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Abstract: Gene-based therapies for neurological diseases continue to develop briskly. As 

disease mechanisms are elucidated, flexible gene delivery platforms incorporating 

transcriptional regulatory elements, therapeutic genes and targeted delivery are required for 

the safety and efficacy of these approaches. Adenovirus serotype 5 (Ad5)-based vectors 

can carry large genetic payloads to provide this flexibility, but do not transduce neuronal 

cells efficiently. To address this, we have developed a tropism-modified Ad5 vector with 

neuron-selective targeting properties for evaluation in models of Parkinson disease therapy. 

A panel of tropism-modified Ad5 vectors was screened for enhanced gene delivery in a 

neuroblastoma cell line model system. We used these observations to design and construct 

an unbiased Ad vector platform, consisting of an unmodified Ad5 and a tropism-modified 

Ad5 vector containing the fiber knob domain from canine Ad serotype 2  

(Ad5-CGW-CK2). Delivery to the substantia nigra or striatum showed that this vector 

produced a neuronally-restricted pattern of gene expression. Many of the transduced 

neurons were from regions with afferent projections to the injection site, implicating that 
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the vector binds the presynaptic terminal resulting in presynaptic transduction. We show 

that Ad5-CGW-CK2 can selectively transduce neurons in the brain and hypothesize that 

this modular platform is potentially adaptable to clinical use. 

Keywords: gene therapy; adenovirus; brain; CNS; Parkinson disease 

 

1. Introduction 

There is great interest in developing gene therapy approaches to treat a wide range of central 

nervous system (CNS) disorders. In particular, gene therapy is considered a potentially valuable 

approach in the treatment of chronic neurodegenerative disorders, such as Parkinson disease, 

Alzheimer disease and amyotrophic lateral sclerosis [1,2]. In each of these disorders, genetic triggers, 

as well as impairments of specific metabolic pathways have been described, which could be amenable 

to gene therapy. There is also strong interest in generalized genetic interventions, such as induction of 

growth factor expression in the brain [3–7]. 

Figure 1. Schematic of fiber modification. Depiction of the Ad5 fiber replacement 

strategy. The fiber-modified Ad5-CGW-CK2 vector is structurally identical to Ad5, except 

for the knob domain of the cell-binding fiber protein. The Ad5 knob domain is genetically 

replaced by that of CAV2. Shaft and knob domains of Ad fiber proteins are shown. 

 
 

Employing viral vectors in the brain poses special challenges. Currently used vector systems do not 

cross the blood-brain barrier and must be directly injected (requiring an invasive procedure, but 

providing physically targeted delivery; a notable exception is adeno-associated virus serotype 9 

(AAV9)) [8–10]. Targeted, regional delivery is essential to minimize potential inflammatory reactions 

and to restrict therapeutic gene expression to the specific region of interest. Limiting transgene 

expression to neurons rather than glial cells may be more effective at interrupting intrinsic 

neurodegenerative processes. The majority of preclinical and clinical gene transfer studies in the CNS 

have utilized AAV-based vectors, which have an excellent immunogenicity profile and established 
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clinical safety [11–16]. However, there are several limitations of the use of AAV. The most significant 

is the relatively small genome (4.7kB), which prohibits the inclusion of large transgenes and makes 

inclusion of disease- or tissue-specific transcriptional regulatory elements difficult or impossible [17].  

Adenovirus serotype 5 (Ad5)-based vectors overcome the genetic packaging limitations of AAV 

(up to 36 kb in Ad vs. 4.7 kB in AAV) and allow for cell-selective transductional targeting of vector 

particles using bi-specific adaptor targeting molecules or by genetic modification of the Ad5 cellular 

attachment protein fiber (Figure 1) [18–23]. In previous studies, we observed that an Ad5 vector with 

native tropism provided limited gene transfer to the brain, with the majority of gene expression in glia 

rather than neurons. We showed that the basis for inefficient neuronal gene delivery was related to 

minimal neuronal expression of the coxsackie and adenovirus receptor (CAR), the primary Ad5 

receptor. Further, transgenic expression of CAR in neurons led to greatly enhanced neuronal gene 

delivery, highlighting the requirement for tropism-modified CAR-independent Ad5 vectors for use in 

the CNS [24].  

In this study, we screened a panel of tropism-modified Ad5-based vectors for transduction of 

neuroblastoma cell lines, which share some properties with human dopaminergic neurons. We selected 

a vector incorporating the canine adenovirus serotype 2 (CAV2) fiber C-terminal knob domain and 

constructed a new Ad5 vector with a reporter cassette encoding green fluorescent protein  

(Ad5-CGW-CK2) for evaluation in models of Parkinson disease therapy. Analysis of gene expression 

in vivo revealed that the tropism-modified Ad5-CGW-CK2 vector provides increased neuronal 

transduction and transgene expression compared to Ad5-CGW. This Ad-based platform may be of 

utility in next generation neuron-specific CNS gene therapy applications. 

2. Results and Discussion 

2.1. Gene Delivery in Dopaminergic Cell Lines Using Tropism-Modified Ad-Based Vectors 

Two dopamine-producing human neuroblastoma cell lines were used to determine which structural 

modification to the Ad5 fiber protein would provide increased transduction. The two cell lines,  

SH-SY5Y and SK-N-BE (M17), while tumor-derived, retain some properties that are similar to the 

dopaminergic neurons that degenerate in Parkinson disease [25]. Additionally, these cells have been 

shown to be refractory to Ad5 vector transduction [26], also a feature of dopaminergic neurons in vivo 

directly related to the basis of this study. 

We compared eleven tropism-modified Ad5 vectors that provide increased gene expression in a 

variety of CAR-deficient cells. These included: (1) fiber knob xenotyped vectors incorporating fiber 

knob domains from ovine Atadenovirus 7 [27], murine adenovirus serotype 1 [28], porcine adenovirus 

serotype 4 [29] and canine adenovirus serotypes 1 and 2 [23,30]; (2) a fiber pseudotyped vector, 

Ad5/3, that contains the Ad3 knob domain [31,32]; and (3) vectors with Ad5 fiber knob domains 

displaying artificial ligands, including poly-lysine (pK7), an integrin binding motif (RGD), pK7 and 

RGD ligands [33] and canine serotype 2 with poly-lysine, CK2-pK7 [34,35]. Gene delivery of each 

vector was compared to an unmodified Ad5 vector (Ad5Luc1) [23]. All vectors and the Ad5 control 

express firefly luciferase under control of the same cytomegalovirus (CMV) promoter. Gene delivery 

was quantified using luciferase-induced luminance.  
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Compared to unmodified Ad5Luc1, gene transfer to human SH-SY5Y cells was most significantly 

augmented by the canine knob-containing vectors, Ad5Luc1CK1 and Ad5Luc1CK2 (12-fold and 

seven-fold, respectively), while vectors containing the entire fiber protein (Ad5Luc1-PF) or knob 

domain (Ad5Luc1-PK) from porcine Ad4 displayed the lowest levels of gene delivery (Figure 2). 

Transgene expression levels in M17 cells were essentially the same as those in SH-SY5Y cells.  

Figure 2. Ad5 vector gene transfer in dopaminergic cells. Luciferase reporter gene activity 

following transduction of SH-SY5Y human neuroblastoma cells with 10 viral particles 

(vp)/cell at 24 hours post-infection. Ad5-PF, porcine fiber and knob; Ad5-OvF, fiber 

protein from ovine Ad7; Ad5-PK, porcine Ad4 knob; Ad5-MK, murine Ad1 knob;  

Ad5-pK7 contains a cationic seven-lysine peptide incorporated into Ad5 knob; Ad5-RGD 

contains an arginine-glycine-aspartic acid peptide with integrin binding specificity 

incorporated into the Ad5 knob; Ad5-RGD/pK7 has both these modifications;  

Ad5-CK2.pK7 contains the CAV2 knob domain modified to include the poly-lysine motif; 

Ad5/3 is pseudotyped with the Ad3 knob domain; Ad5-CK2 has the CAV2 knob domain; 

Ad5-CK1 has the knob domain of CAV1. Statistical significance was assigned using one 

way ANOVA with Bonferroni selected comparison post hoc test. Error bars indicate the 

standard deviation. n = 4, * indicates p < 0.05, ** indicates p < 0.001 vs. Ad5. 

 

2.2. Generation of an Unbiased Imaging Cassette and Incorporation into Fiber-Modified Adenovirus  

We next examined the effect of tropism modification, particularly the incorporation of the CK2 

knob domain, on neuronal gene delivery in vivo. Our selection of the CK2 modification from the 

original vector panel was based on the observed augmentation of gene delivery in vitro, as well as 

studies showing that canine adenovirus 2 (CAV2), which naturally includes the CK2 knob domain, 

provides highly neuron-selective transduction in vivo [36,37].  

Since our initial panel of tropism-modified Ad vectors relies on the quantitation of firefly luciferase 

activity to determine transduction efficiency and immunostaining for firefly luciferase in vivo proved 

unreliable, we developed additional vectors that encode green fluorescent protein (GFP), a more 

effective reporter for in vivo experiments (Figure 3). To allow a comparison with previous work using 
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AAV vectors, we chose to utilize the pan-cellular cytomegalovirus-enhanced (CMV-enhanced) 

chicken-ß-actin (CBA) promoter (CAGp) to drive GFP expression, with mRNA stability enhanced by 

the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) [38,39]. Using the CAG 

promoter, GFP expression would be present in all cell types transduced by the Ad vector. Thus, we 

could assess differences in gene delivery between unmodified Ad5 and CK2-containing vectors to 

cellular subsets in vivo. 

Figure 3. In silico design of a flexible expression cassette. KpnI, NotI, NheI and XhoI 

were designed to flank the pan-cellular cytomegalovirus (CMV)-enhanced chicken-β-actin 

(CAG) promoter, green fluorescent protein (GFP) for visualization of transduced cells and 

the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) to enhance 

mRNA stability. The cassette is designed to allow flexibility in replacing individual 

regions as a platform for additional applications. The unique, directional restriction sites 

that were incorporated utilize common buffers, allowing directional ligation of any insert. 

In addition, these restriction sites were chosen because they are not present in CMV, CAG 

or tyrosine hydroxylase (TH) promoters or other relevant transgenes, such as GFP, glial 

cell line-derived neurotrophic factor (GDNF), neurturin (NTN) and α-synuclein (ASYN).  

 
 

To maintain a flexible, modular expression cassette that would serve as a base for additional gene 

delivery strategies, we undertook in-depth in silico development of our expression cassette to maintain 

robust forward interoperability. This involved cloning unique restriction sites at locations 5’ to the 

promoter, between the promoter and transgene, between transgene and enhancer/poly-A elements and 

3’ to the poly-A. Compatible sites share restriction buffer requirements, yet result in unique overhangs, 

allowing double restriction digests to excise either the promoter or transgene alone or the entire 

expression cassette, while allowing directional ligation of new elements back into the digested 

plasmid. We took additional steps to ensure that the restriction sites in the expression cassette are not 

present within the E1 shuttle plasmid, pShuttle or the Ad5 genome. Further, we verified that the 

restriction sites are not present in other DNA inserts relevant to in vivo models of Parkinson disease, 

including CMV, CAG and tyrosine hydroxylase (TH) promoters or in imaging, therapeutic and 

pathogenic transgenes, including GFP, glial cell line-derived neurotrophic factor (GDNF), neurturin 

(NTN) and α-synuclein (ASYN). Under these design constraints, we developed the pan-cellular 

expression cassette, CBAp-GFP-WPREpA (CGW), depicted schematically in Figure 3.  
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Figure 4. Pattern of Ad5-CBAp-GFP-WPREpA (CGW)-mediated GFP expression of in 

the substantia nigra (SN) and striatum (STR). Confocal immunohistochemical assessment 

of unmodified Ad5-CGW gene expression at the injection site two weeks after delivery to 

either SN (A) or STR (B) shows GFP transgene expression in a broad range of cell types, 

including cells with neuronal and astrocytic morphology, consistent with prior reports. 

Green = GFP expressing cells. Red = TH-positive neurons (A, TH-positive cell bodies in 

SN; B, TH-positive axon projections in STR). Solid arrowheads indicate GFP-expressing 

TH-positive neurons in the substantia nigra pars compacta (SNc). Open arrowheads 

indicate GFP-positive cells with astrocyte morphology. Solid arrows indicate GFP-positive 

cells with neuronal morphology in the STR. Inspection of presynaptic regions to the site of 

delivery did not show GFP transgene expression. LV, lateral ventricle. Bar = 100 µm. 
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Figure 5. Pattern of Ad5-CGW-CK2-mediated GFP expression at the site of stereotactic 

delivery. Confocal immunohistochemical analysis of GFP expression by Ad5-CGW-CK2 

stereotactically delivered to mouse SN (A) and STR (B) results in striking neuronal tropism. (A) 

Low-power image of the injected SN. Only neurons are positive for GFP expression. (a,b,c) 

Magnification of the region outlined in (A). A TH (red, a)/GFP (green, b) double-positive neuron 

is clearly visible surrounded by uninfected dopaminergic (DA) neurons (merge, c). (B) When 

Ad5-CGW-CK2 is delivered to the STR, GFP-expressing cells with neuronal morphology are 

observed. Despite thick (40 µm) sections and assessment of numerous slices around the injection 

site, no non-neuronal GFP expressing cells could be appreciated in the brains of animals 

receiving Ad5-CGW-CK2. Red = TH. Green = GFP. Bar in A = 500 μm. Bar in b (for a, b, c) = 

2.5 μm. Bar in B = 100 μm. 

 

2.3. Intracranial Delivery of Ad5-CGW-CK2 Provides Neuron-Specific Transgene Expression 

Following production, purification and titering of Ad5-CGW and Ad5-CGW-CK2 vectors, we 

determined in vivo transduction profiles in the CNS via stereotactic delivery of 2 × 109 vector particles 

(vp) to the SN or STR. One week post-injection, animals were sacrificed and immunohistochemical 

analysis of GFP expression was performed. Previous reports have described the native Ad5 

transduction profile to include a broad range of CNS cell types centered at the site of injection. These 

include astrocytes, oligodendrocytes and neurons, with a preference for astrocytes [24]. We found a 

similar infection profile when Ad5-CGW is delivered to the SN, showing GFP expression in  

TH-positive neurons, as well as surrounding cells with astrocyte morphology (Figure 4A). Direct STR 

delivery of unmodified Ad5-CGW also displayed an infection profile with both neurons and  

non-neuronal cells expressing GFP (Figure 4B). Determinants of cell type were based on 

morphological analysis in non-TH positive neurons, and thus, it is possible that GFP positive cells are 
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of an alternative cell type. Confocal analysis of coronal slices through the rostral-caudal axis showed 

that gene delivery was tightly restricted to the site of injection, with no appreciable GFP transgene 

expression at sites presynaptic to the injection site. 

Figure 6. Sites of presynaptic GFP expression resulting from stereotactic delivery of  

Ad5-CGW-CK2 to SN. Regions with afferent projections to the SNc showed large 

numbers of neurons infected by Ad5-CGW-CK2. Regions presynaptic to the site of 

injection, including pyramidal neurons of the lateral cortex (A) and neurons of the globus 

pallidus (B), showed robust GFP expression. Additionally, GFP-positive fibers could be 

traced coursing through the STR in bundled myelinated fibers (C, correlating to the human 

internal capsule). All images are flattened confocal z-stacks through the regions indicated. 

Green = GFP. Red = TH. Bar in A = 200 µm, Bar in B and C = 100 µm. 

 
 

We next determined the in vivo transduction profile of Ad5-CGW-CK2. When delivered to the SN, 

we found striking neuronal tropism, with many neurons double-labeled for GFP and the dopaminergic 

marker tyrosine hydroxylase (TH). Based on morphology, there was little evidence of non-neuronal 

staining. Determinants of cell type were based on morphological analysis in non-TH positive neurons, 

and thus, it is possible that GFP-positive cells are of an alternative cell type (Figure 5). A second, and 
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unanticipated difference between Ad5-CGW and Ad5-CGW-CK2 gene expression was the 

transduction pattern observed in neurons distant from the site of injection. While Ad5-CGW 

transduced local neuronal and non-neuronal cells, Ad5-CGW-CK2 led to the infection of a large 

number of neurons in distal regions, particularly those known to have axons projecting into the 

injection site. In SN-injected animals, we observed numerous pyramidal neurons of the lateral cortex 

strongly positive for GFP (Figure 6A, correlating to the presynaptic motor cortex by atlas coordinates), 

as well as robust GFP expression in neurons of the globus pallidus (GP, Figure 6B) and coursing 

through the STR in bundled myelinated fibers (Figure 6C, correlating to the human internal capsule). 

Following striatal injection, there were small numbers of transduced neurons near the injection site 

with the morphology of medium spiny neurons (Figure 5B), but there was robust GFP expression in 

regions with afferent projections to the STR, including the SN (particularly SNc, Figure 7A), as well as 

the dorsal cortex (Figure 7B, correlating by atlas coordinates to the presynaptic somatosensory cortex). 

Figure 7. Sites of presynaptic GFP expression resulting from stereotactic delivery of  

Ad5-CGW-CK2 to the STR. Following injection into the STR, robust transgene expression 

was noted in distal regions with afferent projections to this motor control region. These 

include the SNc (A) and pyramidal neurons of the dorsal cortex (B). B is a flattened 

confocal z-stack through the dorsal cortex. Green = GFP. Red = TH. Bar is 500 µm for 

both panels. 

 

3. Experimental Section  

3.1. In Vitro Fiber-Modified Vector Panel Screen  

SH-SY5Y or M17 cells were plated on 24-well culture plates in DMEM/F12 media supplemented 

with 10% fetal bovine serum (FBS) for 80% confluence the following day and incubated at 37 °C. 

Twenty four hours later, media was changed to low-serum infection media (1% FBS) for one hour 

prior to infection. Each fiber-modified vector (expressing firefly luciferase via the CMV promoter) 

was delivered with a multiplicity of infection (MOI) of 10 vp/cell, in triplicate. Infection proceeded for 



Viruses 2014, 6 

 

 

3302

one hour at 37 °C before virus-containing infection media was gently removed and replaced with 

standard growth media containing 10% FBS. Twenty-four hours post-infection, growth medium was 

removed and cells were gently rinsed with PBS. Luciferase activity was assessed according to the 

manufacturer (Promega, Madison, WI, USA). Briefly, cells were lysed with reporter lysis buffer, 

scraped, and transferred to individual microcentrifuge tubes. Cell debris was pelleted, and 20 μL of 

supernatant were added to 100 μL of luciferase assay reagent. Luminometer readings were normalized 

to the relative light units (RLU) resulting from unmodified Ad5 infection. 

3.2. Construction of the Transgene Expression Cassette by Polymerase Chain Assembly 

Polymerase chain assembly (PCA) was used to produce the CGW transgene expression  

cassette [40]. The CAGp/NotI/GFP segment of our cassette utilized the primer sequence: 

CCGGGGGCGGTGCCCCGCGGGCGGCCGCATGGTGAGCAAGGGC where the underlined 

sequence is complimentary to the 3’ end of the CAGp, the gray highlighted sequence is a de novo NotI 

restriction site and the plain-text sequence is complimentary to the 5’ end of GFP. To  

complete the cassette, we designed a 5’CAGp primer incorporating a KpnI restriction  

site (AAAAGGTACCATCGAGGTGAGCCCCACGTT), a 3’ GFP/NheI/5’ WPRE primer 

(GAGCTGTACAAGTAAGCTAGCAATCAACCTCTGGATTACAA) and a 5’ WPRE/XhoI primer 

(GGAATTTTTTGTGTCTCTCACTCGAGAAAA). Using the appropriate primers and the source 

template for CAGp, GFP or WPRE-polyA, 3 PCR reactions were performed to derive the three 

overlapping segments containing the appropriate restriction sites (GC-Rich PCR system, Roche 

Applied Science, Mannheim, Germany). Using the three overlapping segments, we performed an 

extension step to create a template of the full-length CGW cassette and, finally, amplified this cassette 

using the distal 5’ and 3’ primers, producing the complete KpnI/CAGp/NotI/GFP/NheI/WPRE-pA/XhoI 

construct. 

3.3. Generation of Recombinant Adenovirus Vectors 

The CGW transgene expression cassette described above was inserted into the multiple cloning site 

of the E1 shuttle plasmid pShuttle to generate pShuttle-CGW. The recombinant Ad5 genome 

containing the wild-type Ad5 fiber gene was derived by homologous recombination in E. coli BJ5183 

with PacI-linearized rescue plasmid pAdEasy1 and PmeI-linearized pShuttle-CGW. The recombinant 

Ad5 genome containing the chimeric Ad5 fiber with the CK2 knob domain was derived similarly, but 

required a derivative of pAdEasy1, wherein the Ad5 fiber was replaced by a chimeric fiber 

incorporating the knob domain of CAV2. The resultant Ad5 genomic clones were sequenced and 

analyzed by PCR to confirm the presence of GFP and Ad5 hexon genes. Validated genomic clones 

were transformed into DH5α E. coli and upscaled. 

Genomic clones were linearized with PacI and transfected into HEK293 cells using 

polyethylenimine (PEI). All vectors were propagated on HEK293 cells and purified by double 

equilibrium centrifugation through CsCl gradients followed by dialysis to remove CsCl. The viral 

particle (vp) concentration was determined by absorbance at 260 nm by the method of Maizel et al. by 

using a conversion factor of 1.1 × 1012 vp/absorbance unit [41].  
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3.4. Stereotactic Vector Delivery 

To determine the transduction profile of Ad5 vectors in vivo, we stereotactically delivered 2 × 109 

viral particles (vp) of Ad5-CGW-CK2 or Ad5-CGW in a 2-μL volume to either the SN or STR using 

five animals per group. Mice were anesthetized with inhaled isoflurane and immobilized on a 

stereotactic frame. The skull was exposed, and bregma was located. The coordinates for right SN 

injection were: anterior-posterior, −3.1 mm from bregma, medio-lateral, −1.2 from midline and  

dorso-ventral, −3.8 from the dura. The coordinates for right STR injection were: anterior-posterior, 

+0.8 mm from bregma, medio-lateral, −1.7 from midline and dorso-ventral, −3.4 from the dura. Vector 

was injected at a flow rate of 0.25 µL/minute over eight minutes, followed by two minutes for 

diffusion before the syringe was slowly retracted. The incision was sealed, and animals were allowed 

to recover on a warming pad. 

3.5. Immunohistochemistry 

One week post-injection, animals were deeply anesthetized and transcardially perfused with 4% 

paraformaldehyde in phosphate buffered saline (PBS). Brains were removed and post-fixed for two 

hours at room temperature before cryopreservation by impregnation with 30% sucrose in PBS for 48 

hours at 4 °C. Tissue was flash frozen in isopentane on dry ice, and 40-μm sections were cut using a 

sliding microtome and collected as free-floating tissue in PBS:glycerol, 1:1. For GFP and TH staining, 

floating sections were blocked with 6% normal goat serum for 60 minutes followed by incubation with 

mouse anti-GFP 1:10,000 (MAB3580, Millipore, Billerica, MA, USA) and rabbit anti-TH 1:2000 

(P40101-0, PelFreez Biologicals, Rogers, AR, USA) for 24 hours at 25 °C. Tissue was then washed in 

PBS, followed by incubation in a 1:5000 dilution of alexa-488 conjugated goat anti-mouse (Molecular 

Probes, Carlsbad, CA, USA) and a 1:500 dilution of alexa-555 conjugated goat anti-rabbit (Jackson 

Immunoresearch, West Grove, PA, USA) secondary antibodies. Slides were then coverslipped with 

Vectashield mounting medium (Vector Labs, Burlingame, CA, USA). 

3.6. Imaging 

Confocal images were captured using a Leica TCS-SP5 laser scanning confocal microscope. The 

images were processed using the Leica LAS AF 2.6.3 (Leica Microsystems, Wetzlar Germany) and 

exported as Tiff files and post-processed using Adobe Photoshop CS3.  

4. Conclusions  

The primary goal of this study was to develop and evaluate a tropism-modified adenoviral vector 

for use in CNS gene therapy, particularly for utility in Parkinson disease. We began with in vitro 

analysis of multiple fiber-modified Ad vectors, showing that these modifications can elicit a broad 

range of transduction efficiencies (covering a 100-fold range) in two neuroblastoma cell lines. Based 

on the efficacy of the Ad5Luc1-CK2 vector in vitro, as well as prior in vivo studies using CAV2-based 

vectors [35,36], we produced and evaluated a new CK2 knob-modified Ad vector (Ad5-CGW-CK2). 

This vector exhibited strong neural tropism, with negligible transduction of non-neuronal cells based 

on morphological assessment. Surprisingly, Ad5-CGW-CK2 also exhibited a pattern of neuronal 
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transgene expression that included neurons with afferent projections to the site of vector delivery. 

These data led us to propose that the binding target for this vector is present on presynaptic terminals, 

facilitating a presynaptic pattern of transduction that warrants further study.  

When screening our panel of tropism-modified Ad5-based vectors in vitro, we measured firefly 

luciferase activity to identify tropism-modified vectors that provided markedly increased gene 

expression compared to standard Ad5 (Figure 2). While fiber-mediated tropism modification is by far 

the most likely cause of the increased gene expression observed in vitro, we cannot rule out that other 

factors (such as more efficient intracellular trafficking of internalized vector particles) may also 

contribute to increased gene expression. Indeed, the fiber protein is a major determinant in intracellular 

trafficking and the fate of internalized virions [42–44]. Numerous studies have shown that many Ad5 

vectors containing structurally-modified Ad5 fibers or alternate serotype fibers exhibit intracellular 

trafficking defects resulting in reduced and/or delayed gene expression compared to native  

Ad5 [42–45]. A similar property would only serve to underestimate the relative transduction efficiency 

of the fiber-modified vectors used in this study. More important to our primary findings regarding 

neuronal gene delivery in vivo is that native Ad5 and canine adenovirus serotype 2 (CAV2), the virus 

from which the fiber knob domain of Ad5-CGW-CK2 was derived, were observed to have virtually 

identical kinetics of internalization, endosomal escape, nuclear localization and replication [46].  

The Ad5-CGW and Ad5-CGW-CK2 vectors are isogenic, except for the fiber knob domain. This 

eliminates variables that could otherwise confound side-by-side comparison, such as variations in 

transgene expression linked to non-identical promoters and variations in vector production. To 

accomplish this, we included identical pan-cellular expression cassettes and manipulated only the  

C-terminal knob domain of the fiber protein. Our results confirm that the CK2 fiber modification alone 

is sufficient to restrict vector transduction to neurons, and the receptor moiety appears to be present 

both on the postsynaptic neuron (resulting in the expected local transgene expression) and on the 

presynaptic terminal (resulting in a presynaptic pattern of expression). We have yet to identify the CK2 

target on these cells, although other groups have identified potential binding partners for canine 

adenovirus serotype-2 (CAV-2) that naturally uses the CK2 knob domain [47–49]. Further studies into 

the neuronal target(s) utilized by the CK2 knob for binding and transducing cells will be necessary to 

shed light on this process. It is not yet clear from our studies whether this additional presynaptic 

pattern of GFP distribution in Ad5-CGW-CK2 infected neurons is the result of a novel mechanism of 

vector particle transport secondary to a capsid-mediated process, the presence of a novel presynaptic 

binding partner or a combination of these; the studies do not elucidate whether the vector, the uncoated 

DNA or the translated transgene are involved in this novel pattern. Since the only difference between 

Ad5-CGW and Ad5-CGW-CK2 is the modification of the external knob domain (Figure 1), the 

additional presynaptic pattern of expression is most likely the result of the knob domain binding a 

partner on the presynaptic terminal that Ad5-CGW does not recognize. Thus, for example, when  

Ad5-CGW-CK2 is infused into the STR, not only is the particle taken up by local cell bodies, but axon 

terminals are additionally targeted, resulting in the above described presynaptic pattern of expression. 

Of note, Castle et al. have shown that transport of AAV9 particles within the neuron is a complex and 

active process involving the anterograde motor kinesin-2 and Rab7-mediated trafficking within the late 

endosome/lysosome for retrograde transport; processes that are almost certainly distinct from the 

mechanism of transgene distribution throughout the cell [50]. Microfluidics studies in primary neuron 
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cultures would help elucidate this mechanism. Additionally, our studies suggest that the CK1 

modification may also have potential utility in neuronal transduction, as indicated by a higher gene 

delivery than the CK2 modification in vitro. While we chose to focus on the CK2 fiber modification, it 

would be of interest to compare the CNS gene delivery of other vectors capable of a high transduction 

of neuroblastoma cell lines (Ad5/3 and CK1). 

The long-term goal of this work is to develop a neuron-targeted gene therapy vector platform that 

can be used in human clinical trials. While our in vivo data showing neuron-restricted transgene 

expression by Ad5-CGW-CK2 is in a murine model, primary screening was performed in human 

tumor-derived cell lines. It would be informative to repeat these in vitro studies on more stringent 

substrates, such as human and mouse primary neuron cultures. It will be important to assess the 

targeting of Ad5-CGW-CK2 in non-human primates and post-mortem human tissue to validate this 

model before evaluation in humans. In addition, we limited our early studies to brain regions affected 

by Parkinson disease, and further study in other brain areas to assess gene delivery profiles will clearly 

be of interest. 

A remaining question is the mechanism by which Ad5-CGW-CK2 provides neuron-restricted 

transgene expression. We have narrowed the likely step to cell attachment and/or internalization, as the 

structure of the fiber knob domain that mediates this process is the only independent variable. It will be 

important to identify the neuronal receptor(s) of the CK2 vector in order to better understand this 

mechanism prior to advancing the vector towards clinical use. 

As described previously, an important strength of Ad5-based vectors is the large payload capacity 

allowing incorporation of tissue-specific transcriptional control elements to regulate the location, 

quantity and duration of transgene expression. Our data shows that fiber modification alone is 

sufficient for transductional targeting, however we have not addressed the use of physiologically 

relevant transcriptional control elements. It is likely that clinical gene therapy strategies, which 

combine transductional and disease-relevant transcriptional controls to fine-tune gene expression, will 

provide the highest therapeutic efficacy, while also maximizing clinical safety. 

In addition to the precise control of transgene expression, the duration of transgene expression is a 

major consideration. Treatment for long-duration degenerative processes will likely require  

long-duration transgene expression. In this regard, prior studies show that high-capacity adenoviral 

vectors (HCAd or “gutless” Ad vectors) can maintain transgene expression in the CNS for over a  

year [37,51]. In general, the CNS appears to be immunologically protected against developing  

a vector-neutralizing immunologic response following repeated exposures [52,53]. Once a more 

detailed understanding of the mechanism of Ad5-CGW-CK2 binding and infection is appreciated, an 

important next step will be the transition of this transductional approach to HCAd vectors. 
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