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ABSTRACT

The UvrD helicase has been implicated in the disas-
sembly of RecA nucleoprotein filaments in vivo and
in vitro. We demonstrate that UvrD utilizes an ac-
tive mechanism to remove RecA from the DNA. Ef-
ficient RecA removal depends on the availability of
DNA binding sites for UvrD and/or the accessibil-
ity of the RecA filament ends. The removal of RecA
from DNA also requires ATP hydrolysis by the UvrD
helicase but not by RecA protein. The RecA-removal
activity of UvrD is slowed by RecA variants with en-
hanced DNA-binding properties. The ATPase rate of
UvrD during RecA removal is much slower than the
ATPase activity of UvrD when it is functioning either
as a translocase or a helicase on DNA in the absence
of RecA. Thus, in this context UvrD may operate in a
specialized disassembly mode.

INTRODUCTION

The Escherichia coli UvrD protein is a superfamily 1 (SF1)
DNA helicase/translocase that functions in methyl-directed
mismatch repair (MMR) (1,2), nucleotide excision repair
(NER) (3–5) and more broadly in genome integrity mainte-
nance. A uvrD− phenotype is characterized by an increased
rate of recombination and by a constitutive induction of the
SOS response (6–8), which controls expression of a num-
ber of DNA repair genes under the control of the LexA
transcriptional regulator (9). Strains containing an overex-
pressed or hyperactive UvrD variant exhibit the opposite
phenotype and are hypo-recombinant and display low mu-
tagenicity (7,10). However, both the hyperactive and the in-
active UvrD confer a DNA-damage susceptibility pheno-
type (7).

The helicase/translocase activity of UvrD has a 3′ to 5′
directional bias (11–13). The preference of the protein for

unwinding DNA duplex substrates with a 3′ tail (12) is uti-
lized directly in several DNA repair pathways. However,
UvrD will also unwind DNA at nicks and at blunt ends
(14). In NER, UvrD interacts directly with UvrB to unwind
a short region of DNA containing a misincorporated de-
oxyribonucleotide (15,16). It also moves RNA polymerase
backward to expose lesions requiring repair (4) and helps
to mediate collisions between transcription and replication
(17). In MMR, UvrD is recruited and positioned by MutL
to displace a significant region of DNA (1–2 kbp) con-
taining an incorrectly incorporated base (reviewed in (18)).
Both NER and MMR are dependent on the classic activ-
ity of the UvrD helicase to unwind DNA. In addition to its
helicase activity, UvrD can displace proteins from ssDNA.
UvrD frees the ter sites of the bacterial chromosome from
the Tus protein, and the translocase and/or helicase activi-
ties of UvrD may be necessary for this function (19).

Another major target of UvrD for protein displacement
from DNA is the RecA protein (6,8,10,20). RecA cat-
alyzes homologous recombination and is involved in non-
mutagenic and mutagenic DNA repair (21–23). RecA is a
DNA-dependent ATPase functioning in the form of a nu-
cleoprotein filament assembled on DNA (24,25). A recA−
E. coli strain displays susceptibility to DNA damage (26).
RecA recombination activity is necessary for repair of DNA
damage, especially the double-strand breaks that can ac-
company replication fork collapse.

RecA catalyzes replication fork regression in vitro (27),
and UvrD may remove RecA from replication forks after
repair (6,28). The lethality of a ΔpolAΔuvrD strain (15)
provides additional evidence that UvrD-mediated RecA fil-
ament removal is important for replication fork mainte-
nance. RecA filaments may be toxic under certain condi-
tions when impaired forks are present (28). This hypoth-
esis is supported by the fact that the lethal phenotype of
a �uvrD�rep strain is rescued by a knockout of any of
the recFORJQ genes (28,29). The proteins RecF, RecO and
RecR have been implicated in loading RecA on gapped
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DNA structures, such as collapsed replication forks (re-
viewed in (30)). However, a uvrD knockout strain has an
increased recombination phenotype, while overexpressed
UvrD results in reduced Hfr recombination and mutabil-
ity (10). These observations suggest that UvrD may interact
with RecA filaments throughout the cell. More studies are
needed to understand how the two proteins augment each
other’s functions.

The active form of RecA protein is a nucleoprotein fil-
ament (31,32). Forming most readily on ssDNA, the fila-
ment aligns the bound single strand with homologous se-
quences in a duplex DNA, and promotes a reaction called
DNA strand exchange. ATP is hydrolyzed during strand ex-
change, needed both to promote filament dissociation and
the extensive branch migration associated with strand ex-
change (24,33–39). RecA filaments are nucleated and grow
primarily on the 3′-proximal end. Dissociation occurs pri-
marily on the 5′-proximal end. Due to the polarity of its
movements on DNA, UvrD will normally encounter a
RecA filament at its 3′-proximal end. The current report ex-
plores what happens next.

RecA function is regulated at many levels (40). In ad-
dition to transcriptional regulation as part of the SOS re-
sponse, RecA is subject to autoregulation and to regulation
by other proteins. The autoregulation is brought on by a C-
terminal regulatory flap, encompassing the final 17 amino
acid residues of the protein (41–43). This segment is highly
charged, with seven of the 17 residues featuring negatively
charged side chains. Removal of this C-terminal segment
enhances a wide range of RecA functions (41–44). The regu-
latory proteins include the RecA loaders RecBCD and Rec-
FOR, as well as the positive regulator DinI (45,46) and neg-
ative modulators such as the RecX protein (44,47–51) and
the UvrD helicase considered here.

It is not clear how UvrD mediates the displacement of
RecA filaments. Based on other UvrD functions, there are
arguments for and against a requirement for a direct in-
teraction between the two proteins. UvrD participates in
a number of chromosomal maintenance processes, so tar-
geted recruitment may require direct interactions. For ex-
ample, during MMR UvrD interacts with and is stimulated
by MutL to unwind a long region of DNA duplex (reviewed
in (18)). A reaction lacking MutL would be highly ineffi-
cient due to the low unwinding processivity of UvrD. In
fact, the stimulation by MutL is so strong that UvrD252, a
mutant almost completely ATPase deficient, is still able to
participate in MMR (28,52). Similarly, in NER, UvrD in-
teracts with UvrB via the UvrD C-terminus (16). However,
a C-terminal truncation of UvrD is proficient in NER repair
in vitro, possibly because other areas of UvrD interact with
UvrB. An interesting aspect of the UvrD �C phenotype is
that the cells are more UV irradiation sensitive, which sug-
gests that the interaction between UvrB and UvrD may be
physiologically relevant. In yeast, the homolog of UvrD,
Srs2, interacts directly with the RecA homolog Rad51 in
order to disassemble Rad51 filaments on DNA (53).

The UvrD homolog PcrA, an essential helicase in gram
positive bacteria, facilitates RecA filament removal from
DNA by a mechanism that depends upon the RecA AT-
Pase (54). In brief, when the PcrA helicase encounters the
3′-proximal end of a RecA filament, it halts translocation

and prevents further extension of the RecA filament. The
filament disassembly could then proceed by dissociation of
RecA subunits at the nearby 3′-proximal end when that
subunit hydrolyzes ATP. This dissociation may be facili-
tated in some way by the PcrA. In principle, the displace-
ment mechanism could also be passive, with net disassem-
bly of the RecA filament proceeding as normal from the
5′-proximal end while filament extension was stalled by the
arrested PcrA. If a RecA protein mutant that cannot hy-
drolyze ATP is bound to the DNA, it arrests PcrA translo-
cation, but filament disassembly does not occur (54). A
single-molecule study of PcrA-mediated displacement of
RecA filaments suggests a more active process for PcrA-
mediated RecA displacement that involves the ATPase ac-
tivity of PcrA (55). Potential active and passive RecA dis-
placement mechanisms are contrasted in Figure 1.

In contrast, the mechanism of RecA displacement by
UvrD is little explored. PcrA can substitute for UvrD in
Ter protein removal, suggesting that a specificity of inter-
action with its target is not necessary for UvrD, unless the
PcrA homolog conserves an interaction site with Ter that
has not been identified (19). An active mechanism has been
proposed based on the observation that substoichiomet-
ric levels of UvrD result in disassembly of RecA filaments
in vitro (10). However, a similar effect has been observed
with the RecA inhibitor RecX, which inhibits RecA largely
through passive capping rather than active displacement
(48,49). Finally, the eukaryotic Srs2 homolog appears to
induce a higher ATPase activity in a Rad51 filament (53).
UvrD was unable to produce the same effect on Rad51
(53), although it remains possible that RecA-mediated ATP
hydrolysis is involved in the UvrD-mediated displacement
process as it is for PcrA. Here, we demonstrate that UvrD
removes RecA protein via an active mechanism that re-
quires UvrD-mediated ATP hydrolysis, but does not require
ATP hydrolysis by RecA protein.

MATERIALS AND METHODS

All chemicals were purchased from Sigma and Fisher.
ATP�S was purchased from Roche.

DNA substrates

M13mp18 circular ssDNA was purified as previously de-
scribed (56). M13mp18 linear ssDNA was generated by an-
nealing a primer (ACTCTAGAGGATCCCCGGGTAC) to
the virion DNA and incubating with BamHI restriction en-
zyme (New England Biolabs, R0136). The DNA was puri-
fied by phenol-chloroform extraction and ethanol precip-
itation. Poly(dT) DNA was ordered from Amersham, lot
GG0076. Poly deoxythymidylate (poly(dT)) was purchased
from Midland; the analysis provided indicated nearly all
polymers had a length greater than 250 nucleotides. All
DNA concentrations are reported in terms of total nu-
cleotides rather than total molecules, to facilitate compari-
son with RecA protein concentrations.

Proteins

Wild-type (WT) RecA, RecA E38K K72R, RecA E38K and
single stranded DNA binding protein (SSB) were purified as
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Figure 1. Active versus passive mechanisms for UvrD-mediated RecA displacement. Two of the more straightforward mechanisms are presented. The
active mechanism involves any process in which UvrD actively removes RecA protein from the 3′-proximal end, requiring the UvrD ATPase function. This
may or may not be complemented by RecA filament dissociation from the opposite filament end. In the passive mechanism, UvrD simply encounters the
3′-proximal end and prevents further filament growth there. Filament dissociation occurs entirely from the opposite end and requires the ATPase function
of RecA protein. Other possible mechanisms exist. The work in this study lends support for a mechanism approximating that shown for the active scheme
at top.

previously described (43,57–59). Their concentrations were
determined utilizing the extinction coefficients: RecA: ε280
= 2.23×104 M−1cm−1 and SSB: 2.38×104 M−1cm−1. UvrD
and UvrD K35I were purified as described, and concentra-
tions were determined using the extinction coefficient 1.06
x105 M−1 (monomer) cm−1 for both proteins (60). Pyruvate
kinase and lactate dehydrogenase were ordered from Sigma
(P7768 and L1006, respectively).

ATPase assays

The reaction was set up by allowing first 2 �M of a RecA
variant (except for the experiments shown in Figures 4 and
9, where RecA concentrations were varied as indicated on
the figure) to nucleate on 3 �M M13mp18 circular ssDNA
or lss M13mp18 DNA or lss poly(dT) in 1xRecA buffer (25
mM Tris-OAc (80% cation), pH 7.58, 1 mM DTT, 3 mM
potassium glutamate, 10 mM magnesium acetate, 5% glyc-
erol) for 10 min at 37oC. The reaction included 10 U pyru-
vate kinase and 3 mM phosphoenolpyruvate as a regenera-

tion system, and a coupling system consisting of 10 U of lac-
tate dehydrogenase and 1.5 mM NADH. The reaction was
started by the addition of SSB to 0.3 �M and ATP to 3 mM.
When poly(dT) DNA was used, no SSB was included in the
reaction. The generation of ADP was followed by measur-
ing the consumption of NADH at 380 nm in Cary 300 (Var-
ian) or Lambda 650 (Perkin-Elmer) as previously described
(61). UvrD was added to the reactions 15 min after the start
of the reaction. Total reaction volume was 130 �l final.

Observation of the three reaction stages requires rapid
mixing of components after addition of the UvrD (done in
this study by hand within 5 s of addition). Aggregation of
concentrated UvrD on DNA or RecA filaments or some re-
lated effect may otherwise mask observation of the effects
of UvrD on the total ATPase activity as reported here.

Electron microscopy

A modified Alcian method was used to visualize RecA fil-
aments. Activated grids were prepared as described previ-
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ously (43). Samples for electron microscopy analysis were
prepared as follows. The reaction was set up as the ATPase
assays described above, except no DTT was used. The con-
centration of UvrD used in the experiments was 40 nM, cal-
culated based on total volume. Ten microliter of the reaction
volume was withdrawn and incubated with ATP�S at final
concentration of 3 mM for 1–2 min at 37◦C. The time points
were taken as described below.

For experiments involving WT RecA and ATP, the UvrD
addition occurred 15 min after the start of the reaction, and
time points were taken as follows. The first time point was
taken 10 min after the start of the reaction by the addition
of ATP to 3 mM and SSB to 0.3 �M; the second––6–8 min
after the addition of UvrD as the ATPase rate of the mon-
itored reaction was visibly decreasing and the third––13–
50 min after UvrD addition, either when the ATPase rate
clearly increased or 50 min after UvrD addition the latest.

For experiments involving RecA E38K K72R, the UvrD
protein was added 16 min after the start of the reaction,
and time points were taken as follows. The first aliquot was
taken 10 min after the start of the reaction by the addition of
ATP to 3 mM and SSB to 0.3 �M; the second––6 min after
the addition of UvrD and the third––50 min after UvrD
addition.

For experiments involving RecA �C17, the UvrD protein
was added 15 min after the start of the reaction, and time
points were taken as follows. The first aliquot was taken 8
min after the start of the reaction by the addition of ATP
to 3 mM and SSB to 0.3 �M; the second––5 min after the
addition of UvrD.

The electron microscopy (EM) experiments that were
done only in the presence of ATP�S and not ATP were con-
ducted as follows. RecA (2 �M) was incubated with 3 �M
M13mp18 circular ssDNA, 3 mM PEP and 10 U PK and
1xRecA buffer (see the ATPase experiments) for 10 min at
37oC. Then, ATP�S (3 mM) and SSB (0.3 �M) were added
to the mixture, and that was considered the start of the reac-
tion. After 16 min, UvrD was added to 40 nM. Time points
were taken 10 min after the start of the reaction and 6 and
50 min after the addition of UvrD.

The samples were processed as follows. An 8 �l sample of
the reaction mixture described above was diluted to a final
DNA concentration of 0.0004 �g/�l with 200 mM ammo-
nium acetate, 10 mM Hepes and 10% glycerol (pH adjusted
to 7.5) and adsorbed to an activated Alcian grid for 3 min.
The grid was then touched to a drop of the above buffer fol-
lowed by floating on a drop of the same buffer for 1 min. The
sample was then stained by touching to a drop of 5% uranyl
acetate followed by floating on a fresh drop of the same so-
lution for 30 s. Finally, the grid was washed by touching to
a drop of double distilled water followed by immersion in
two 10-ml beakers of double distilled water. After the sam-
ple was dried, it was rotary-shadowed with platinum. This
protocol is designed for visualization of complete reaction
mixtures, and no attempt was made to remove unreacted
material. Although this approach should yield results that
give a true insight into reaction components, it does lead to
samples with a high background of unreacted proteins.

To determine the proportion of the molecules observed
that were either fully or partially coated by RecA protein
or bound only by the SSB protein, at least two separate re-

gions of two to three independent experiments were counted
at an identical magnification for each sample. ‘Full’ fila-
ments completely encompassed the circular DNA molecule
or had small discontinuities in the regular striated pattern
of the filament. A molecule was considered gapped if it had
a detectable region of SSB-coated DNA of any size. Imag-
ing and photography were carried out with a TECNAI G2
12 Twin Electron Microscope (FEI Co.) equipped with a
GATAN 890 CCD camera. Digital images of the nucleo-
protein filaments were taken at ×15 000 and ×26 000 mag-
nification as is evident from the scale bar.

The observed lengths of the RecA filaments and the
length of SSB-coated DNA were used to assign counted
molecules to five categories: full filaments, medium fila-
ments, small filaments, very small filaments or SSB/DNA
molecules. Linearized DNA molecules, likely originating
from shearing force during pipetting, were also counted.
A RecA filament was considered a full filament if it does
not have a detectable region of SSB-coated DNA or a re-
gion that appeared to reduce the filament length by <10%.
Medium filaments were smaller in length than full filaments,
but still had substantial regions of nucleoprotein filament.
Small filaments were generally less than half the length of
full filaments, and often had regions of obvious SSB bind-
ing. Very small filamented molecules are those with just de-
tectable segments of RecA filamented regions, with the rest
of the molecule coated with SSB. With the total number of
molecules counted as 100%, the percentage of each type of
nucleoprotein filament was calculated. At least four sepa-
rate regions of the grids encompassing at least 500 DNA
molecules for each time point were counted at the identical
magnification for each sample.

Using this same classification scheme, filament measure-
ments have been recently completed for between 10 and 30
molecules from each of these classes, bound to the same ss-
DNA substrate (62). Full filaments averaged 3.23 +/– 0.29
�m in length, with a range of 3.03–3.6 �m. Medium fila-
ments averaged 2.32 �m in length, with a range of 1.73–
2.72 �m. Small filaments averaged 1.28 �m, with a range
of 0.97–1.8 �m. Very small filaments averaged 0.39 �m in
length, with a range of 0.12–0.71.

RESULTS

UvrD inhibits RecA-catalyzed ATP hydrolysis

In this work, we use several assays to follow displacement
of RecA by UvrD. A coupled ATPase assay is used. Al-
though indirect, the ATPase provides a real time view of
reaction progress. Both RecA and UvrD promote ATP hy-
drolysis, but this complication is ameliorated by the very dif-
ferent kcat values of the RecA and UvrD ATPase activities.
UvrD catalyzes ATP hydrolysis at rates that are orders of
magnitude greater than RecA, such that nM levels of UvrD
will hydrolyze much more ATP than �M levels of RecA. To
aid interpretation of the results, the work is complemented
throughout by electron microscopy.

When RecA protein was added to circular single-
stranded DNA at concentrations approximately twice that
required to saturate the available DNA binding sites, the
bound RecA protein hydrolyzed ATP at rates consistent
with its reported kcat of ∼30 min−1 (32,63,64) (Figures 2
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Figure 2. UvrD inhibits RecA-catalyzed ATPase activity. Reactions were carried out as described in Materials and Methods, and contained 3 �M circular
M13mp18 ssDNA and 2 �M RecA protein. The reaction was initiated by addition of ATP (3 mM) and SSB (0.3 �M) as a mixture at t = 0. In the reaction
shown, 50 nM UvrD (30 nM) was added at the point indicated by the arrow. The data following this addition have been corrected for a slight decline in
absorption caused by a dilution effect. The ATP consumption profile can be divided into three stages. The first stage (prior to UvrD addition) reflects the
constant rate of ATPase activity by RecA in the presence of ATP and DNA. A lag stage immediately follows the addition of UvrD and is defined by a
decline in ATPase rate. The final stage is the UvrD stage, characterized by a large increase of ATP consumption (greater than the highest level of ATPase
possible due to the RecA protein present) attributed to UvrD translocation on the DNA after RecA removal. Confirmation of RecA removal is presented
in subsequent figures.

and 3). Based on the much higher values of ATP hydrolysis
by UvrD acting as a helicase (∼70 s−1 (65,66)) or translo-
case (∼190 s−1 (67)), we expected a large increase in ATP
consumption and ADP generation to indicate that UvrD
has been successful in displacing RecA bound to DNA, and
this was the case. However, upon addition of UvrD at nM
levels to established RecA nucleoprotein filaments, a pro-
nounced lag phase appeared prior to the rapid ATP hydrol-
ysis typical of the unencumbered UvrD reaction. UvrD ini-
tially inhibited the ATP hydrolysis observed in the RecA
reaction, in a manner dependent upon the concentration
of UvrD (Figure 3). Under these conditions, the reaction
profile thus has three pronounced stages, depending on the
amount of UvrD included in the reaction. To simplify fur-

ther description of the reaction, we refer to the steady state
of ATP hydrolysis due only to RecA bound to ssDNA as the
RecA stage (Figure 2). The period immediately after UvrD
addition, characterized by a noticeable decline in the ob-
served ATPase rate, is the lag stage. The UvrD stage encom-
passed the final increased rate of ATP hydrolysis that we at-
tribute to UvrD translocation on DNA that has been freed
(or largely freed) from bound RecA protein. The attribution
of this final stage to UvrD is supported by the observation
that the rates of ATP hydrolysis in this stage generally sur-
pass the capacity of the available RecA alone to hydrolyze
ATP under these conditions. This assignment is also sup-
ported by electron microscopy observations presented be-
low, demonstrating that the RecA protein has indeed been
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Figure 3. UvrD effects on RecA filaments are UvrD concentration-dependent. RecA (2 �M) filaments were allowed to form on 3 �M circular M13mp18
ssDNA in the presence of ATP and SSB (0.3 �M) as described in Materials and Methods. After 15 min (arrow), UvrD was added at the concentrations
shown (in nM). The data following this addition have been corrected for a small decline in absorption caused by a dilution effect. The effects of UvrD are
detected through changes in the consumption of ATP. The average rate of ATP hydrolysis in the early RecA stage (prior to UvrD addition) is 30 �M/min
(yielding an apparent kcat (assuming all potential DNA binding sites are occupied by RecA) of 30 min−1), reflecting the near saturation of the 1 �M
available RecA binding sites on the ssDNA.

displaced in this final stage of the reaction. In these exper-
iments, RecA (2 �M) and ssDNA (M13mp18 or poly(dT)
at 3 �M total nucleotide) are preincubated at 37◦C for 10
min. E. coli SSB (0.3 �M monomer) and ATP (3 mM) were
added to initiate ATP hydrolysis, followed by UvrD after
the ATPase reaction is at steady state (usually 15 min after
the RecA reaction is initiated).

As shown in Figure 3, the pattern observed depended
upon the concentration of the added UvrD, although the
three stages were evident under many conditions. The 3
�M circular M13mp18 ssDNA (concentration given in to-
tal nucleotides) translates into ∼0.4 nM M13mp18 ssDNA
molecules. Thus, at 10 nM UvrD, there are ∼25 UvrD
monomers per ssDNA molecule coated with RecA protein.
At this concentration, the rate of ATP hydrolysis never in-
creases above that seen with RecA alone. This amount of
UvrD thus appears to be insufficient to completely displace
the bound RecA protein in the 60 minute time span of the
experiment, possibly due to RecA re-binding. As UvrD con-
centration increases, the three stages become evident at 20
nM UvrD and above. The lag becomes shorter as UvrD
concentration increases, and the effects appear to saturate
with the addition of 40–50 nM UvrD protein, where there
are 100–125 UvrD monomers per DNA molecule.

As controls, the rates of ATP hydrolysis promoted by
UvrD alone under several different conditions are provided
in Figure 4. Panels A, B and C are scaled to facilitate di-
rect comparison from one panel to the next. When UvrD
is added to M13mp18 ssDNA under the conditions of the
experiments of Figures 2 and 3, the rates of ATP hydrolysis
are generally about twice the rates seen in the UvrD stage
of the RecA displacement reaction (Figure 4A; summary in
Figure 4E). If SSB (0.3 �M) is added to ongoing reactions,

the rates appear to trend slightly downward (Figure 4B), but
the changes are generally not statistically significant. Once
bound to ssDNA, UvrD appears to be little affected by SSB.
Adding SSB prior to UvrD results in a substantial decline in
the observed ATPase rates, albeit with no evident lag (Fig-
ure 4C). This might reflect some form of SSB-mediated inhi-
bition in DNA binding by UvrD. The rates seen in the final
UvrD stage are again shown in Figure 4D, and the ATPase
rates are summarized in Figure 4E. The rates seen in the
final UvrD stage of the RecA displacement assays are ap-
proximately half of the rates seen when SSB is added after
UvrD, but greater than the rates seen when SSB is added
prior to UvrD. Our interpretation of this, expanded upon
below, is that the lag stage represents active RecA displace-
ment that is limited by the capacity of UvrD to access free
DNA and/or free RecA filament ends. In the final UvrD
stage, UvrD has accessed a DNA-bound state which allows
it to translocate with minimal inhibition by SSB, perhaps
slowed by intermittent encounters with re-bound RecA fil-
aments. The rates seen in the final UvrD stage would then
be a hybrid situation in which many UvrD molecules were
actively translocating and a few were displacing re-bound
RecA.

UvrD causes RecA filament disassembly

The lags seen in Figures 2 and 3 after UvrD addition could
reflect some aspect of UvrD-mediated removal of the RecA
protein filaments. We utilized electron microscopy to exam-
ine all stages of the reaction.

RecA filaments before UvrD addition at 10 min (RecA
stage), at 21–23 min (lag) and 35 min after addition of 40
nM UvrD (UvrD stage) were visualized, categorized based
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Figure 4. UvrD ATPase activity on circular ssDNA in the absence of RecA
protein. UvrD ATPase rates were determined in the presence or absence of
SSB and RecA. Values on each graph indicate the concentration of UvrD
in nM. (A) UvrD alone (at the concentrations indicated, in nM) on circular
M13mp18 ssDNA. (B) UvrD alone (at the concentrations indicated, in
nM) with SSB (0.3 �M) added at the point indicated by an arrow. (C) UvrD
(at the concentrations indicated, in nM) added to an SSB (0.3 �M)/circular
ssDNA mixture as a substrate. (D) RecA/SSB/circular M13mp18 ssDNA
reaction with UvrD (at the concentrations indicated, in nM) added at the
point indicated by an arrow. (E) Quantification of the rates of UvrD in
graphs A–D. For graphs B and D, the maximum post-UvrD addition rates
observed, obtained at a time when the reaction progress has reached a new
apparent steady state as indicated by approximate progress linearity, are
used.

on filament completeness and counted. The ATPase profile
of the sampled reaction is shown in Figure 5A. Filaments
prior to UvrD addition are shown in Figure 5B, and the lag
and UvrD stage are shown in Figure 5C and D. Figure 5
documents a progressive decrease in RecA-DNA filament
length that begins after UvrD addition. It also establishes
that the higher levels of ATPase during the UvrD stage are
due to UvrD, as there are virtually no RecA filaments left
on the circular M13mp18 ssDNA at this reaction stage. This
eliminates the possibility that the UvrD stage reflects an in-
crease in RecA ATPase activity. The status of the filaments
at each reaction stage is summarized in Figure 5E. UvrD
was not able to enter a UvrD stage characterized by AT-
Pase levels exceeding those expected for RecA alone under
all conditions in these experiments, but EM revealed that
RecA filaments were almost as rare during a prolonged lag
stage as they were during a marked UvrD stage (data not
shown). We discuss factors that affect UvrD function in the
Discussion.

UvrD-mediated ATP hydrolysis is required for efficient dis-
placement of RecA from DNA

To further understand the dynamics of RecA-UvrD antag-
onism, we utilized a UvrD K35I variant that binds DNA
but does not hydrolyze ATP (66). UvrD K35I inhibited the
ATPase activity of RecA (Figure 6A). The pattern strongly
suggests a competition by UvrD K35I with RecA protein
for DNA binding sites in which UvrD K35I blocks or par-
tially blocks RecA filament extension, but disassembly still
occurs. The addition of equal amounts of the WT and mu-
tant UvrD protein are directly compared in Figure 6B. In
multiple trials, the WT UvrD protein consistently produced
a somewhat greater decline in ATPase during its lag phase
than did an equal addition of the K35I mutant protein.
The relatively slow but continuing decline in ATPase due
to addition of UvrD K35I may reflect normal RecA pro-
tein net dissociation of filaments from the 5′-proximal end.
The results indicate that removal of RecA can occur via
normal disassembly of RecA filaments if filament extension
is blocked. The somewhat more rapid ATPase decline seen
with the WT UvrD protein suggests a more active role for
UvrD in RecA removal. The potential for an additional role
of UvrD, besides simply blocking RecA filament extension,
was further explored.

RecA ATPase activity is not necessary for UvrD-mediated
RecA filament displacement from ssDNA

To address the question of active catalysis of RecA disas-
sembly by UvrD more closely, we resorted to the use of
RecA E38K K72R. This variant forms WT-like RecA fil-
aments on DNA. However, the mutant protein binds but
does not hydrolyze ATP. The E38K mutation counters a de-
ficiency in filament formation seen with RecA K72R (58).
Once bound to ssDNA, this mutant protein does not un-
dergo ATPase-mediated disassembly at any significant rate,
and it hydrolyzes ATP with a kcat that is <1% of that of the
WT protein (58). When UvrD is added to pre-formed RecA
E38K K72R filaments, ATP hydrolysis is observed only af-
ter the UvrD addition (Figure 7A). The progress of the ATP
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Figure 5. Electron microscopy of RecA filaments in the presence of UvrD. (A) An ATPase reaction from which samples were taken at the early RecA
stage, during the lag and after the later UvrD stage was achieved. Samples were taken at ∼10 min, 22 min and 35 min, times that correspond to the various
stages. Reaction conditions were identical to those utilized in the reaction of Figure 2, except that 40 nM UvrD helicase was utilized. The RecA stage
(10 min), lag (22 min) and UvrD stage (35 min) of the UvrD-mediated displacement reaction are illustrated in panels B, C and D, respectively. A field
showing SSB–ssDNA complexes by themselves can be found in Supplementary Figure S1. (E) Statistical analysis of the RecA filament distribution in the
samples illustrated in panels B–D. Filament categories are explained in Materials and Methods. In general, full, medium, small and very small filaments
reflect declining filament lengths. Linear molecules are the subset of filaments present on broken DNA circles. Circular ssDNA molecules coated with SSB
(pointed out in panel D) do not contain visible RecA protein. The error bars are representative of a standard deviation of three independent experiments.
Molecules counted (n) = 580, 675 and 870 for the RecA stage (panel B), the lag (panel C) and the UvrD stage (panel D), respectively.

hydrolysis was a function of UvrD concentration. The ad-
vantage of this experiment is that any ATPase activity ob-
served is due only to UvrD. Initially, the ATP hydrolysis
was slow––no more than 50±10 nM ATP/min/nM UvrD.
When sufficient UvrD was present, this slow lag phase was
followed by a rapid increase in rate. We followed up on the
different stages of the reaction using electron microscopy
(Figure 7B, C, D and E). Similarly to experiments con-
taining WT RecA, full RecA nucleoprotein filaments were
formed prior to UvrD addition. When viewed in the elec-

tron microscope, the filaments formed by the mutant pro-
tein (Figure 7B) exhibit somewhat more small gaps or sharp
bends than the WT protein (Figure 5B), and this has been
previously documented (58). Once UvrD was added, a di-
verse range of filament lengths was observed, while the av-
erage length declined with time (summarized in Figure 7E).
Finally, the rapid increase in ATPase rate could be corre-
lated to the near absence of RecA E38K K72R filaments
on DNA (Figure 7D and E). The E38K mutation confers
on this RecA protein variant a relatively rapid nucleation
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Figure 6. Disassembly of active RecA nucleoprotein filaments in the pres-
ence of the ATPase deficient UvrD K35I. (A) Reactions were carried out
as described in Materials and Methods, but with the substitution of UvrD
K35I protein for WT UvrD. The UvrD variant was added at 15 min (ar-
row) at the concentration (in nM) shown next to each ATPase curve. The
data following this addition have been corrected for a small decline in ab-
sorption caused by a dilution effect. The average rate of ATP hydrolysis in
the RecA stage is 27 �M/min (yielding an apparent kcat––assuming the 1
�M potential DNA binding sites are all occupied by RecA––of 27 min−1).
(B) A comparison between the inhibition of RecA ATPase activity by WT
UvrD and UvrD K35I, each added to 50 nM final concentration at 15 min
(arrow).

and enhanced filament stability on ssDNA, even though
ATPase activity is generally too low to measure. The slower
ATPase rates seen for UvrD protein in the UvrD stage (51.7
�M min−1 by 50 nM UvrD in the presence of RecA E38K
K72R protein relative to 425.9 �M min−1 for 50 nM UvrD
with WT RecA protein) may reflect an enhanced capacity of
this mutant RecA protein to compete with UvrD for DNA
binding sites, perhaps via rapid re-nucleation after displace-
ment by UvrD. At higher concentrations of UvrD, RecA fil-
aments are cleared from the DNA and any short filaments
derived from new nucleation events are eliminated rapidly.

Importantly, when the RecA filament-capping inhibitor
RecX is added to RecA E38K K72R filaments for the
same time as the longest incubation carried out here with
UvrD, no disassembly of the RecA variant is observed
(Gruenig,M. and Cox,M., unpublished data). E. coli RecX
has been shown to inhibit RecA filament extension through
binding to the 3′-proximal end of the nucleoprotein fila-
ment (68). No RecA protomers can be added to the growing
end of the filament in the presence of RecX, while the 5′-

proximal end continues to disassemble, resulting in eventual
elimination of the filament. However, the passive mecha-
nism of RecX requires ATP hydrolysis by RecA (49). There-
fore, the results in Figure 7, which show displacement of
RecA E38K K72R from DNA by UvrD, support a mech-
anism of active displacement of RecA by UvrD. They also
demonstrate that ATP hydrolysis by RecA is not needed for
this displacement.

Finally, we examined how much ATP hydrolysis is re-
quired to dismantle pre-formed RecA filaments. As men-
tioned earlier, the rate of ATP hydrolysis that can be mea-
sured at early times after UvrD is added to RecA E38K
K72R filaments on circular ssDNA is so low that we started
questioning whether it was necessary at all. To investigate
further whether ATP hydrolysis by UvrD is required for
RecA displacement we followed the state of RecA filaments
in response to UvrD addition by EM, but we substituted
ATP entirely with the non-hydrolyzable analog ATP�S. Ad-
dition of UvrD had essentially no effect on RecA filaments
under these conditions (Figure 8A–D). Time points of the
reaction were taken as described in the Materials and Meth-
ods section. Mostly RecA full filaments with small gaps
were observed even after 50 min of UvrD exposure to RecA
nucleoprotein filaments pre-formed with ATP�S (Figure 8).
Addition of ATP along with the UvrD resulted in signif-
icant displacement of RecA (Figure 8D). Decreasing the
concentration of ATP�S in the initial incubation and in-
creasing the concentration of ATP added subsequently en-
hanced the RecA displacement effect. The overall results are
consistent with a requirement for UvrD-mediated ATP hy-
drolysis to bring about RecA displacement from DNA.

Availability of RecA-ssDNA filament ends and/or ssDNA
binding sites controls the duration of the lag phase

Next, we examined what factors affect the efficiency of
UvrD activity on RecA. We varied the concentration of WT
RecA in the ATPase reactions to determine how effective
UvrD was at competing for DNA with the RecA filament.
The results suggest that when the DNA is not fully coated
by RecA, the lag phase exhibited a substantial decline in du-
ration (Figure 9, RecA = 1 �M curve versus the rest). The
duration of the lag increased at higher RecA concentrations,
possibly due to reduced availability of RecA filament ends
and/or DNA binding sites where UvrD could act. The re-
sults suggest that the slow step in removal of RecA filaments
from circular ssDNA (when RecA protein is saturating) is
the ability of UvrD to gain access to those filament ends
and/or DNA binding sites.

Next, we assayed for UvrD-catalyzed displacement of
RecA from linear ssDNA. RecA cycles on and off short
linear ssDNA molecules, as ATP hydrolysis mediates end-
dependent dissociation of filaments and they are replaced
with new filament nucleation events. SSB is not needed
to form contiguous RecA filaments on ssDNA when sec-
ondary structure is not present, and is not added in the
experiments with poly(dT). On short poly(dT) DNA (av-
erage length greater than 250 nucleotides), the lag preced-
ing a pronounced UvrD stage completely disappeared (Fig-
ure 10A). Moreover, UvrD was able to enter the UvrD stage
at lower concentrations when RecA filaments were formed
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Figure 7. ATP hydrolysis by RecA protein is not required for UvrD-mediated disassembly of RecA filaments. (A) The RecA E38K K72R variant, which
lacks detectable ATPase activity, was allowed to form filaments on DNA in the presence of ATP for 15 min. UvrD was then added to the reactions at the
concentrations (in nM) shown. The data following this addition have been corrected for a small decline in absorption caused by a dilution effect. (B, C, D)
ATPase reactions containing 2 �M RecA E38K K72R and 3 �M DNA, followed by a challenge with 40 nM UvrD, were set up. Samples were taken for
spreading to observe RecA E38K K72R filaments under an electron microscope at 10 min (prior to UvrD addition), 20 min (5 min after UvrD addition)
and at 65 min (50 min after UvrD addition, UvrD stage), respectively. (E) Statistical analysis of the types of filaments observed from the experiments
illustrated in B, C and D. The results are an average of three independent experiments and the error bars represent standard deviation between the three
trials. Molecules counted (n) = = 700, 1442 and 668 for the RecA stage (panel B), the lag (panel C) and the UvrD stage (panel D), respectively. Filament
categories are described in Materials and Methods and in the legend to Figure 5.

on poly(dT) as compared to reactions in which RecA fila-
ments were pre-formed on circular ssDNA (compare Fig-
ures 3–10A). This piece of evidence elucidates two impor-
tant points about the UvrD mechanism. First, it supports
the active displacement model. The passive mode of in-
hibition by RecX is partially built on the evidence that
it requires greater amounts of RecX to inhibit RecA on
poly(dT) than on circular ssDNA M13mp18 DNA because
there are more filaments to cap on short linear ssDNA than
on large circular ssDNA for the same concentration of nu-
cleotides (48). Exactly the opposite effect is seen with UvrD.
Second, the ATPase function of UvrD must be required be-

cause when UvrD K35I is added to the reactions contain-
ing RecA-poly(dT) filaments, no inhibition was observed at
concentrations at which WT UvrD promotes a rapid switch
to a UvrD stage (Figure 10B).

To explore the issue further, we used a RecA E38K vari-
ant that has reduced disassembly rates and more rapid fil-
ament nucleation rates, perhaps due to enhanced cooper-
ativity between RecA protomers (69). This protein lacks
the K72R mutation and hydrolyzes ATP at rates similar to
the WT protein. When RecA E38K is preincubated with
poly(dT), and UvrD is added to the reaction, UvrD pro-
ceeds to an evident UvrD stage (with elevated ATPase lev-
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Figure 8. ATP hydrolysis by UvrD is required for dismantling RecA filaments. (A) RecA filaments formed on circular ssDNA after a 10 min incubation
with 1 mM ATP�S. Two full filaments and a very small filament, as well as SSB-coated DNA are present in this image. (B) RecA filaments formed as in
A), after a six-minute incubation with UvrD. (C) RecA filaments formed as in (A) after 50 min incubation with UvrD. No decrease in filamentation can
be observed. (D) If 3 mM ATP is added with the UvrD helicase, significant disassembly of the RecA filaments is seen after 6 min. Molecules are quantified
with RecA and ATP�S alone (n = 1027 molecules counted and scored), after addition of UvrD (n = 1187 molecules counted and scored) and after further
addition of ATP (n = 1060 molecules counted and scored). (E) Experiment as in panel D, but with less ATP�S (30 �M) added to form the RecA filaments,
addition of UvrD, and filaments examined 50 min after further addition of 3 mM ATP. Molecules counted and scored (n) = 573 prior to and (n) = 581 at
50 min after addition of ATP.

els) immediately (Figure 10C). Again, the abundance of eas-
ily accessible RecA-DNA filament ends appears to enhance
UvrD efficiency. However, the rates of ATP hydrolysis in
the UvrD stage decline. For example, with 20 nM UvrD,
the ATPase rate is 125 �M min−1 when UvrD challenges
the WT RecA protein, but only 41 �M min−1 when UvrD
challenges the RecA E38K protein. The greater efficiency
with which RecA E38K nucleates onto ssDNA may require
more frequent removal by UvrD and thus lower net rates of
UvrD-mediated ATP hydrolysis than are seen with the WT
RecA protein in Figure 10A.

The disappearance of the lag stage could be due to the
much shorter RecA filament lengths in this experiment,
the greater accessibility of the RecA-DNA filament ends,
and/or the absence of SSB from the reactions that con-
tained poly(dT). We repeated the same experiment using
linearized ssM13mp18 DNA. With this much longer and
complex ssDNA, RecA filaments were again formed with
the aid of added SSB, to eliminate the secondary structure
in this DNA substrate and form contiguous filaments. The
use of that DNA substrate resulted in restoration of a lag
stage, but its duration was greatly reduced when compared
to the lag observed when circular ssM13 was used (Fig-
ure 10D). The great reduction in the lag, even with SSB
present, suggests that an absence of SSB does not give rise
to the reduction in the lag seen in Figure 10A–C. This sug-
gests again that the lack of a lag in Figure 10A reflects a

greater accessibility to RecA filament ends and/or DNA
binding sites. The substitution of RecA E38K for the WT
protein again reduced the effect of UvrD, even at UvrD lev-
els that would result in a prominent transition to a UvrD
stage when WT RecA is used (Figure 10E). Overall, the re-
sults suggest that the longer lags seen when RecA is bound
at saturating levels to circular ssDNA are due to a slow step
in gaining access to viable sites where UvrD can carry out
its RecA displacement activity, either RecA filament ends
or DNA binding sites that transiently appear in the RecA
filament. Once UvrD is bound at the appropriate RecA fil-
ament end, RecA displacement occurs quite rapidly, but at
rates that can be slowed significantly by a RecA mutant with
enhanced DNA-binding properties such as RecA E38K.
When free RecA filament ends are present, or when RecA
concentration declines so that filament gaps appear, the lags
in the UvrD-mediated ATPase are greatly reduced.

The displacement of RecA by UvrD is blocked by deletion of
the RecA C-terminus

As detailed in the Introduction, the C-terminal 17 amino
acid residues of RecA represent a highly charged regulatory
flap that affects many RecA functions. Removal of this flap
enhances RecA protein binding to ssDNA in a manner simi-
lar to the RecA E38K mutant protein. We carried out exper-
iments to determine if this flap affected the RecA displace-
ment reaction catalyzed by UvrD. The experimental design
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Figure 9. The effect of RecA concentration on UvrD capacity to dismantle RecA filaments. The indicated concentrations of RecA protein (in �M) were
allowed to form active filaments on M13mp18 circular ssDNA as described in Materials and Methods. After 15 min (arrow), the reactions were challenged
with 50 nM of UvrD.
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is similar to that in Figure 3, with 30 nM UvrD added to fil-
aments of WT RecA or RecA�C17 at the arrow in Figure
11A. The results of the ATPase trials, repeated three times,
indicate that nucleoprotein filaments of the RecA�C17 pro-
tein are minimally affected by UvrD. This interpretation is

Figure 10. UvrD-mediated disassembly of RecA filaments formed on lin-
ear ssDNA. (A) WT RecA was allowed to form filaments on 3 �M

supported by the electron microscopy experiments in Fig-
ure 11B. The resistance of RecA�C17 to UvrD is not com-
plete, but it is clearly substantial.

It is possible that this is due to a role for the RecA C-
terminus in the RecA displacement mechanism––a direct
interaction with UvrD. Alternatively, it could simply reflect
the enhanced binding of RecA�C17 to ssDNA relative to
the WT protein. As may be the case for RecA E38K, a more
persistent RecA�C17 filament may simply resist displace-
ment by UvrD.

DISCUSSION

Our primary conclusion is that UvrD displaces RecA fil-
aments using an active mechanism approximating the ac-
tive mode illustrated in Figure 1. The ATPase activity of
UvrD is required for displacement; the ATPase activity of
RecA protein is not. The results largely eliminate three pos-
sible displacement mechanisms. These are (i) a completely
passive mechanism in which UvrD might encounter and
block the 3′-proximal end of a RecA filament and thus
block elongation at that end, while RecA protein dissoci-
ates from the opposite filament end (the passive mode in
Figure 1); (ii) a simple competition for DNA binding sites
(normal RecA dissociation from the 3′-proximal end, espe-
cially when RecA is not hydrolyzing ATP, is insufficient to
account for the rapid rate of UvrD-mediated displacement)
or (iii) a UvrD-activated higher rate of ATP hydrolysis in
RecA (that would accelerate normal RecA filament disas-
sembly; instead, RecA-mediated ATP hydrolysis is not re-
quired). Instead, UvrD is actively displacing RecA subunits,
whether RecA is hydrolyzing ATP or not. We also estab-
lish that the efficiency of the displacement reaction can be
limited by the availability of DNA binding sites and/or the
accessibility of the 3′-proximal end of the growing RecA fil-
ament. UvrD function appears to be distinct from that of
its PcrA homolog, at least with respect to its lack of a re-
quirement for the RecA ATPase activity (54).

RecA is not the first protein for which an active displace-
ment mechanism from DNA by UvrD has been demon-
strated. UvrD has been shown to actively remove the Tus
protein from the ter sites on the E. coli chromosome (19).
It would be interesting to directly compare the dynamics

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
poly(dT) DNA (average length 225 nucleotides) in the presence of ATP.
All reactions in this and subsequent panels that utilize poly(dT) do not
include SSB. After 15 min UvrD was titrated into the reactions at final
concentrations shown on the graphs (in nM). (B) Reactions were carried
out as in panel A, but UvrD K35 I was substituted for WT UvrD in the
indicated reactions. (C) RecA E38K resists inhibition by UvrD. The RecA
E38K variant was allowed to form filaments on poly(dT) as in panels A
and B, and UvrD was titrated into the reaction at final concentrations (in
nM) shown in the figure. (D) WT RecA protein was incubated in the pres-
ence of ATP either with 3 �M circular M13mp18 ssDNA (dashed lines)
or linear M13mp18 ssDNA (solid lines). After 15 min UvrD was titrated
into the reactions at the indicated concentrations (in nM). The average
rate of RecA-mediated ATP hydrolysis on circular M13mp18 ssDNA is 24
�M/min and on lssM13 DNA is 21 �M/min. These reactions, and those
in panel E, included SSB added with the ATP during the initial formation
of RecA filaments. (E) The RecA E38K mutant was used. The experiment
was set up as in C, but linear M13mp18 ssDNA was used in place of poly
(dT).
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Figure 11. UvrD-mediated displacement of RecA protein requires the RecA C-terminus. WT RecA or RecA �C17 were added to 2 �M under standard
reaction conditions. After 15 min, 30 nM UvrD was added to each. (A) While the WT RecA is removed as expected, leading to normal acquisition of the
UvrD stage, the RecA �C17 variant is not removed and no change in ATPase rates is observed. (B) Electron microscopy. Molecules counted and scored
prior to UvrD addition (n) = 876, n = 1355 molecules counted and scored 5 min after UvrD addition.

of UvrD catalyzed removal of RecA and Tus. The slow
ATPase rates of UvrD during RecA removal suggest that
UvrD does not translocate on the ssDNA at its normal rate
during this process. In fact, the UvrD stage (Figure 2) is
most likely the translocase mode of UvrD, to which the
protein switches after most RecA has been removed from
the DNA. Based on low ATPase rates observed during the
lag stage, especially during the lags accompanying removal
of RecA E38K K72R mutant filaments that contribute no
background ATP hydrolysis, we estimate that the kcat for
UvrD-mediated ATP hydrolysis during RecA removal is no
more than 70 s−1. Intriguingly, this is close to the rate of
ATP hydrolysis during the unwinding of duplex DNA by a
UvrD dimer.

There are several possible avenues for an active UvrD
displacement mechanism. In principle, UvrD could inter-

act with any part of the RecA filament, perhaps trigger-
ing a cooperative local filament collapse. However, given
the known properties of UvrD and RecA, as well as the
lack of a requirement for the RecA ATPase, we propose
that the simplest and most likely disassembly mechanism
would involve UvrD displacing RecA filaments from 3′-
proximal end. Simple translocation of UvrD could displace
the RecA protein without need for a specific interaction be-
tween the two proteins. UvrD hydrolyzes 1 ATP per nu-
cleotide translocated even at low concentrations of ATP
(70). This argues that there is little to no slippage of UvrD
even when not bound to ATP. If RecA filaments slow the
translocation as expected, then the ATPase activity will
slow as well. RecA mutants with enhanced DNA-binding
properties could further slow or prevent the progress of
UvrD in a displacement mode, such as seen here with the
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RecA E38K and RecA�C17 mutants. A mechanism fea-
turing direct and specific interactions between UvrD and
RecA is also possible, although the current work provides
no evidence for such an interaction. The ATPase activity of
UvrD must be intact for Tus removal (19). The need for the
UvrD ATPase activity for RecA displacement also suggests
that the active translocase activity of UvrD plays a role in
the protein displacement process.

A UvrD monomer is able to translocate along ssDNA
(67,70,71). The UvrD helicase function in vitro involves an
oligomeric protein (at least a dimer) (66,71–73). Since there
is no duplex DNA present in our experiments, we hypoth-
esize that the active form of UvrD in RecA displacement
is the monomeric species, although our experiments do not
directly bear on this issue. In principle, multiple subunits of
UvrD could cooperate in the displacement reaction much
like the cooperative inchworm mechanism proposed for dis-
placement of DNA binding proteins by the bacteriophage
T4 Dda helicase (74).

Helicases without ATPase function can displace RecA
protein in principle. A PcrA mutant devoid of ATPase and
helicase activity possesses RecA displacement activity (75).
However, the result can be easily explained by a competi-
tion by PcrA and RecA for DNA binding sites. Evidence has
been provided more recently that PcrA acts by a mechanism
that requires ATP hydrolysis by RecA (54). As shown in Fig-
ure 6A, UvrD K35I can eventually inhibit RecA ATPase
activity, brought about by a net RecA filament disassembly
accompanying RecA-mediated ATP hydrolysis. The prop-
erties of the normal RecA filament disassembly process, in
particular its reliance on ATP hydrolysis, explain why the
RecA filament needs to hydrolyze ATP when the K35I mu-
tant of UvrD is used for RecA filament displacement. The
same property of RecA may explain some published obser-
vations with PcrA. Without RecA-mediated ATP hydroly-
sis, the pre-formed RecA nucleoprotein filaments will not
disassemble in the time span of the current experiments.

Our results suggest that the length of the lag stage de-
pends largely upon UvrD access to RecA filament ends
and/or DNA binding sites. Observation of substantial lags
is seen only when UvrD is added to RecA filaments formed
on circular ssDNA, under conditions of RecA saturation
where such ends or binding sites should be limiting. When
RecA concentrations are reduced to sub-saturating levels,
the duration of the lag declines substantially (Figure 9). The
lag is abolished at all UvrD concentrations when added to
RecA filaments pre-formed on short linear poly(dT) DNA
where filaments are short and ends abundant (Figure 10A–
C). The lag duration declines considerably when linear ss-
DNA replaces circular ssDNA, where filament ends would
be exposed (Figure 10D). Even when RecA is present at sat-
urating levels on circular ssDNA, the length of the lag also
declines as UvrD concentration increases (Figure 3). This
might be attributed to subtle discontinuities in the RecA fil-
ament on the otherwise saturated circular ssDNA that are
less accessible than an open filament end (and less appar-
ent in the electron microscope), but that can be exploited
by UvrD when its concentration is sufficient. The ssDNA
binding site size for UvrD is ∼10 ± 2 nucleotides (76), po-
tentially allowing it to exploit short RecA filament discon-
tinuities much better than SSB (with a site size of 30+ nu-

cleotides (59,77)). Alternatively, UvrD may possess some
capacity to slowly integrate into a contiguous RecA nucle-
oprotein filament and create a new end or binding site.

It is interesting to speculate that UvrD may be recruited
to the 3′-proximal end of the RecA nucleoprotein filament
through a specific interaction. UvrD interacts with a num-
ber of proteins to perform its activities in NER and MMR
(16,18), so it is possible that dismantling RecA requires a
similar interaction. Also, the UvrD homolog Srs2 has been
shown to interact with Rad51 through its C-terminus (53).
The C-termini of UvrD, Rep and Srs2 are not conserved, so
it is possible that they have adapted for species-specific in-
teractions. The main argument against a specific interaction
is the fact that PcrA from different bacteria can substitute
for UvrD in E. coli. Therefore, the question of a direct inter-
action between UvrD and RecA remains open. If it exists,
the interaction is likely weak and transient.

UvrD monomers exhibit binding specificity for a
ssDNA/dsDNA junction (13). If bound near the 3′ end
of the gap, UvrD might be optimally positioned both to
displace any RecA filament that had nucleated in the gap
and to prevent filament extension into the adjoining duplex
DNA. A UvrD monomer cannot unwind DNA, so it should
simply dissociate or stop when it reaches the other end of the
gap (13). These features of UvrD function may play a role
in its capacity to limit the lifetime of RecA filaments on the
DNA.
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