activity, suggesting that the sequence be-
tween bp �131 and bp �71 is required for efficient L/ST pro-
moter activity. However, ICP4 was still capable of activating the
minimal promoter contained in p584-585. Since no obvious
ICP4-binding sequences were identified within the 130-bp L/ST
core promoter region, this suggests that HSV-2 ICP4 likely specif-
ically activates the L/ST core promoter by interacting with other
basic transcription factors specific to the L/ST core promoter,
rather than directly interacting with an ICP4-binding sequence.

Northern blot analysis of ICP34.5, L/ST and ICP0 transcripts
in HSV-2-infected cell culture. L/ST is transcribed antisense to
and completely overlaps ICP34.5. Northern blot analysis of total
RNAs from HSV-2-infected Vero cells using an ICP34.5-specific
RNA probe, an L/ST-specific RNA probe, and a DNA probe spe-
cific to both ICP34.5 and L/ST indicates that in productive infec-
tion, HSV-2 L/ST is transcribed at levels too low to be detected by
Northern blotting (Fig. 3A to C), a finding consistent with the
reported Northern blot results for HSV-1 L/ST (34). This result
also suggests that HSV-2 ICP4 efficiently downregulates L/ST ex-
pression in infected cell culture. Nonspecific signals were detected
using the HSV-2 L/ST-specific RNA probe, likely due to extremely

high GC content and repeat sequences in the L/ST-ICP34.5 re-
gion.

The ICP34.5-specific RNA probe identified 6 discrete RNA
transcripts ranging from approximately 1.3 to 9 kb. Based on the
previously determined ICP34.5 transcription initiation site (2)
and the predicted poly(A) signal site for ICP34.5, the 1.3-kb tran-
script likely corresponds to the monocistronic ICP34.5 mRNA.
Since miR-I is expressed antisense to exon 1 of ICP34.5 (Fig. 3E),
miR-I is expected to reduce both the mRNA transcript and
ICP34.5 protein expression via miR-I specific RNAi-induced si-
lencing complex (RISC). Indeed, both the 1.3- and the 4.4-kb
transcripts were previously observed and was shown to be a spe-
cific target of miR-I, which efficiently reduces ICP34.5 expression
(9). Similarly, miR-III is completely complementary to the coding
sequencing of ICP0, and was shown to reduce expression of ICP0
by reducing the quantity of mRNA transcripts containing the
ICP0 sequences and by inhibiting the translation through miR-
III-specific RISC (2). The relative positions of miR-I, miR-II, and
miR-III are shown in Fig. 1A and Fig. 3E. The 4.4-kb transcript is
of a size that would correspond to an ICP34.5-ICP0 bicistronic
mRNA. A 4.4-kb band is also observed with the ICP0-specific
probe, supporting the hypothesis that this band represents a bicis-
tronic ICP34.5-ICP0 RNA (Fig. 3D and E). Transfecting miR-III,
which targets ICP0 exon 3, into the cells prior to infection reduced
ICP34.5 expression by ca. 52%, suggesting that any ICP34.5 pro-
duced from this bicistronic mRNA is also a target for miR-III and
the ICP34.5-ICP0 bicistronic mRNA can produce ICP34.5 (Fig.
3F). The 2- and 3-kb bands may represent alternative splicing
products using the 5= splicing site of ICP34.5 and a 3= splicing site
of ICP0 or another cryptic splice site in ICP0, since a weak 2-kb
band is also seen with the ICP0 probe and the 3-kb band would
overlap the strong ICP0 signal with the ICP0 probe. However, no
corresponding products were obtained by reverse transcription-
PCR (RT-PCR) (data not shown), possibly due to the high GC
content and repeat sequences in this region.

Identification of the putative miR-H6 promoter and tran-
scription start site. HSV-2 miR-H6 is expressed in both latently
and acutely infected guinea pigs and mice (1, 26) from sequences
upstream of the LAT promoter (relative to the LAT) but from the
strand opposite the LAT. The miR-H6 primary transcript and
promoter have not been described. A primary miR-H6 mRNA was
not detectable in total RNAs from HSV-2-infected cells using
Northern blot with miR-H6-specific probes (data not shown). We
were also unsuccessful at mapping the primary miR-H6 transcrip-
tion initiation site using the same total RNA sample from infected
cells that we used to identify the primary LAT transcription initi-
ation site or the same RNA from pPstI-HincII-transfected cells
that we used to identify the L/ST transcription initiation site (data
not shown). Previous experiments showed that deleting the LAT
promoter and part of the LAT exon 1 region abolished miR-H6
expression in vivo and that the NotI-NotI fragment (which con-
tains the LAT promoter) has bidirectional promoter activity (2),
suggesting that the LAT promoter and the LAT exon 1 region
might contain promoter sequences for both primary miR-H6 and
LAT. The LAT TATA box is the only potential TATA box in this
region, so we previously speculated that the LAT TATA box could
be bidirectionally active for both the LAT and primary miR-H6.

To test whether the LAT TATA box is required for miR-H6
direction promoter activity, we constructed two luciferase report-
ers: p-650�106 that includes most of the LAT exon 1 sequence but
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terminates 33 bp upstream of the LAT TATA box and p-650�74
that includes LAT exon 1 sequence and the LAT TATA box (Fig.
4A). Both reporters showed strong (20- to 30-fold over baseline)
luciferase activity, suggesting that the LAT TATA box or se-

quences immediately upstream of it are likely not required for
primary miR-H6 promoter activity. In addition, inclusion of se-
quence 33 bp upstream of the LAT promoter slightly reduced
pri-miR-H6 promoter activity, suggesting that there is a negative

FIG 3 Northern hybridization of HSV-2-infected Vero cells, using probes that detect ICP0, L/ST, and ICP34.5. Total RNA from Vero cell infected with HSV-2
at 0, 8, and 22 h postinfection (hpi) was separated by denatured agarose gel, blotted onto a membrane, and detected with an ICP34.5-specific DNA probe (A), an
ICP34.5-specific RNA probe (B), an L/ST-specific RNA probe (C), or an ICP0-specific DNA probe (D). (E) Illustrated diagram of the ICP34.5-ICP0 region and
probes used in the Northern blot analyses. Monocistronic ICP34.5 and bicistronic ICP34.5/ICP0 are labeled in the diagram. The relative position of miR-I and
miR-III are also labeled in the diagram. (F) HSV-2 expresses both a monocistronic ICP34.5 and an ICP34.5/ICP0 bicistronic mRNA. Vero cells pretransfected
with 20 nM synthetic miR-I, miR-II, and miR-III, together with or without miR-III inhibitor, at 6 h prior infection with HSV-2 at an MOI of 2. Cells were
harvested at 16 hpi, and total proteins were analyzed by Western blotting with the anti-HSV-2 ICP34.5 antibody. The same membrane was stripped prior to
incubation with the anti-HSV-2 ICP0 antibody and subsequently with the anti-beta tubulin antibody. NIC, no-infection control. NS siRNA, nonspecific
synthetic siRNA. The intensities of ICP34.5, ICP0, and tubulin signals were quantified by using ImageQuant TL8.1 software (GE Healthcare). The intensities of
ICP34.5 and ICP0 signals were normalized to the intensity of corresponding tubulin signals and are labeled underneath the panel.
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FIG 4 Investigation of the miR-H6 promoter. (A) Mapping of pri-miR-H6 promoter activity. The left panel is the diagram of two pri-miR-H6 promoter
luciferase reporters, p-650�106 that includes most of the LAT exon 1 sequence ranging from bp �650 to bp �106 relative to the dominant pri-miR-H6
transcription initiation site (nt 119544) as determined in the panel B, and p-650�74 that includes LAT exon 1 sequence ranging from bp �650 to bp �74 relative
to the dominant pri-miR-H6 transcription initiation site (nt 119544). Both pri-miR-H6 reporters (p-650�106 and p-65�74) show strong promoter activities
when transfected in 293 cells compared to pGL3-Basic vector. The luciferase activity is normalized with cotransfected pRL-Ts Renilla luciferase activity. This
figure is representative of three independent experiments that yielded similar results. (B) Mapping of the 5= transcriptional initiation site for miR-H6 primary
transcript. Total RNAs from 293 cells transfected with reporter plasmids containing the potential pri-miR-H6 promoter region were used to map the 5=
transcription imitation site. (C) Diagram of miR-H6 primary mRNA transcription site. pri-miR-H6 does not use the LAT TATA box but is transcribed from a
TATA-less promoter and initiates upstream of the LAT TATA box. The LAT ICP4-binding site, the LAT TATA box, and the positions for oST687 and oST686
used to clone the p-650�74 and p-650�106 are underlined. *, Transcription initiation site. (D) miR-H6 is below the detection limit of Northern blot in cells
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correlation between pri-miR-H6 promoter and LAT promoter
activities. We next used luciferase-specific primers to map tran-
scription start sites in total RNA from cells transfected with these
two luciferase reporters. The 5= ends of the transcripts of the po-
tential primary miR-H6 transcripts (nt 119544, 119545, 119543,
and 119525) mapped using p-650�106 and p-650�74 are iden-
tical, with two initiation sites 17 bp apart (Fig. 4B and C). Nucle-
otide 119544 appears to be the dominant transcription initiation
site. Although miR-H6 is readily detectable in infected cell cul-
tures, miR-H6 is below the Northern blot detection limit in cells
transfected with pSSK (which contains the promoter and coding
sequence of both LAT and primary miR-H6) with or without
pICP4 (Fig. 4D). This result suggests that LAT promoter activity
antisense to the primary miR-H6 is much stronger than the
miR-H6 promoter activity. However, using a miR-H6 specific RT-
PCR assay, miR-H6 is detectable in cells transfected with pSSB, a
LAT plasmid containing the LAT promoter, LAT exon 1, LAT
intron, and partial LAT exon 2, excluding the ICP0 promoter
sequence (Fig. 1A and Fig. 4E). Unlike miR-I (Fig. 4D), miR-H6
expression is not affected by the presence of ICP4 (Fig. 4E), likely
because the LAT ICP4-binding site does not overlap the miR-H6
initiation site or promoter region, being located approximately 17
to 35 bp downstream of the primary miR-H6 transcription initi-
ation sites.

The LAP2 region is not required for miR-H6 expression in
the ganglia of infected guinea pig during latency. To investigate

the role of sequences further upstream (relative to miR-H6) on
miR-H6 expression, we used a mutant virus, �LAT-P2, in which
has a 339-bp deletion in LAT exon 1 sequences between the 5= end
of the primary LAT and the 5= end of the LAT intron (from nt
119770 to nt 120108) (Fig. 5A). Mice were inoculated corneally
with �LAT-P2, the LAT promoter/partial exon 1 deletion mutant
�LAT, and wild-type HSV-2. miR-I, miR-H6, and viral DNA copy
number were assayed from TG extracted from these animals 30
days postinoculation. Consistent with our previous observation,
miR-I and miR-H6 were not detected in �LAT-infected ganglia by
real-time PCR (Fig. 5B), suggesting the LAT NotI-NotI sequences
(which contains the LAT promoter and 220 bp of the LAT exon 1
sequence) are required for detectable miR-H6 expression during
latency in vivo. miR-I and miR-H6 expression in �LAT-P2-in-
fected ganglia was only slightly lower than that in wild-type HSV-
2-infected ganglia (Fig. 5B), indicating that the LAP2 region is not
required for miR-H6 expression. In a cell culture transfection sys-
tem, we previously showed that LAT promoter sequences are not
required for pri-miR-H6 reporter activity. Thus, the first 220 bp of
LAT exon 1 likely play a more important role in regulating pri-
miR-H6 expression.

DISCUSSION

In the present study, we mapped the transcription initiation sites
for the HSV-2 LAT, L/ST, and primary miR-H6 mRNA using
RNAs from cells infected with HSV-2, transfected with a plasmid

transfected with a LAT plasmid (pSSK) with or without pICP4, an HSV-2 ICP4 expression plasmid (middle panel), although it is detectable in infected cell
cultures (left panel). In contrast, miR-I is detectable by Northern blotting in the pSSK-transfected cells, and ICP4 reduces miR-I expression in the transfected cells
(right panel). pSSK contains the entire LAT promoter and LAT intron, including both miR-I and miR-H6 coding sequence (see Fig. 1A). (E) miR-H6 is detected
by real-time PCR in cells transfected with pSSB (containing the entire LAT promoter, the LAT intron, and a partial ICP0 coding sequence; see Fig. 1A); however,
ICP4 has no impact on the expression of miR-H6 in the pSSB-transfected cells. The positive result for miR-H6 (at 100 copies, with an upper 95% confidence
interval of �10,000 copies) reflects the assay background in transfected 293 cells.

FIG 5 HSV-2 LAP2 region is not essential for miR-H6 expression during latency. (A) Diagram of HSV-2 LAT region and mutant viruses used in panel B.
�LAT-P2 is a LAP2 deletion mutant. �LAT is a NotI-NotI LAT promoter deletion mutant. (B) Expression of both miR-I and miR-H6 are abolished in mice
ganglia latently infected with �LAT but not �LAT-P2. TG from mice infected with �LAT (n 
 12), its rescuant �R (n 
 12), and �LAP-P2 (n 
 12) were
extracted after 21 days postinoculation. Mice (n 
 12) inoculated with plain medium were used as no-infection controls (NIC). Six mouse TG from three mice
of each group were pooled, and each group thus contained four pooled TG samples. The error bar represents the standard deviations of four pooled samples in
each group (each containing six ganglia from three mice). Total RNA and DNA were prepared from these pooled TG. The positive result for miR-I and miR-H6
(at �60 copies, with an upper 95% confidence interval of �100 copies) reflects the assay background in mouse TG.
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containing LAT sequence, and transfected with a plasmid contain-
ing the putative primary miR-H6 promoter, respectively. We
found that although ICP4 inhibits the expression of LAT and L/ST
through the ICP4-binding site at the transcription initiation site, it
had no impact on the expression of the primary miR-H6 in trans-
fected cells. We also found that the LAT promoter and the adja-
cent 220-bp LAT exon1 sequences, and not the downstream LAP2
sequences, are critical for efficient expression of miR-H6 and the
LAT-encoded miRNAs in infected ganglia during latency.

Recent studies showed that both HSV-1- and HSV-2-encoded
miRNAs reduce the expression of ICP0 and ICP34.5. This likely
reduces viral replication in neurons and contributes to the pheno-
type attributed to the LAT (2, 8, 9). ICP4, as a key regulator of
miRNA expression, thus likely plays an important role in this pro-
cess. ICP4 expression likely also accounts for reported reduced
expression of LAT and LAT-associated miRNAs in an explant re-
activation model (38) and soon after induction of reactivation in
latently infected ganglia cultured with or without nerve growth
factor or epidermal growth factor (39–41). Thus, viral genes on
the LAT strand (LAT and L/ST) appear to reduce viral replication
in neurons, while genes on the opposite strand (ICP4, ICP34.5,
and ICP0) appear to promote viral replication in neurons, with
ICP4 as the master regulator of this cassette of genes that influence
the outcome of neuronal infection.

ICP4’s dual role in regulating L/ST expression is also interest-
ing. As with HSV-1 L/ST (29, 33, 34, 42), HSV-2 L/ST is difficult to
detect in cell culture infected with wild-type virus (Fig. 3). Al-
though ICP4 occupation of the HSV-2 L/ST ICP4-binding site
during lytic replication was not directly demonstrated, viruses
with mutations in the HSV-1 L/ST ICP4-binding site show signif-
icant increases in L/ST expression (29, 42) and of HSV-1 miR-
LAT-ICP34.5 (also named miR-H4, and a homolog of HSV-2
miR-II) (2), leading to reduced expression of ICP34.5 (29, 42) in
infected cell culture, indicating that HSV-1 L/ST is tightly con-
trolled by ICP4 by interaction with the ICP4-binding site during
lytic replication. The present finding that ICP4 also influences
HSV-2 L/ST expression suggests a similar mechanism for HSV-2.
Although ICP4 acts through the ICP4-binding site to reduce L/ST
expression, HSV-2 ICP4 dramatically activates the L/ST promoter
in a dose-dependent manner when the L/ST ICP4-binding site is
disrupted, possibly by interacting with essential transcriptional
factors to increase the L/ST promoter activity (43, 44). This im-
plies that under circumstances that reduce ICP4 binding to its site
near the L/ST transcription start site, ICP4 may increase L/ST
expression and thus lead to further increased expression of miR-I
and miR-II.

In infected cell culture, ICP34.5 is transcribed as both a mono-
cistronic and an ICP0-ICP34.5 bicistronic mRNA, likely because
polyadenylation at the ICP34.5 poly(A) site is inhibited during
late viral infection. Usually, the splicing efficiency of the second
ORF in bicistronic transcripts is reduced dramatically due to
greater distance to the 5= cap structure, and the resultant intron-
containing transcripts tend to be trapped in the nucleus and sub-
sequently degraded (45). Here we show that miR-III, which tar-
gets ICP0, also reduces ICP34.5 expression, suggesting that some
bicistronic mRNAs are exported to the cytosol and used as the
template for the translation of HSV-2 ICP34.5. Thus, the three
most common LAT-strand miRNAs all target ICP34.5, which is
consistent with a high level of importance to the virus of main-
taining tight control over ICP34.5 expression. It is interesting that

HSV-2 possesses many mechanisms for controlling ICP34.5 ex-
pression, including the ICP34.5 promoter, the LAT promoter
(which produces ICP34.5-inhibiting miRNAs), the L/ST pro-
moter (which produces ICP34.5-inhibiting miRNAs), ICP27
(which inhibits ICP34.5 splicing), and ICP4 (which regulates lev-
els of LAT and L/ST and thus the levels of the miRNAs that they
produce). Northern blot analysis of HSV-1 ICP34.5 identified
three significant transcripts, of 1.4, 3.5, and 5 kb (46). The 3.5- and
5-kb transcripts were proposed to be ICP34.5 readthrough tran-
scripts that contain ICP0 coding sequences, although no experi-
mental evidence was provided. The similar transcriptional pattern
of HSV-1 and HSV-2 ICP34.5 expression suggests a conserved
mechanism for ICP0-targeting miRNA in regulating ICP34.5 ex-
pression.

In LAT exon 1 sequences, we identified promoter activity that
likely is responsible for miR-H6 expression from the strand oppo-
site LAT. The function of LAT exon 1 sequences in latency and
reactivation is unclear (19, 35, 47–54), with a possible LAT-inde-
pendent role in viral recurrence reported in HSV-1. The miR-H6
primary transcript, which starts just downstream of the LAT tran-
scription start site, is likely too unstable to allow direct detection of
the primary transcript in infected cells. Because, during latency,
levels of HSV-1 and HSV-2 miR-H6 are comparable to those of
miR-H2 or miR-III (1, 10, 26, 55), the relative balance of the
bidirectional transcription for LAT and primary miR-H6 in vivo
during latency is likely regulated differently from that in cell cul-
ture. Unlike the other HSV-2 miRNA promoters studied here, this
promoter is not ICP4 responsive. Sequences more than 220 bp
upstream of this promoter are not essential for miR-H6 expres-
sion. We showed previously that, in contrast to a report for HSV-1
miR-H6, HSV-2 miR-H6 does not target its corresponding ICP4
(26). Although the role and target of HSV-2 miR-H6 is unknown,
and abrogation of its expression by insertion of a polyadenylation
site directly upstream of the miRNA had no influence on acute
viral infection or recurrence (26), it is possible that miR-H6 pro-
moter sequences in exon 1 could be important for viral latency
and recurrence phenotypes. During latency, these sequences (in
HSV-1) are enriched for euchromatin marks (56–59), likely play-
ing a role in the expression of miR-H6 during latency and thus
possibly also playing a role in the activity of the nearby LAT pro-
moter.

HSV-1 L/ST encodes two ORFs, ORF-O and ORF-P, which can
reduce the synthesis or block the expression of HSV-1 ICP4 in
productive infection (33, 60). However, we are unable to find an
HSV-2 homolog of ORF-O or ORF-P in HSV-2 L/ST. A hypothet-
ical 130-amino-acid ORF at �220 bp downstream of the HSV-2
L/ST start site (nt 126019 to nt 126048) has no homology to
HSV-1 ORF-P, suggesting that L/ST more likely functions
through miRNAs. A hypothetical 192-amino-acid ORF at �300
bp downstream of the HSV-2 primary miR-H6 transcript start site
(nt 118257 - nt 119198) has no corresponding ORF in HSV-1.
Since the primary miR-H6 transcript is degraded to generate ma-
ture miR-H6, pri-miR-H6 likely also functions via miRNA instead
of protein, although it is not known whether the hypothetical
protein potentially encoded by HSV-2 pri-miR-H6 is expressed
during latency or lytic infection.

We identified more than one transcription initiation site for
HSV-2 LAT, L/ST, and pri-miR-H6 mRNA in infected or trans-
fected non-neuronal cell cultures. The relevance of the less dom-
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inant sites is unknown, and it is conceivable that these sites may be
more dominant in some cell types in vivo.

Although the exact function of HSV-2 miRNAs are not known,
latently expressed miRNAs are conserved in location between
HSV-1 and HSV-2, and there is increasing evidence that these
miRNAs may play an important role in the switch between latent
and productive infection. Thus, an understanding of how the
mRNAs themselves are regulated is likely to provide important
clues to their function in different types of cells. The ability of
ICP4 to suppress ICP34.5-targeting miRNAs and to (under cir-
cumstances of no ICP4 binding to the L/ST start site) increase
activity of a promoter directing their expression suggest that ICP4
could play a key role in the switch between latency and reactiva-
tion. Of interest, recent studies have focused on the potential
function of VP16 as the possible viral inducer of recurrence (61)—
the present study suggests that ICP4 should be considered a can-
didate for this role as well.
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